diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-09-04 09:27:04 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-09-04 09:27:04 +0000 |
commit | 81fa0bc63909a67cdd6d321617a2e5648a6a94a2 (patch) | |
tree | 2b0a2eae7aed22e3c6f707283d7617d8c02b3fbe /src/ext | |
parent | Adding upstream version 2.1.3. (diff) | |
download | dnscap-81fa0bc63909a67cdd6d321617a2e5648a6a94a2.tar.xz dnscap-81fa0bc63909a67cdd6d321617a2e5648a6a94a2.zip |
Adding upstream version 2.2.0.upstream/2.2.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/ext')
-rw-r--r-- | src/ext/lookup3.c | 1235 |
1 files changed, 1235 insertions, 0 deletions
diff --git a/src/ext/lookup3.c b/src/ext/lookup3.c new file mode 100644 index 0000000..99694a5 --- /dev/null +++ b/src/ext/lookup3.c @@ -0,0 +1,1235 @@ +/* +------------------------------------------------------------------------------- +lookup3.c, by Bob Jenkins, May 2006, Public Domain. + +These are functions for producing 32-bit hashes for hash table lookup. +hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() +are externally useful functions. Routines to test the hash are included +if SELF_TEST is defined. You can use this free for any purpose. It's in +the public domain. It has no warranty. + +You probably want to use hashlittle(). hashlittle() and hashbig() +hash byte arrays. hashlittle() is is faster than hashbig() on +little-endian machines. Intel and AMD are little-endian machines. +On second thought, you probably want hashlittle2(), which is identical to +hashlittle() except it returns two 32-bit hashes for the price of one. +You could implement hashbig2() if you wanted but I haven't bothered here. + +If you want to find a hash of, say, exactly 7 integers, do + a = i1; b = i2; c = i3; + mix(a,b,c); + a += i4; b += i5; c += i6; + mix(a,b,c); + a += i7; + final(a,b,c); +then use c as the hash value. If you have a variable length array of +4-byte integers to hash, use hashword(). If you have a byte array (like +a character string), use hashlittle(). If you have several byte arrays, or +a mix of things, see the comments above hashlittle(). + +Why is this so big? I read 12 bytes at a time into 3 4-byte integers, +then mix those integers. This is fast (you can do a lot more thorough +mixing with 12*3 instructions on 3 integers than you can with 3 instructions +on 1 byte), but shoehorning those bytes into integers efficiently is messy. +------------------------------------------------------------------------------- +*/ +#define SELF_TEST 0 + +#include <stdio.h> /* defines printf for tests */ +#include <time.h> /* defines time_t for timings in the test */ +#if defined (__SVR4) && defined (__sun) +#include <sys/inttypes.h> +#else +#include <stdint.h> /* defines uint32_t etc */ +#endif +#include <sys/param.h> /* attempt to define endianness */ +#ifdef linux +#include <endian.h> /* attempt to define endianness */ +#endif + +/* + * My best guess at if you are big-endian or little-endian. This may + * need adjustment. + */ +#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ + __BYTE_ORDER == __LITTLE_ENDIAN) || \ + (defined(i386) || defined(__i386__) || defined(__i486__) || \ + defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) +#define HASH_LITTLE_ENDIAN 1 +#define HASH_BIG_ENDIAN 0 +#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ + __BYTE_ORDER == __BIG_ENDIAN) || \ + (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) +#define HASH_LITTLE_ENDIAN 0 +#define HASH_BIG_ENDIAN 1 +#else +#define HASH_LITTLE_ENDIAN 0 +#define HASH_BIG_ENDIAN 0 +#endif + +#define hashsize(n) ((uint32_t)1<<(n)) +#define hashmask(n) (hashsize(n)-1) +#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) + +/* +------------------------------------------------------------------------------- +mix -- mix 3 32-bit values reversibly. + +This is reversible, so any information in (a,b,c) before mix() is +still in (a,b,c) after mix(). + +If four pairs of (a,b,c) inputs are run through mix(), or through +mix() in reverse, there are at least 32 bits of