1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
|
/* Clzip - A data compressor based on the LZMA algorithm
Copyright (C) 2010 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
enum { max_num_trials = 1 << 12,
price_shift = 6 };
typedef unsigned char Dis_slots[1<<12];
extern Dis_slots dis_slots;
static inline void Dis_slots_init()
{
for( int slot = 0; slot < 4; ++slot ) dis_slots[slot] = slot;
for( int i = 4, size = 2, slot = 4; slot < 24; slot += 2 )
{
memset( &dis_slots[i], slot, size );
memset( &dis_slots[i+size], slot + 1, size );
size <<= 1;
i += size;
}
}
static inline int get_slot( const uint32_t dis )
{
if( dis < (1 << 12) ) return dis_slots[dis];
if( dis < (1 << 23) ) return dis_slots[dis>>11] + 22;
return dis_slots[dis>>22] + 44;
}
typedef int Prob_prices[bit_model_total >> 2];
extern Prob_prices prob_prices;
static inline void Prob_prices_init()
{
const int num_bits = ( bit_model_total_bits - 2 );
for( int i = num_bits - 1; i >= 0; --i )
{
int start = 1 << ( num_bits - i - 1 );
int end = 1 << ( num_bits - i);
for( int j = start; j < end; ++j )
prob_prices[j] = (i << price_shift) +
( ((end - j) << price_shift) >> (num_bits - i - 1) );
}
}
static inline int get_price( const int probability )
{ return prob_prices[probability >> 2]; }
static inline int price0( const Bit_model probability )
{ return get_price( probability ); }
static inline int price1( const Bit_model probability )
{ return get_price( bit_model_total-probability ); }
static inline int price_bit( const Bit_model bm, const int bit )
{ if( bit ) return price1( bm ); else return price0( bm ); }
static inline int price_symbol( const Bit_model bm[], int symbol, const int num_bits )
{
symbol |= ( 1 << num_bits );
int price = 0;
while( symbol > 1 )
{
const int bit = symbol & 1;
symbol >>= 1;
price += price_bit( bm[symbol], bit );
}
return price;
}
static inline int price_symbol_reversed( const Bit_model bm[], int symbol,
const int num_bits )
{
int price = 0;
int model = 1;
for( int i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
symbol >>= 1;
price += price_bit( bm[model], bit );
model = ( model << 1 ) | bit;
}
return price;
}
static inline int price_matched( const Bit_model bm[], const int symbol,
const int match_byte )
{
int price = 0;
int model = 1;
for( int i = 7; i >= 0; --i )
{
const int match_bit = ( match_byte >> i ) & 1;
const int bit = ( symbol >> i ) & 1;
price += price_bit( bm[(match_bit<<8)+model+0x100], bit );
model = ( model << 1 ) | bit;
if( match_bit != bit )
{
while( --i >= 0 )
{
const int bit = ( symbol >> i ) & 1;
price += price_bit( bm[model], bit );
model = ( model << 1 ) | bit;
}
break;
}
}
return price;
}
enum { // bytes to keep in buffer before dictionary
mf_before_size = max_num_trials + 1,
// bytes to keep in buffer after pos
mf_after_size = max_match_len,
mf_num_prev_positions4 = 1 << 20,
mf_num_prev_positions3 = 1 << 18,
mf_num_prev_positions2 = 1 << 16,
mf_num_prev_positions = mf_num_prev_positions4 + mf_num_prev_positions3 +
mf_num_prev_positions2 };
struct Matchfinder
{
long long partial_data_pos;
int dictionary_size_; // bytes to keep in buffer before pos
int buffer_size;
uint8_t * buffer;
int pos;
int cyclic_pos;
int stream_pos; // first byte not yet read from file
int pos_limit; // when reached, a new block must be read
int infd_; // input file descriptor
int match_len_limit_;
int32_t * prev_positions; // last seen position of key
int32_t * prev_pos_tree;
bool at_stream_end; // stream_pos shows real end of file
};
bool Mf_read_block( struct Matchfinder * const matchfinder );
void Mf_init( struct Matchfinder * const matchfinder,
const int dict_size, const int len_limit, const int infd );
static inline void Mf_free( struct Matchfinder * const matchfinder )
{
free( matchfinder->prev_pos_tree ); matchfinder->prev_pos_tree = 0;
free( matchfinder->prev_positions ); matchfinder->prev_positions = 0;
free( matchfinder->buffer ); matchfinder->buffer = 0;
