/* Clzip - LZMA lossless data compressor Copyright (C) 2010-2024 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ enum { price_shift_bits = 6, price_step_bits = 2, price_step = 1 << price_step_bits }; typedef uint8_t Dis_slots[1<<10]; extern Dis_slots dis_slots; static inline void Dis_slots_init( void ) { int i, size, slot; for( slot = 0; slot < 4; ++slot ) dis_slots[slot] = slot; for( i = 4, size = 2, slot = 4; slot < 20; slot += 2 ) { memset( &dis_slots[i], slot, size ); memset( &dis_slots[i+size], slot + 1, size ); size <<= 1; i += size; } } static inline uint8_t get_slot( const unsigned dis ) { if( dis < (1 << 10) ) return dis_slots[dis]; if( dis < (1 << 19) ) return dis_slots[dis>> 9] + 18; if( dis < (1 << 28) ) return dis_slots[dis>>18] + 36; return dis_slots[dis>>27] + 54; } typedef short Prob_prices[bit_model_total >> price_step_bits]; extern Prob_prices prob_prices; static inline void Prob_prices_init( void ) { int i, j; for( i = 0; i < bit_model_total >> price_step_bits; ++i ) { unsigned val = ( i * price_step ) + ( price_step / 2 ); int bits = 0; /* base 2 logarithm of val */ for( j = 0; j < price_shift_bits; ++j ) { val = val * val; bits <<= 1; while( val >= 1 << 16 ) { val >>= 1; ++bits; } } bits += 15; /* remaining bits in val */ prob_prices[i] = ( bit_model_total_bits << price_shift_bits ) - bits; } } static inline int get_price( const int probability ) { return prob_prices[probability >> price_step_bits]; } static inline int price0( const Bit_model probability ) { return get_price( probability ); } static inline int price1( const Bit_model probability ) { return get_price( bit_model_total - probability ); } static inline int price_bit( const Bit_model bm, const bool bit ) { return bit ? price1( bm ) : price0( bm ); } static inline int price_symbol3( const Bit_model bm[], int symbol ) { bool bit = symbol & 1; symbol |= 8; symbol >>= 1; int price = price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); return price + price_bit( bm[1], symbol & 1 ); } static inline int price_symbol6( const Bit_model bm[], unsigned symbol ) { bool bit = symbol & 1; symbol |= 64; symbol >>= 1; int price = price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); return price + price_bit( bm[1], symbol & 1 ); } static inline int price_symbol8( const Bit_model bm[], int symbol ) { bool bit = symbol & 1; symbol |= 0x100; symbol >>= 1; int price = price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); return price + price_bit( bm[1], symbol & 1 ); } static inline int price_symbol_reversed( const Bit_model bm[], int symbol, const int num_bits ) { int price = 0; int model = 1; int i; for( i = num_bits; i > 0; --i ) { const bool bit = symbol & 1; symbol >>= 1; price += price_bit( bm[model], bit ); model <<= 1; model |= bit; } return price; } static inline int price_matched( const Bit_model bm[], unsigned symbol, unsigned match_byte ) { int price = 0; unsigned mask = 0x100; symbol |= mask; while( true ) { const unsigned match_bit = ( match_byte <<= 1 ) & mask; const bool bit = ( symbol <<= 1 ) & 0x100; price += price_bit( bm[(symbol>>9)+match_bit+mask], bit ); if( symbol >= 0x10000 ) return price; mask &= ~(match_bit ^ symbol); /* if( match_bit != bit ) mask = 0; */ } } struct Matchfinder_base { unsigned long long partial_data_pos; uint8_t * buffer; /* input buffer */ int32_t * prev_positions; /* 1 + last seen position of key. else 0 */ int32_t * pos_array; /* may be tree or chain */ int before_size; /* bytes to keep in buffer before dictionary */ int buffer_size; int dictionary_size; /* bytes to keep in buffer before pos */ int pos; /* current pos in buffer */ int cyclic_pos; /* cycles through [0, dictionary_size] */ int stream_pos; /* first byte not yet read from file */ int pos_limit; /* when reached, a new block must be read */ int key4_mask; int num_prev_positions23; int num_prev_positions; /* size of prev_positions */ int pos_array_size; int infd; /* input file descriptor */ bool at_stream_end; /* stream_pos shows real end of file */ }; bool Mb_read_block( struct Matchfinder_base * const mb ); void Mb_normalize_pos( struct Matchfinder_base * const mb ); bool Mb_init( struct Matchfinder_base * const mb, const int before_size, const int dict_size, const int after_size, const int dict_factor, const int num_prev_positions23, const int pos_array_factor, const int ifd ); static inline void Mb_free( struct Matchfinder_base * const mb ) { free( mb->prev_positions ); free( mb->buffer ); } static inline uint8_t Mb_peek( const struct Matchfinder_base * const mb, const int distance ) { return mb->buffer[mb->pos-distance]; } static inline int Mb_available_bytes( const struct Matchfinder_base * const mb ) { return mb->stream_pos - mb->pos; } static inline unsigned long long Mb_data_position( const struct Matchfinder_base * const mb ) { return mb->partial_data_pos + mb->pos; } static inline bool Mb_data_finished( const struct Matchfinder_base * const mb ) { return mb->at_stream_end && mb->pos >= mb->stream_pos; } static inline const uint8_t * Mb_ptr_to_current_pos( const struct Matchfinder_base * const mb ) { return mb->buffer + mb->pos; } static inline int Mb_true_match_len( const struct Matchfinder_base * const mb, const int index, const int distance ) { const uint8_t * const data = mb->buffer + mb->pos; int i = index; const int len_limit = min( Mb_available_bytes( mb ), max_match_len ); while( i < len_limit && data[i-distance] == data[i] ) ++i; return i; } static inline void Mb_move_pos( struct Matchfinder_base * const mb ) { if( ++mb->cyclic_pos > mb->dictionary_size ) mb->cyclic_pos = 0; if( ++mb->pos >= mb->pos_limit ) Mb_normalize_pos( mb ); } void Mb_reset( struct Matchfinder_base * const mb ); enum { re_buffer_size = 65536 }; struct Range_encoder { uint64_t low; unsigned long long partial_member_pos; uint8_t * buffer; /* output buffer */ int pos; /* current pos in buffer */ uint32_t range; unsigned ff_count; int outfd; /* output file descriptor */ uint8_t cache; Lzip_header header; }; void Re_flush_data( struct Range_encoder * const renc ); static inline void Re_put_byte( struct Range_encoder * const renc, const uint8_t b ) { renc->buffer[renc->pos] = b; if( ++renc->pos >= re_buffer_size ) Re_flush_data( renc ); } static inline void Re_shift_low( struct Range_encoder * const renc ) { if( renc->low >> 24 != 0xFF ) { const bool carry = ( renc->low > 0xFFFFFFFFU ); Re_put_byte( renc, renc->cache + carry ); for( ; renc->ff_count > 0; --renc->ff_count ) Re_put_byte( renc, 0xFF + carry ); renc->cache = renc->low >> 24; } else ++renc->ff_count; renc->low = ( renc->low & 0x00FFFFFFU ) << 8; } static inline void Re_reset( struct Range_encoder * const renc, const unsigned dictionary_size ) { renc->low = 0; renc->partial_member_pos = 0; renc->pos = 0; renc->range = 0xFFFFFFFFU; renc->ff_count = 0; renc->cache = 0; Lh_set_dictionary_size( renc->header, dictionary_size ); int i; for( i = 0; i < Lh_size; ++i ) Re_put_byte( renc, renc->header[i] ); } static inline bool Re_init( struct Range_encoder * const renc, const unsigned dictionary_size, const int ofd ) { renc->buffer = (uint8_t *)malloc( re_buffer_size ); if( !renc->buffer ) return false; renc->outfd = ofd; Lh_set_magic( renc->header ); Re_reset( renc, dictionary_size ); return true; } static inline void Re_free( struct Range_encoder * const renc ) { free( renc->buffer ); } static inline unsigned long long Re_member_position( const struct Range_encoder * const renc ) { return renc->partial_member_pos + renc->pos + renc->ff_count; } static inline void Re_flush( struct Range_encoder * const renc ) { int i; for( i = 0; i < 5; ++i ) Re_shift_low( renc ); } static inline void Re_encode( struct Range_encoder * const renc, const int symbol, const int num_bits ) { unsigned mask; for( mask = 1 << ( num_bits - 1 ); mask > 0; mask >>= 1 ) { renc->range >>= 1; if( symbol & mask ) renc->low += renc->range; if( renc->range <= 0x00FFFFFFU ) { renc->range <<= 8; Re_shift_low( renc ); } } } static inline void Re_encode_bit( struct Range_encoder * const renc, Bit_model * const probability, const bool bit ) { const uint32_t bound = ( renc->range >> bit_model_total_bits ) * *probability; if( !bit ) { renc->range = bound; *probability += (bit_model_total - *probability) >> bit_model_move_bits; } else { renc->low += bound; renc->range -= bound; *probability -= *probability >> bit_model_move_bits; } if( renc->range <= 0x00FFFFFFU ) { renc->range <<= 8; Re_shift_low( renc ); } } static inline void Re_encode_tree3( struct Range_encoder * const renc, Bit_model bm[], const int symbol ) { bool bit = ( symbol >> 2 ) & 1; Re_encode_bit( renc, &bm[1], bit ); int model = 2 | bit; bit = ( symbol >> 1 ) & 1; Re_encode_bit( renc, &bm[model], bit ); model <<= 1; model |= bit; Re_encode_bit( renc, &bm[model], symbol & 1 ); } static inline void Re_encode_tree6( struct Range_encoder * const renc, Bit_model bm[], const unsigned symbol ) { bool bit = ( symbol >> 5 ) & 1; Re_encode_bit( renc, &bm[1], bit ); int model = 2 | bit; bit = ( symbol >> 4 ) & 1; Re_encode_bit( renc, &bm[model], bit ); model <<= 1; model |= bit; bit = ( symbol >> 3 ) & 1; Re_encode_bit( renc, &bm[model], bit ); model <<= 1; model |= bit; bit = ( symbol >> 2 ) & 1; Re_encode_bit( renc, &bm[model], bit ); model <<= 1; model |= bit; bit = ( symbol >> 1 ) & 1; Re_encode_bit( renc, &bm[model], bit ); model <<= 1; model |= bit; Re_encode_bit( renc, &bm[model], symbol & 1 ); } static inline void Re_encode_tree8( struct Range_encoder * const renc, Bit_model bm[], const int symbol ) { int model = 1; int i; for( i = 7; i >= 0; --i ) { const bool bit = ( symbol >> i ) & 1; Re_encode_bit( renc, &bm[model], bit ); model <<= 1; model |= bit; } } static inline void Re_encode_tree_reversed( struct Range_encoder * const renc, Bit_model bm[], int symbol, const int num_bits ) { int model = 1; int i; for( i = num_bits; i > 0; --i ) { const bool bit = symbol & 1; symbol >>= 1; Re_encode_bit( renc, &bm[model], bit ); model <<= 1; model |= bit; } } static inline void Re_encode_matched( struct Range_encoder * const renc, Bit_model bm[], unsigned symbol, unsigned match_byte ) { unsigned mask = 0x100; symbol |= mask; while( true ) { const unsigned match_bit = ( match_byte <<= 1 ) & mask; const bool bit = ( symbol <<= 1 ) & 0x100; Re_encode_bit( renc, &bm[(symbol>>9)+match_bit+mask], bit ); if( symbol >= 0x10000 ) break; mask &= ~(match_bit ^ symbol); /* if( match_bit != bit ) mask = 0; */ } } static inline void Re_encode_len( struct Range_encoder * const renc, struct Len_model * const lm, int symbol, const int pos_state ) { bool bit = ( ( symbol -= min_match_len ) >= len_low_symbols ); Re_encode_bit( renc, &lm->choice1, bit ); if( !bit ) Re_encode_tree3( renc, lm->bm_low[pos_state], symbol ); else { bit = ( ( symbol -= len_low_symbols ) >= len_mid_symbols ); Re_encode_bit( renc, &lm->choice2, bit ); if( !bit ) Re_encode_tree3( renc, lm->bm_mid[pos_state], symbol ); else Re_encode_tree8( renc, lm->bm_high, symbol - len_mid_symbols ); } } enum { max_marker_size = 16, num_rep_distances = 4 }; /* must be 4 */ struct LZ_encoder_base { struct Matchfinder_base mb; uint32_t crc; Bit_model bm_literal[1<mb, before_size, dict_size, after_size, dict_factor, num_prev_positions23, pos_array_factor, ifd ) ) return false; if( !Re_init( &eb->renc, eb->mb.dictionary_size, outfd ) ) return false; LZeb_reset( eb ); return true; } static inline void LZeb_free( struct LZ_encoder_base * const eb ) { Re_free( &eb->renc ); Mb_free( &eb->mb ); } static inline unsigned LZeb_crc( const struct LZ_encoder_base * const eb ) { return eb->crc ^ 0xFFFFFFFFU; } static inline int LZeb_price_literal( const struct LZ_encoder_base * const eb, const uint8_t prev_byte, const uint8_t symbol ) { return price_symbol8( eb->bm_literal[get_lit_state(prev_byte)], symbol ); } static inline int LZeb_price_matched( const struct LZ_encoder_base * const eb, const uint8_t prev_byte, const uint8_t symbol, const uint8_t match_byte ) { return price_matched( eb->bm_literal[get_lit_state(prev_byte)], symbol, match_byte ); } static inline void LZeb_encode_literal( struct LZ_encoder_base * const eb, const uint8_t prev_byte, const uint8_t symbol ) { Re_encode_tree8( &eb->renc, eb->bm_literal[get_lit_state(prev_byte)], symbol ); } static inline void LZeb_encode_matched( struct LZ_encoder_base * const eb, const uint8_t prev_byte, const uint8_t symbol, const uint8_t match_byte ) { Re_encode_matched( &eb->renc, eb->bm_literal[get_lit_state(prev_byte)], symbol, match_byte ); } static inline void LZeb_encode_pair( struct LZ_encoder_base * const eb, const unsigned dis, const int len, const int pos_state ) { Re_encode_len( &eb->renc, &eb->match_len_model, len, pos_state ); const unsigned dis_slot = get_slot( dis ); Re_encode_tree6( &eb->renc, eb->bm_dis_slot[get_len_state(len)], dis_slot ); if( dis_slot >= start_dis_model ) { const int direct_bits = ( dis_slot >> 1 ) - 1; const unsigned base = ( 2 | ( dis_slot & 1 ) ) << direct_bits; const unsigned direct_dis = dis - base; if( dis_slot < end_dis_model ) Re_encode_tree_reversed( &eb->renc, eb->bm_dis + ( base - dis_slot ), direct_dis, direct_bits ); else { Re_encode( &eb->renc, direct_dis >> dis_align_bits, direct_bits - dis_align_bits ); Re_encode_tree_reversed( &eb->renc, eb->bm_align, direct_dis, dis_align_bits ); } } } void LZeb_full_flush( struct LZ_encoder_base * const eb, const State state );