the output that +are sometimes the same for one pair and different for another pair. +This was tested for: +* pairs that differed by one bit, by two bits, in any combination + of top bits of (a,b,c), or in any combination of bottom bits of + (a,b,c). +* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed + the output delta to a Gray code (a^(a>>1)) so a string of 1's (as + is commonly produced by subtraction) look like a single 1-bit + difference. +* the base values were pseudorandom, all zero but one bit set, or + all zero plus a counter that starts at zero. + +Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that +satisfy this are + 4 6 8 16 19 4 + 9 15 3 18 27 15 + 14 9 3 7 17 3 +Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing +for "differ" defined as + with a one-bit base and a two-bit delta. I +used http://burtleburtle.net/bob/hash/avalanche.html to choose +the operations, constants, and arrangements of the variables. + +This does not achieve avalanche. There are input bits of (a,b,c) +that fail to affect some output bits of (a,b,c), especially of a. The +most thoroughly mixed value is c, but it doesn't really even achieve +avalanche in c. + +This allows some parallelism. Read-after-writes are good at doubling +the number of bits affected, so the goal of mixing pulls in the opposite +direction as the goal of parallelism. I did what I could. Rotates +seem to cost as much as shifts on every machine I could lay my hands +on, and rotates are much kinder to the top and bottom bits, so I used +rotates. +------------------------------------------------------------------------------- +*/ +#define mix(a,b,c) \ +{ \ + a -= c; a ^= rot(c, 4); c += b; \ + b -= a; b ^= rot(a, 6); a += c; \ + c -= b; c ^= rot(b, 8); b += a; \ + a -= c; a ^= rot(c,16); c += b; \ + b -= a; b ^= rot(a,19); a += c; \ + c -= b; c ^= rot(b, 4); b += a; \ +} + +/* +------------------------------------------------------------------------------- +final -- final mixing of 3 32-bit values (a,b,c) into c + +Pairs of (a,b,c) values differing in only a few bits will usually +produce values of c that look totally different. This was tested for +* pairs that differed by one bit, by two bits, in any combination + of top bits of (a,b,c), or in any combination of bottom bits of + (a,b,c). +* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed + the output delta to a Gray code (a^(a>>1)) so a string of 1's (as + is commonly produced by subtraction) look like a single 1-bit + difference. +* the base values were pseudorandom, all zero but one bit set, or + all zero plus a counter that starts at zero. + +These constants passed: + 14 11 25 16 4 14 24 + 12 14 25 16 4 14 24 +and these came close: + 4 8 15 26 3 22 24 + 10 8 15 26 3 22 24 + 11 8 15 26 3 22 24 +------------------------------------------------------------------------------- +*/ +#define final(a,b,c) \ +{ \ + c ^= b; c -= rot(b,14); \ + a ^= c; a -= rot(c,11); \ + b ^= a; b -= rot(a,25); \ + c ^= b; c -= rot(b,16); \ + a ^= c; a -= rot(c,4); \ + b ^= a; b -= rot(a,14); \ + c ^= b; c -= rot(b,24); \ +} + +/* +-------------------------------------------------------------------- + This works on all machines. To be useful, it requires + -- that the key be an array of uint32_t's, and + -- that the length be the number of uint32_t's in the key + + The function hashword() is identical to hashlittle() on little-endian + machines, and identical to hashbig() on big-endian machines, + except that the length has to be measured in uint32_ts rather than in + bytes. hashlittle() is more complicated than hashword() only because + hashlittle() has to dance around fitting the key bytes into registers. +-------------------------------------------------------------------- +*/ +uint32_t +hashword(const uint32_t * k, /* the key, an array of uint32_t values */ + size_t length, /* the length of the key, in uint32_ts */ + uint32_t initval) +{ /* the previous hash, or an arbitrary value */ + uint32_t a, b, c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + (((uint32_t) length) << 2) + initval; + + /*------------------------------------------------- handle most of the key */ + while (length > 3) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a, b, c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 uint32_t's */ + switch (length) { /* all the case statements fall through */ + case 3: + c += k[2]; + case 2: + b += k[1]; + case 1: + a += k[0]; + final(a, b, c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + return c; +} + + +/* +-------------------------------------------------------------------- +hashword2() -- same as hashword(), but take two seeds and return two +32-bit values. pc and pb must both be nonnull, and *pc and *pb must +both be initialized with seeds. If you pass in (*pb)==0, the output +(*pc) will be the same as the return value from hashword(). +-------------------------------------------------------------------- +*/ +void +hashword2(const uint32_t * k, /* the key, an array of uint32_t values */ + size_t length, /* the length of the key, in uint32_ts */ + uint32_t * pc, /* IN: seed OUT: primary hash value */ + uint32_t * pb) +{ /* IN: more seed OUT: secondary hash value */ + uint32_t a, b, c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t) (length << 2)) + *pc; + c += *pb; + + /*------------------------------------------------- handle most of the key */ + while (length > 3) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a, b, c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 uint32_t's */ + switch (length) { /* all the case statements fall through */ + case 3: + c += k[2]; + case 2: + b += k[1]; + case 1: + a += k[0]; + final(a, b, c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + *pc = c; + *pb = b; +} + + +/* +------------------------------------------------------------------------------- +hashlittle() -- hash a variable-length key into a 32-bit value + k : the key (the unaligned variable-length array of bytes) + length : the length of the key, counting by bytes + initval : can be any 4-byte value +Returns a 32-bit value. Every bit of the key affects every bit of +the return value. Two keys differing by one or two bits will have +totally different hash values. + +The best hash table sizes are powers of 2. There is no need to do +mod a prime (mod is sooo slow!). If you need less than 32 bits, +use a bitmask. For example, if you need only 10 bits, do + h = (h & hashmask(10)); +In which case, the hash table should have hashsize(10) elements. + +If you are hashing n strings (uint8_t **)k, do it like this: + for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); + +By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this +code any way you wish, private, educational, or commercial. It's free. + +Use for hash table lookup, or anything where one collision in 2^^32 is +acceptable. Do NOT use for cryptographic purposes. +------------------------------------------------------------------------------- +*/ + +uint32_t +hashlittle(const void *key, size_t length, uint32_t initval) +{ + uint32_t a, b, c; /* internal state */ + union + { + const void *ptr; + size_t i; + } u; /* needed for Mac Powerbook G4 */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t) length) + initval; + + u.ptr = key; + if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { + const uint32_t *k = (const uint32_t *) key; /* read 32-bit chunks */ +#ifdef VALGRIND + const uint8_t *k8; +#endif + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a, b, c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]&0xffffff" actually reads beyond the end of the string, but + * then masks off the part it's not allowed to read. Because the + * string is aligned, the masked-off tail is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But VALGRIND will + * still catch it and complain. The masking trick does make the hash + * noticably faster for short strings (like English words). + */ +#ifndef VALGRIND + + switch (length) { + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += k[2] & 0xffffff; + b += k[1]; + a += k[0]; + break; + case 10: + c += k[2] & 0xffff; + b += k[1]; + a += k[0]; + break; + case 9: + c += k[2] & 0xff; + b += k[1]; + a += k[0]; + break; + case 8: + b += k[1]; + a += k[0]; + break; + case 7: + b += k[1] & 0xffffff; + a += k[0]; + break; + case 6: + b += k[1] & 0xffff; + a += k[0]; + break; + case 5: + b += k[1] & 0xff; + a += k[0]; + break; + case 4: + a += k[0]; + break; + case 3: + a += k[0] & 0xffffff; + break; + case 2: + a += k[0] & 0xffff; + break; + case 1: + a += k[0] & 0xff; + break; + case 0: + return c; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + k8 = (const uint8_t *) k; + switch (length) { + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += ((uint32_t) k8[10]) << 16; /* fall through */ + case 10: + c += ((uint32_t) k8[9]) << 8; /* fall through */ + case 9: + c += k8[8]; /* fall through */ + case 8: + b += k[1]; + a += k[0]; + break; + case 7: + b += ((uint32_t) k8[6]) << 16; /* fall through */ + case 6: + b += ((uint32_t) k8[5]) << 8; /* fall through */ + case 5: + b += k8[4]; /* fall through */ + case 4: + a += k[0]; + break; + case 3: + a += ((uint32_t) k8[2]) << 16; /* fall through */ + case 2: + a += ((uint32_t) k8[1]) << 8; /* fall through */ + case 1: + a += k8[0]; + break; + case 0: + return c; + } + +#endif /* !valgrind */ + + } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { + const uint16_t *k = (const uint16_t *) key; /* read 16-bit chunks */ + const uint8_t *k8; + + /*--------------- all but last block: aligned reads and different mixing */ + while (length > 12) { + a += k[0] + (((uint32_t) k[1]) << 16); + b += k[2] + (((uint32_t) k[3]) << 16); + c += k[4] + (((uint32_t) k[5]) << 16); + mix(a, b, c); + length -= 12; + k += 6; + } + + /*----------------------------- handle the last (probably partial) block */ + k8 = (const uint8_t *) k; + switch (length) { + case 12: + c += k[4] + (((uint32_t) k[5]) << 16); + b += k[2] + (((uint32_t) k[3]) << 16); + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 11: + c += ((uint32_t) k8[10]) << 16; /* fall through */ + case 10: + c += k[4]; + b += k[2] + (((uint32_t) k[3]) << 16); + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 9: + c += k8[8]; /* fall through */ + case 8: + b += k[2] + (((uint32_t) k[3]) << 16); + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 7: + b += ((uint32_t) k8[6]) << 16; /* fall through */ + case 6: + b += k[2]; + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 5: + b += k8[4]; /* fall through */ + case 4: + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 3: + a += ((uint32_t) k8[2]) << 16; /* fall through */ + case 2: + a += k[0]; + break; + case 1: + a += k8[0]; + break; + case 0: + return c; /* zero length requires no mixing */ + } + + } else { /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *) key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) { + a += k[0]; + a += ((uint32_t) k[1]) << 8; + a += ((uint32_t) k[2]) << 16; + a += ((uint32_t) k[3]) << 24; + b += k[4]; + b += ((uint32_t) k[5]) << 8; + b += ((uint32_t) k[6]) << 16; + b += ((uint32_t) k[7]) << 24; + c += k[8]; + c += ((uint32_t) k[9]) << 8; + c += ((uint32_t) k[10]) << 16; + c += ((uint32_t) k[11]) << 24; + mix(a, b, c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch (length) { /* all the case statements fall through */ + case 12: + c += ((uint32_t) k[11]) << 24; + case 11: + c += ((uint32_t) k[10]) << 16; + case 10: + c += ((uint32_t) k[9]) << 8; + case 9: + c += k[8]; + case 8: + b += ((uint32_t) k[7]) << 24; + case 7: + b += ((uint32_t) k[6]) << 16; + case 6: + b += ((uint32_t) k[5]) << 8; + case 5: + b += k[4]; + case 4: + a += ((uint32_t) k[3]) << 24; + case 3: + a += ((uint32_t) k[2]) << 16; + case 2: + a += ((uint32_t) k[1]) << 8; + case 1: + a += k[0]; + break; + case 0: + return c; + } + } + + final(a, b, c); + return c; +} + + +/* + * hashlittle2: return 2 32-bit hash values + * + * This is identical to hashlittle(), except it returns two 32-bit hash + * values instead of just one. This is good enough for