}
static inline uint8_t Mf_peek( struct Matchfinder * const matchfinder, const int i )
{ return matchfinder->buffer[matchfinder->pos+i]; }
static inline int Mf_available_bytes( struct Matchfinder * const matchfinder )
{ return matchfinder->stream_pos - matchfinder->pos; }
static inline long long Mf_data_position( struct Matchfinder * const matchfinder )
{ return matchfinder->partial_data_pos + matchfinder->pos; }
static inline int Mf_dictionary_size( struct Matchfinder * const matchfinder )
{ return matchfinder->dictionary_size_; }
static inline bool Mf_finished( struct Matchfinder * const matchfinder )
{ return matchfinder->at_stream_end && matchfinder->pos >= matchfinder->stream_pos; }
static inline int Mf_match_len_limit( struct Matchfinder * const matchfinder )
{ return matchfinder->match_len_limit_; }
static inline const uint8_t * Mf_ptr_to_current_pos( struct Matchfinder * const matchfinder )
{ return matchfinder->buffer + matchfinder->pos; }
static inline bool Mf_dec_pos( struct Matchfinder * const matchfinder,
const int ahead )
{
if( ahead < 0 || matchfinder->pos < ahead ) return false;
matchfinder->pos -= ahead;
matchfinder->cyclic_pos -= ahead;
if( matchfinder->cyclic_pos < 0 )
matchfinder->cyclic_pos += matchfinder->dictionary_size_;
return true;
}
static inline int Mf_true_match_len( struct Matchfinder * const matchfinder,
const int index, const int distance, int len_limit )
{
if( index + len_limit > Mf_available_bytes( matchfinder ) )
len_limit = Mf_available_bytes( matchfinder ) - index;
const uint8_t * const data = matchfinder->buffer + matchfinder->pos + index - distance;
int i = 0;
while( i < len_limit && data[i] == data[i+distance] ) ++i;
return i;
}
bool Mf_reset( struct Matchfinder * const matchfinder );
bool Mf_move_pos( struct Matchfinder * const matchfinder );
int Mf_longest_match_len( struct Matchfinder * const matchfinder,
int * const distances );
enum { re_buffer_size = 65536 };
struct Range_encoder
{
uint64_t low;
long long partial_member_pos;
uint8_t * buffer;
int pos;
uint32_t range;
int ff_count;
int outfd_; // output file descriptor
uint8_t cache;
};
static inline void Re_flush_data( struct Range_encoder * const range_encoder )
{
if( range_encoder->pos > 0 )
{
if( range_encoder->outfd_ >= 0 )
{
const int wr = writeblock( range_encoder->outfd_, range_encoder->buffer, range_encoder->pos );
if( wr != range_encoder->pos )
{ show_error( "write error", errno, false ); cleanup_and_fail( 1 ); }
}
range_encoder->partial_member_pos += range_encoder->pos;
range_encoder->pos = 0;
}
}
static inline void Re_put_byte( struct Range_encoder * const range_encoder,
const uint8_t b )
{
range_encoder->buffer[range_encoder->pos] = b;
if( ++range_encoder->pos >= re_buffer_size ) Re_flush_data( range_encoder );
}
static inline void Re_shift_low( struct Range_encoder * const range_encoder )
{
const uint32_t carry = range_encoder->low >> 32;
if( range_encoder->low < 0xFF000000LL || carry == 1 )
{
Re_put_byte( range_encoder, range_encoder->cache + carry );
for( ; range_encoder->ff_count > 0; --range_encoder->ff_count )
Re_put_byte( range_encoder, 0xFF + carry );
range_encoder->cache = range_encoder->low >> 24;
}
else ++range_encoder->ff_count;
range_encoder->low = ( range_encoder->low & 0x00FFFFFFLL ) << 8;
}
static inline void Re_init( struct Range_encoder * const range_encoder,
const int outfd )
{
range_encoder->low = 0;
range_encoder->partial_member_pos = 0;
range_encoder->buffer = (uint8_t *)malloc( re_buffer_size );
if( !range_encoder->buffer )
{
show_error( "not enough memory. Try a smaller dictionary size", 0, false );
cleanup_and_fail( 1 );
}
range_encoder->pos = 0;
range_encoder->range = 0xFFFFFFFF;
range_encoder->ff_count = 0;
range_encoder->outfd_ = outfd;
range_encoder->cache = 0;
}
static inline void Re_free( struct Range_encoder * const range_encoder )
{ free( range_encoder->buffer ); range_encoder->buffer = 0; }