hash table + * lookup with 2^^64 buckets, or if you want a second hash if you're not + * happy with the first, or if you want a probably-unique 64-bit ID for + * the key. *pc is better mixed than *pb, so use *pc first. If you want + * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". + */ +void +hashlittle2(const void *key, /* the key to hash */ + size_t length, /* length of the key */ + uint32_t * pc, /* IN: primary initval, OUT: primary hash */ + uint32_t * pb) +{ /* IN: secondary initval, OUT: secondary hash */ + uint32_t a, b, c; /* internal state */ + union + { + const void *ptr; + size_t i; + } u; /* needed for Mac Powerbook G4 */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t) length) + *pc; + c += *pb; + + u.ptr = key; + if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { + const uint32_t *k = (const uint32_t *) key; /* read 32-bit chunks */ +#ifdef VALGRIND + const uint8_t *k8; +#endif + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a, b, c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]&0xffffff" actually reads beyond the end of the string, but + * then masks off the part it's not allowed to read. Because the + * string is aligned, the masked-off tail is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But VALGRIND will + * still catch it and complain. The masking trick does make the hash + * noticably faster for short strings (like English words). + */ +#ifndef VALGRIND + + switch (length) { + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += k[2] & 0xffffff; + b += k[1]; + a += k[0]; + break; + case 10: + c += k[2] & 0xffff; + b += k[1]; + a += k[0]; + break; + case 9: + c += k[2] & 0xff; + b += k[1]; + a += k[0]; + break; + case 8: + b += k[1]; + a += k[0]; + break; + case 7: + b += k[1] & 0xffffff; + a += k[0]; + break; + case 6: + b += k[1] & 0xffff; + a += k[0]; + break; + case 5: + b += k[1] & 0xff; + a += k[0]; + break; + case 4: + a += k[0]; + break; + case 3: + a += k[0] & 0xffffff; + break; + case 2: + a += k[0] & 0xffff; + break; + case 1: + a += k[0] & 0xff; + break; + case 0: + *pc = c; + *pb = b; + return; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + k8 = (const uint8_t *) k; + switch (length) { + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += ((uint32_t) k8[10]) << 16; /* fall through */ + case 10: + c += ((uint32_t) k8[9]) << 8; /* fall through */ + case 9: + c += k8[8]; /* fall through */ + case 8: + b += k[1]; + a += k[0]; + break; + case 7: + b += ((uint32_t) k8[6]) << 16; /* fall through */ + case 6: + b += ((uint32_t) k8[5]) << 8; /* fall through */ + case 5: + b += k8[4]; /* fall through */ + case 4: + a += k[0]; + break; + case 3: + a += ((uint32_t) k8[2]) << 16; /* fall through */ + case 2: + a += ((uint32_t) k8[1]) << 8; /* fall through */ + case 1: + a += k8[0]; + break; + case 0: + *pc = c; + *pb = b; + return; /* zero length strings require no mixing */ + } + +#endif /* !valgrind */ + + } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { + const uint16_t *k = (const uint16_t *) key; /* read 16-bit chunks */ + const uint8_t *k8; + + /*--------------- all but last block: aligned reads and different mixing */ + while (length > 12) { + a += k[0] + (((uint32_t) k[1]) << 16); + b += k[2] + (((uint32_t) k[3]) << 16); + c += k[4] + (((uint32_t) k[5]) << 16); + mix(a, b, c); + length -= 12; + k += 6; + } + + /*----------------------------- handle the last (probably partial) block */ + k8 = (const uint8_t *) k; + switch (length) { + case 12: + c += k[4] + (((uint32_t) k[5]) << 16); + b += k[2] + (((uint32_t) k[3]) << 16); + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 11: + c += ((uint32_t) k8[10]) << 16; /* fall through */ + case 10: + c += k[4]; + b += k[2] + (((uint32_t) k[3]) << 16); + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 9: + c += k8[8]; /* fall through */ + case 8: + b += k[2] + (((uint32_t) k[3]) << 16); + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 7: + b += ((uint32_t) k8[6]) << 16; /* fall through */ + case 6: + b += k[2]; + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 5: + b += k8[4]; /* fall through */ + case 4: + a += k[0] + (((uint32_t) k[1]) << 16); + break; + case 3: + a += ((uint32_t) k8[2]) << 16; /* fall through */ + case 2: + a += k[0]; + break; + case 1: + a += k8[0]; + break; + case 0: + *pc = c; + *pb = b; + return; /* zero length strings require no mixing */ + } + + } else { /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *) key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) { + a += k[0]; + a += ((uint32_t) k[1]) << 8; + a += ((uint32_t) k[2]) << 16; + a += ((uint32_t) k[3]) << 24; + b += k[4]; + b += ((uint32_t) k[5]) << 8; + b += ((uint32_t) k[6]) << 16; + b += ((uint32_t) k[7]) << 24; + c += k[8]; + c += ((uint32_t) k[9]) << 8; + c += ((uint32_t) k[10]) << 16; + c += ((uint32_t) k[11]) << 24; + mix(a, b, c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch (length) { /* all the case statements fall through */ + case 12: + c += ((uint32_t) k[11]) << 24; + case 11: + c += ((uint32_t) k[10]) << 16; + case 10: + c += ((uint32_t) k[9]) << 8; + case 9: + c += k[8]; + case 8: + b += ((uint32_t) k[7]) << 24; + case 7: + b += ((uint32_t) k[6]) << 16; + case 6: + b += ((uint32_t) k[5]) << 8; + case 5: + b += k[4]; + case 4: + a += ((uint32_t) k[3]) << 24; + case 3: + a += ((uint32_t) k[2]) << 16; + case 2: + a += ((uint32_t) k[1]) << 8; + case 1: + a += k[0]; + break; + case 0: + *pc = c; + *pb = b; + return; /* zero length strings require no mixing */ + } + } + + final(a, b, c); + *pc = c; + *pb = b; +} + + + +/* + * hashbig(): + * This is the same as hashword() on big-endian machines. It is different + * from hashlittle() on all machines. hashbig() takes advantage of + * big-endian byte ordering. + */ +uint32_t +hashbig(const void *key, size_t length, uint32_t initval) +{ + uint32_t a, b, c; + union + { + const void *ptr; + size_t i; + } u; /* to cast key to (size_t) happily */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t) length) + initval; + + u.ptr = key; + if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { + const uint32_t *k = (const uint32_t *) key; /* read 32-bit chunks */ +#ifdef VALGRIND + const uint8_t *k8; +#endif + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a, b, c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]<<8" actually reads beyond the end of the string, but + * then shifts out the part it's not allowed to read. Because the + * string is aligned, the illegal read is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But VALGRIND will + * still catch it and complain. The masking trick does make the hash + * noticably faster for short strings (like English words). + */ +#ifndef VALGRIND + + switch (length) { + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += k[2] & 0xffffff00; + b += k[1]; + a += k[0]; + break; + case 10: + c += k[2] & 0xffff0000; + b += k[1]; + a += k[0]; + break; + case 9: + c += k[2] & 0xff000000; + b += k[1]; + a += k[0]; + break; + case 8: + b += k[1]; + a += k[0]; + break; + case 7: + b += k[1] & 0xffffff00; + a += k[0]; + break; + case 6: + b += k[1] & 0xffff0000; + a += k[0]; + break; + case 5: + b += k[1] & 0xff000000; + a += k[0]; + break; + case 4: + a += k[0]; + break; + case 3: + a += k[0] & 0xffffff00; + break; + case 2: + a += k[0] & 0xffff0000; + break; + case 1: + a += k[0] & 0xff000000; + break; + case 0: + return c; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + k8 = (const uint8_t *) k; + switch (length) { /* all the case statements fall through */ + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += ((uint32_t) k8[10]) << 8; /* fall through */ + case 10: + c += ((uint32_t) k8[9]) << 16; /* fall through */ + case 9: + c += ((uint32_t) k8[8]) << 24; /* fall through */ + case 8: + b += k[1]; + a += k[0]; + break; + case 7: + b += ((uint32_t) k8[6]) << 8; /* fall through */ + case 6: + b += ((uint32_t) k8[5]) << 16; /* fall through */ + case 5: + b += ((uint32_t) k8[4]) << 24; /* fall through */ + case 4: + a += k[0]; + break; + case 3: + a += ((uint32_t) k8[2]) << 