static inline void Re_flush( struct Range_encoder * const range_encoder )
{ for( int i = 0; i < 5; ++i ) Re_shift_low( range_encoder ); }
static inline long long Re_member_position( struct Range_encoder * const range_encoder )
{ return range_encoder->partial_member_pos + range_encoder->pos + range_encoder->ff_count; }
static inline void Re_encode( struct Range_encoder * const range_encoder,
const int symbol, const int num_bits )
{
for( int i = num_bits - 1; i >= 0; --i )
{
range_encoder->range >>= 1;
if( (symbol >> i) & 1 ) range_encoder->low += range_encoder->range;
if( range_encoder->range <= 0x00FFFFFF )
{ range_encoder->range <<= 8; Re_shift_low( range_encoder ); }
}
}
static inline void Re_encode_bit( struct Range_encoder * const range_encoder,
Bit_model * const probability, const int bit )
{
const uint32_t bound = ( range_encoder->range >> bit_model_total_bits ) * *probability;
if( !bit )
{
range_encoder->range = bound;
*probability += (bit_model_total - *probability) >> bit_model_move_bits;
}
else
{
range_encoder->low += bound;
range_encoder->range -= bound;
*probability -= *probability >> bit_model_move_bits;
}
if( range_encoder->range <= 0x00FFFFFF )
{ range_encoder->range <<= 8; Re_shift_low( range_encoder ); }
}
static inline void Re_encode_tree( struct Range_encoder * const range_encoder,
Bit_model bm[], const int symbol, const int num_bits )
{
int mask = ( 1 << ( num_bits - 1 ) );
int model = 1;
for( int i = num_bits; i > 0; --i, mask >>= 1 )
{
const int bit = ( symbol & mask );
Re_encode_bit( range_encoder, &bm[model], bit );
model <<= 1;
if( bit ) model |= 1;
}
}
static inline void Re_encode_tree_reversed( struct Range_encoder * const range_encoder,
Bit_model bm[], int symbol, const int num_bits )
{
int model = 1;
for( int i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
Re_encode_bit( range_encoder, &bm[model], bit );
model = ( model << 1 ) | bit;
symbol >>= 1;
}
}
static inline void Re_encode_matched( struct Range_encoder * const range_encoder,
Bit_model bm[], int symbol, int match_byte )
{
int model = 1;
for( int i = 7; i >= 0; --i )
{
const int bit = ( symbol >> i ) & 1;
const int match_bit = ( match_byte >> i ) & 1;
Re_encode_bit( range_encoder, &bm[(match_bit<<8)+model+0x100], bit );
model = ( model << 1 ) | bit;
if( match_bit != bit )
{
while( --i >= 0 )
{
const int bit = ( symbol >> i ) & 1;
Re_encode_bit( range_encoder, &bm[model], bit );
model = ( model << 1 ) | bit;
}
break;
}
}
}
struct Len_encoder
{
Bit_model choice1;
Bit_model choice2;
Bit_model bm_low[pos_states][len_low_symbols];
Bit_model bm_mid[pos_states][len_mid_symbols];
Bit_model bm_high[len_high_symbols];
int prices[pos_states][max_len_symbols];
int len_symbols;
int counters[pos_states];
};
static inline void Lee_update_prices( struct Len_encoder * const len_encoder,
const int pos_state )
{
int * const pps = len_encoder->prices[pos_state];
int price = price0( len_encoder->choice1 );
int len = 0;
for( ; len < len_low_symbols && len < len_encoder->len_symbols; ++len )
pps[len] = price +
price_symbol( len_encoder->bm_low[pos_state], len, len_low_bits );
price = price1( len_encoder->choice1 );
for( ; len < len_low_symbols + len_mid_symbols && len < len_encoder->len_symbols; ++len )
pps[len] = price + price0( len_encoder->choice2 ) +
price_symbol( len_encoder->bm_mid[pos_state], len - len_low_symbols, len_mid_bits );
for( ; len < len_encoder->len_symbols; ++len )
pps[len] = price + price1( len_encoder->choice2 ) +
price_symbol( len_encoder->bm_high, len - len_low_symbols - len_mid_symbols, len_high_bits );
len_encoder->counters[pos_state] = len_encoder->len_symbols;
}
static inline void Lee_init( struct Len_encoder * const len_encoder,
const int len_limit )
{
Bm_init( &len_encoder->choice1 );
Bm_init( &len_encoder->choice2 );
for( int i = 0; i < pos_states; ++i )
for( int j = 0; j < len_low_symbols; ++j )
Bm_init( &len_encoder->bm_low[i][j] );