8; /* fall through */ + case 2: + a += ((uint32_t) k8[1]) << 16; /* fall through */ + case 1: + a += ((uint32_t) k8[0]) << 24; + break; + case 0: + return c; + } + +#endif /* !VALGRIND */ + + } else { /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *) key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) { + a += ((uint32_t) k[0]) << 24; + a += ((uint32_t) k[1]) << 16; + a += ((uint32_t) k[2]) << 8; + a += ((uint32_t) k[3]); + b += ((uint32_t) k[4]) << 24; + b += ((uint32_t) k[5]) << 16; + b += ((uint32_t) k[6]) << 8; + b += ((uint32_t) k[7]); + c += ((uint32_t) k[8]) << 24; + c += ((uint32_t) k[9]) << 16; + c += ((uint32_t) k[10]) << 8; + c += ((uint32_t) k[11]); + mix(a, b, c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch (length) { /* all the case statements fall through */ + case 12: + c += k[11]; + case 11: + c += ((uint32_t) k[10]) << 8; + case 10: + c += ((uint32_t) k[9]) << 16; + case 9: + c += ((uint32_t) k[8]) << 24; + case 8: + b += k[7]; + case 7: + b += ((uint32_t) k[6]) << 8; + case 6: + b += ((uint32_t) k[5]) << 16; + case 5: + b += ((uint32_t) k[4]) << 24; + case 4: + a += k[3]; + case 3: + a += ((uint32_t) k[2]) << 8; + case 2: + a += ((uint32_t) k[1]) << 16; + case 1: + a += ((uint32_t) k[0]) << 24; + break; + case 0: + return c; + } + } + + final(a, b, c); + return c; +} + + +#if SELF_TEST + +/* used for timings */ +void +driver1() +{ + uint8_t buf[256]; + uint32_t i; + uint32_t h = 0; + time_t a, z; + + time(&a); + for (i = 0; i < 256; ++i) + buf[i] = 'x'; + for (i = 0; i < 1; ++i) { + h = hashlittle(&buf[0], 1, h); + } + time(&z); + if (z - a > 0) + printf("time %d %.8x\n", z - a, h); +} + +/* check that every input bit changes every output bit half the time */ +#define HASHSTATE 1 +#define HASHLEN 1 +#define MAXPAIR 60 +#define MAXLEN 70 +void +driver2() +{ + uint8_t qa[MAXLEN + 1], qb[MAXLEN + 2], *a = &qa[0], *b = &qb[1]; + uint32_t c[HASHSTATE], d[HASHSTATE], i = 0, j = 0, k, l, m = 0, z; + uint32_t e[HASHSTATE], f[HASHSTATE], g[HASHSTATE], h[HASHSTATE]; + uint32_t x[HASHSTATE], y[HASHSTATE]; + uint32_t hlen; + + printf("No more than %d trials should ever be needed \n", MAXPAIR / 2); + for (hlen = 0; hlen < MAXLEN; ++hlen) { + z = 0; + for (i = 0; i < hlen; ++i) { +/*----------------------- for each input byte, */ + for (j = 0; j < 8; ++j) { +/*------------------------ for each input bit, */ + for (m = 1; m < 8; ++m) { +/*------------ for serveral possible initvals, */ + for (l = 0; l < HASHSTATE; ++l) + e[l] = f[l] = g[l] = h[l] = x[l] = y[l] = ~((uint32_t) 0); + + /*---- check that every output bit is affected by that input bit */ + for (k = 0; k < MAXPAIR; k += 2) { + uint32_t finished = 1; + /* keys have one bit different */ + for (l = 0; l < hlen + 1; ++l) { + a[l] = b[l] = (uint8_t) 0; + } + /* have a and b be two keys differing in only one bit */ + a[i] ^= (k << j); + a[i] ^= (k >> (8 - j)); + c[0] = hashlittle(a, hlen, m); + b[i] ^= ((k + 1) << j); + b[i] ^= ((k + 1) >> (8 - j)); + d[0] = hashlittle(b, hlen, m); + /* check every bit is 1, 0, set, and not set at least once */ + for (l = 0; l < HASHSTATE; ++l) { + e[l] &= (c[l] ^ d[l]); + f[l] &= ~(c[l] ^ d[l]); + g[l] &= c[l]; + h[l] &= ~c[l]; + x[l] &= d[l]; + y[l] &= ~d[l]; + if (e[l] | f[l] | g[l] | h[l] | x[l] | y[l]) + finished = 0; + } + if (finished) + break; + } + if (k > z) + z = k; + if (k == MAXPAIR) { + printf("Some bit didn't change: "); + printf("%.8x %.8x %.8x %.8x %.8x %.8x ", e[0], f[0], g[0], h[0], x[0], y[0]); + printf("i %d j %d m %d len %d\n", i, j, m, hlen); + } + if (z == MAXPAIR) + goto done; + } + } + } + done: + if (z < MAXPAIR) { + printf("Mix success %2d bytes %2d initvals ", i, m); + printf("required %d trials\n", z / 2); + } + } + printf("\n"); +} + +/* Check for reading beyond the end of the buffer and alignment problems */ +void +driver3() +{ + uint8_t buf[MAXLEN + 20], *b; + uint32_t len; + uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; + uint32_t h; + uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; + uint32_t i; + uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; + uint32_t j; + uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; + uint32_t ref, x, y; + uint8_t *p; + + printf("Endianness. These lines should all be the same (for values filled in):\n"); + printf("%.8x %.8x %.8x\n", + hashword((const uint32_t *) q, (sizeof(q) - 1) / 4, 13), + hashword((const uint32_t *) q, (sizeof(q) - 5) / 4, 13), + hashword((const uint32_t *) q, (sizeof(q) - 9) / 4, 13)); + p = q; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q) - 1, 13), hashlittle(p, sizeof(q) - 2, 13), + hashlittle(p, sizeof(q) - 3, 13), hashlittle(p, sizeof(q) - 4, 13), + hashlittle(p, sizeof(q) - 5, 13), hashlittle(p, sizeof(q) - 6, 13), + hashlittle(p, sizeof(q) - 7, 13), hashlittle(p, sizeof(q) - 8, 13), + hashlittle(p, sizeof(q) - 9, 13), hashlittle(p, sizeof(q) - 10, 13), + hashlittle(p, sizeof(q) - 11, 13), hashlittle(p, sizeof(q) - 12, 13)); + p = &qq[1]; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q) - 1, 13), hashlittle(p, sizeof(q) - 2, 13), + hashlittle(p, sizeof(q) - 3, 13), hashlittle(p, sizeof(q) - 4, 13), + hashlittle(p, sizeof(q) - 5, 13), hashlittle(p, sizeof(q) - 6, 13), + hashlittle(p, sizeof(q) - 7, 13), hashlittle(p, sizeof(q) - 8, 13), + hashlittle(p, sizeof(q) - 9, 13), hashlittle(p, sizeof(q) - 10, 13), + hashlittle(p, sizeof(q) - 11, 13), hashlittle(p, sizeof(q) - 12, 13)); + p = &qqq[2]; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q) - 1, 13), hashlittle(p, sizeof(q) - 2, 13), + hashlittle(p, sizeof(q) - 3, 13), hashlittle(p, sizeof(q) - 4, 13), + hashlittle(p, sizeof(q) - 5, 13), hashlittle(p, sizeof(q) - 6, 13), + hashlittle(p, sizeof(q) - 7, 13), hashlittle(p, sizeof(q) - 8, 13), + hashlittle(p, sizeof(q) - 9, 13), hashlittle(p, sizeof(q) - 10, 13), + hashlittle(p, sizeof(q) - 11, 13), hashlittle(p, sizeof(q) - 12, 13)); + p = &qqqq[3]; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q) - 1, 13), hashlittle(p, sizeof(q) - 2, 13), + hashlittle(p, sizeof(q) - 3, 13), hashlittle(p, sizeof(q) - 4, 13), + hashlittle(p, sizeof(q) - 5, 13), hashlittle(p, sizeof(q) - 6, 13), + hashlittle(p, sizeof(q) - 7, 13), hashlittle(p, sizeof(q) - 8, 13), + hashlittle(p, sizeof(q) - 9, 13), hashlittle(p, sizeof(q) - 10, 13), + hashlittle(p, sizeof(q) - 11, 13), hashlittle(p, sizeof(q) - 12, 13)); + printf("\n"); + + /* check that hashlittle2 and hashlittle produce the same results */ + i = 47; + j = 0; + hashlittle2(q, sizeof(q), &i, &j); + if (hashlittle(q, sizeof(q), 47) != i) + printf("hashlittle2 and hashlittle mismatch\n"); + + /* check that hashword2 and hashword produce the same results */ + len = 0xdeadbeef; + i = 47, j = 0; + hashword2(&len, 1, &i, &j); + if (hashword(&len, 1, 47) != i) + printf("hashword2 and hashword mismatch %x %x\n", i, hashword(&len, 1, 47)); + + /* check hashlittle doesn't read before or after the ends of the string */ + for (h = 0, b = buf + 1; h < 8; ++h, ++b) { + for (i = 0; i < MAXLEN; ++i) { + len = i; + for (j = 0; j < i; ++j) + *(b + j) = 0; + + /* these should all be equal */ + ref = hashlittle(b, len, (uint32_t) 1); + *(b + i) = (uint8_t) ~ 0; + *(b - 1) = (uint8_t) ~ 0; + x = hashlittle(b, len, (uint32_t) 1); + y = hashlittle(b, len, (uint32_t) 1); + if ((ref != x) || (ref != y)) { + printf("alignment error: %.8x %.8x %.8x %d %d\n", ref, x, y, h, i); + } + } + } +} + +/* check for problems with nulls */ +void +driver4() +{ + uint8_t buf[1]; + uint32_t h, i, state[HASHSTATE]; + + + buf[0] = ~0; + for (i = 0; i < HASHSTATE; ++i) + state[i] = 1; + printf("These should all be different\n"); + for (i = 0, h = 0; i < 8; ++i) { + h = hashlittle(buf, 0, h); + printf("%2d 0-byte strings, hash is %.8x\n", i, h); + } +} + + +int +main() +{ + driver1(); /* test that the key is hashed: used for timings */ + driver2(); /* test that whole key is hashed thoroughly */ + driver3(); /* test that nothing but the key is hashed */ + driver4(); /* test hashing multiple buffers (all buffers are null) */ + return 1; +} + +#endif /* SELF_TEST */ |