for( int i = 0; i < pos_states; ++i )
for( int j = 0; j < len_mid_symbols; ++j )
Bm_init( &len_encoder->bm_mid[i][j] );
for( int i = 0; i < len_high_symbols; ++i )
Bm_init( &len_encoder->bm_high[i] );
len_encoder->len_symbols = len_limit + 1 - min_match_len;
for( int i = 0; i < pos_states; ++i ) Lee_update_prices( len_encoder, i );
}
void Lee_encode( struct Len_encoder * const len_encoder,
struct Range_encoder * const range_encoder, int symbol,
const int pos_state );
static inline int Lee_price( struct Len_encoder * const len_encoder,
const int symbol, const int pos_state )
{ return len_encoder->prices[pos_state][symbol - min_match_len]; }
struct Literal_encoder
{
Bit_model bm_literal[1<<literal_context_bits][0x300];
};
static inline void Lie_init( struct Literal_encoder * const literal_encoder )
{
for( int i = 0; i < 1<<literal_context_bits; ++i )
for( int j = 0; j < 0x300; ++j )
Bm_init( &literal_encoder->bm_literal[i][j] );
}
static inline int Lie_state( const int prev_byte )
{ return ( prev_byte >> ( 8 - literal_context_bits ) ); }
static inline void Lie_encode( struct Literal_encoder * const literal_encoder,
struct Range_encoder * const range_encoder,
uint8_t prev_byte, uint8_t symbol )
{ Re_encode_tree( range_encoder, literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, 8 ); }
static inline void Lie_encode_matched( struct Literal_encoder * const literal_encoder,
struct Range_encoder * const range_encoder,
uint8_t prev_byte, uint8_t match_byte, uint8_t symbol )
{ Re_encode_matched( range_encoder, literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, match_byte ); }
static inline int Lie_price_matched( struct Literal_encoder * const literal_encoder,
uint8_t prev_byte, uint8_t symbol, uint8_t match_byte )
{ return price_matched( literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, match_byte ); }
static inline int Lie_price_symbol( struct Literal_encoder * const literal_encoder,
uint8_t prev_byte, uint8_t symbol )
{ return price_symbol( literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, 8 ); }
enum { lze_dis_align_mask = dis_align_size - 1,
lze_infinite_price = 0x0FFFFFFF,
lze_max_marker_size = 16,
num_rep_distances = 4 }; // must be 4
struct Trial
{
State state;
int dis;
int prev_index; // index of prev trial in trials[]
int price; // dual use var; cumulative price, match length
int reps[num_rep_distances];
};
static inline void Tr_update( struct Trial * const trial,
const int d, const int p_i, const int pr )
{
if( pr < trial->price )
{ trial->dis = d; trial->prev_index = p_i; trial->price = pr; }
}
struct LZ_encoder
{
int longest_match_found;
uint32_t crc_;
Bit_model bm_match[St_states][pos_states];
Bit_model bm_rep[St_states];
Bit_model bm_rep0[St_states];
Bit_model bm_rep1[St_states];
Bit_model bm_rep2[St_states];
Bit_model bm_len[St_states][pos_states];
Bit_model bm_dis_slot[max_dis_states][1<<dis_slot_bits];
Bit_model bm_dis[modeled_distances-end_dis_model];
Bit_model bm_align[dis_align_size];
struct Matchfinder * matchfinder;
struct Range_encoder range_encoder;
struct Len_encoder len_encoder;
struct Len_encoder rep_match_len_encoder;
struct Literal_encoder literal_encoder;
int num_dis_slots;
int match_distances[max_match_len+1];
struct Trial trials[max_num_trials];
int dis_slot_prices[max_dis_states][2*max_dictionary_bits];
int dis_prices[max_dis_states][modeled_distances];
int align_prices[dis_align_size];
int align_price_count;
};
void LZe_fill_align_prices( struct LZ_encoder * const encoder );
void LZe_fill_distance_prices( struct LZ_encoder * const encoder );
static inline uint32_t LZe_crc( struct LZ_encoder * const encoder )
{ return encoder->crc_ ^ 0xFFFFFFFF; }
static inline void LZe_mtf_reps( const int dis, int reps[num_rep_distances] )
{
if( dis >= num_rep_distances )
{
for( int i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = dis - num_rep_distances;
}
else if( dis > 0 )
{
const int distance = reps[dis];
for( int i = dis; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = distance;
}
}
static inline int LZe_price_rep_len1( struct LZ_encoder * const encoder,
const State state, const int pos_state )
{
return price0( encoder->bm_rep0[state] ) + price0( encoder->bm_len[state][pos_state] );
}
static inline int LZe_price_rep( struct LZ_encoder * const encoder, const int rep,
const State state, const int pos_state )
{
if( rep == 0 ) return price0( encoder->bm_rep0[state] ) +
price1( encoder->bm_len[state][pos_state] );
int price = price1( encoder->bm_rep0[state] );
if( rep == 1 )
price += price0( encoder->bm_rep1[state] );
else
{
price += price1( encoder->bm_rep1[state] );
price += price_bit( encoder->bm_rep2[state], rep - 2 );
}
return price;
}
static inline int LZe_price_pair( struct LZ_encoder * const encoder, const int dis,
const int len, const int pos_state )
{
if( len <= min_match_len && dis >= modeled_distances )
return lze_infinite_price;
int price = Lee_price( &encoder->len_encoder, len, pos_state );
const int dis_state = get_dis_state( len );
if( dis < modeled_distances )
price += encoder->dis_prices[dis_state][dis];
else
price += encoder->dis_slot_prices[dis_state][get_slot( dis )] +
encoder->align_prices[dis & lze_dis_align_mask];
return price;
}
static inline void LZe_encode_pair( struct LZ_encoder * const encoder,
const uint32_t dis, const int len, const int pos_state )
{
Lee_encode( &encoder->len_encoder, &encoder->range_encoder, len, pos_state );
const int dis_slot = get_slot( dis );
Re_encode_tree( &encoder->range_encoder, encoder->bm_dis_slot[get_dis_state(len)], dis_slot, dis_slot_bits );
if( dis_slot >= start_dis_model )
{
const int direct_bits = ( dis_slot >> 1 ) - 1;
const uint32_t base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const uint32_t direct_dis = dis - base;
if( dis_slot < end_dis_model )
Re_encode_tree_reversed( &encoder->range_encoder, encoder->bm_dis + base - dis_slot,
direct_dis, direct_bits );
else
{
Re_encode( &encoder->range_encoder, direct_dis >> dis_align_bits, direct_bits - dis_align_bits );
Re_encode_tree_reversed( &encoder->range_encoder, encoder->bm_align, direct_dis, dis_align_bits );
if( --encoder->align_price_count <= 0 ) LZe_fill_align_prices( encoder );
}
}
}
static inline int LZe_read_match_distances( struct LZ_encoder * const encoder )
{
int len = Mf_longest_match_len( encoder->matchfinder, encoder->match_distances );
if( len == Mf_match_len_limit( encoder->matchfinder ) )
len += Mf_true_match_len( encoder->matchfinder, len, encoder->match_distances[len] + 1, max_match_len - len );
return len;
}
static inline bool LZe_move_pos( struct LZ_encoder * const encoder,
int n, bool skip )
{
while( --n >= 0 )
{
if( skip ) skip = false;
else Mf_longest_match_len( encoder->matchfinder, 0 );
if( !Mf_move_pos( encoder->matchfinder ) ) return false;
}
return true;
}
static inline void LZe_backward( struct LZ_encoder * const encoder, int cur )
{
int * const dis = &encoder->trials[cur].dis;
while( cur > 0 )
{
const int prev_index = encoder->trials[cur].prev_index;
struct Trial * const prev_trial = &encoder->trials[prev_index];
prev_trial->price = cur - prev_index; // len
cur = *dis; *dis = prev_trial->dis; prev_trial->dis = cur;
cur = prev_index;
}
}
int LZe_best_pair_sequence( struct LZ_encoder * const encoder,
const int reps[num_rep_distances], const State state );
void LZe_full_flush( struct LZ_encoder * const encoder, const State state );
void LZe_init( struct LZ_encoder * const encoder, struct Matchfinder * const mf,
const File_header header, const int outfd );
static inline void LZe_free( struct LZ_encoder * const encoder )
{
Re_free( &encoder->range_encoder );
}
bool LZe_encode_member( struct LZ_encoder * const encoder, const long long member_size );
static inline long long LZe_member_position( struct LZ_encoder * const encoder )
{ return Re_member_position( &encoder->range_encoder ); }
|