summaryrefslogtreecommitdiffstats
path: root/src/ext
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2023-09-04 09:27:04 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2023-09-04 09:27:04 +0000
commit81fa0bc63909a67cdd6d321617a2e5648a6a94a2 (patch)
tree2b0a2eae7aed22e3c6f707283d7617d8c02b3fbe /src/ext
parentAdding upstream version 2.1.3. (diff)
downloaddnscap-81fa0bc63909a67cdd6d321617a2e5648a6a94a2.tar.xz
dnscap-81fa0bc63909a67cdd6d321617a2e5648a6a94a2.zip
Adding upstream version 2.2.0.upstream/2.2.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/ext')
-rw-r--r--src/ext/lookup3.c1235
1 files changed, 1235 insertions, 0 deletions
diff --git a/src/ext/lookup3.c b/src/ext/lookup3.c
new file mode 100644
index 0000000..99694a5
--- /dev/null
+++ b/src/ext/lookup3.c
@@ -0,0 +1,1235 @@
+/*
+-------------------------------------------------------------------------------
+lookup3.c, by Bob Jenkins, May 2006, Public Domain.
+
+These are functions for producing 32-bit hashes for hash table lookup.
+hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
+are externally useful functions. Routines to test the hash are included
+if SELF_TEST is defined. You can use this free for any purpose. It's in
+the public domain. It has no warranty.
+
+You probably want to use hashlittle(). hashlittle() and hashbig()
+hash byte arrays. hashlittle() is is faster than hashbig() on
+little-endian machines. Intel and AMD are little-endian machines.
+On second thought, you probably want hashlittle2(), which is identical to
+hashlittle() except it returns two 32-bit hashes for the price of one.
+You could implement hashbig2() if you wanted but I haven't bothered here.
+
+If you want to find a hash of, say, exactly 7 integers, do
+ a = i1; b = i2; c = i3;
+ mix(a,b,c);
+ a += i4; b += i5; c += i6;
+ mix(a,b,c);
+ a += i7;
+ final(a,b,c);
+then use c as the hash value. If you have a variable length array of
+4-byte integers to hash, use hashword(). If you have a byte array (like
+a character string), use hashlittle(). If you have several byte arrays, or
+a mix of things, see the comments above hashlittle().
+
+Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
+then mix those integers. This is fast (you can do a lot more thorough
+mixing with 12*3 instructions on 3 integers than you can with 3 instructions
+on 1 byte), but shoehorning those bytes into integers efficiently is messy.
+-------------------------------------------------------------------------------
+*/
+#define SELF_TEST 0
+
+#include <stdio.h> /* defines printf for tests */
+#include <time.h> /* defines time_t for timings in the test */
+#if defined (__SVR4) && defined (__sun)
+#include <sys/inttypes.h>
+#else
+#include <stdint.h> /* defines uint32_t etc */
+#endif
+#include <sys/param.h> /* attempt to define endianness */
+#ifdef linux
+#include <endian.h> /* attempt to define endianness */
+#endif
+
+/*
+ * My best guess at if you are big-endian or little-endian. This may
+ * need adjustment.
+ */
+#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
+ __BYTE_ORDER == __LITTLE_ENDIAN) || \
+ (defined(i386) || defined(__i386__) || defined(__i486__) || \
+ defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
+#define HASH_LITTLE_ENDIAN 1
+#define HASH_BIG_ENDIAN 0
+#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
+ __BYTE_ORDER == __BIG_ENDIAN) || \
+ (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
+#define HASH_LITTLE_ENDIAN 0
+#define HASH_BIG_ENDIAN 1
+#else
+#define HASH_LITTLE_ENDIAN 0
+#define HASH_BIG_ENDIAN 0
+#endif
+
+#define hashsize(n) ((uint32_t)1<<(n))
+#define hashmask(n) (hashsize(n)-1)
+#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
+
+/*
+-------------------------------------------------------------------------------
+mix -- mix 3 32-bit values reversibly.
+
+This is reversible, so any information in (a,b,c) before mix() is
+still in (a,b,c) after mix().
+
+If four pairs of (a,b,c) inputs are run through mix(), or through
+mix() in reverse, there are at least 32 bits of the output that
+are sometimes the same for one pair and different for another pair.
+This was tested for:
+* pairs that differed by one bit, by two bits, in any combination
+ of top bits of (a,b,c), or in any combination of bottom bits of
+ (a,b,c).
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+ is commonly produced by subtraction) look like a single 1-bit
+ difference.
+* the base values were pseudorandom, all zero but one bit set, or
+ all zero plus a counter that starts at zero.
+
+Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
+satisfy this are
+ 4 6 8 16 19 4
+ 9 15 3 18 27 15
+ 14 9 3 7 17 3
+Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
+for "differ" defined as + with a one-bit base and a two-bit delta. I
+used http://burtleburtle.net/bob/hash/avalanche.html to choose
+the operations, constants, and arrangements of the variables.
+
+This does not achieve avalanche. There are input bits of (a,b,c)
+that fail to affect some output bits of (a,b,c), especially of a. The
+most thoroughly mixed value is c, but it doesn't really even achieve
+avalanche in c.
+
+This allows some parallelism. Read-after-writes are good at doubling
+the number of bits affected, so the goal of mixing pulls in the opposite
+direction as the goal of parallelism. I did what I could. Rotates
+seem to cost as much as shifts on every machine I could lay my hands
+on, and rotates are much kinder to the top and bottom bits, so I used
+rotates.
+-------------------------------------------------------------------------------
+*/
+#define mix(a,b,c) \
+{ \
+ a -= c; a ^= rot(c, 4); c += b; \
+ b -= a; b ^= rot(a, 6); a += c; \
+ c -= b; c ^= rot(b, 8); b += a; \
+ a -= c; a ^= rot(c,16); c += b; \
+ b -= a; b ^= rot(a,19); a += c; \
+ c -= b; c ^= rot(b, 4); b += a; \
+}
+
+/*
+-------------------------------------------------------------------------------
+final -- final mixing of 3 32-bit values (a,b,c) into c
+
+Pairs of (a,b,c) values differing in only a few bits will usually
+produce values of c that look totally different. This was tested for
+* pairs that differed by one bit, by two bits, in any combination
+ of top bits of (a,b,c), or in any combination of bottom bits of
+ (a,b,c).
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+ is commonly produced by subtraction) look like a single 1-bit
+ difference.
+* the base values were pseudorandom, all zero but one bit set, or
+ all zero plus a counter that starts at zero.
+
+These constants passed:
+ 14 11 25 16 4 14 24
+ 12 14 25 16 4 14 24
+and these came close:
+ 4 8 15 26 3 22 24
+ 10 8 15 26 3 22 24
+ 11 8 15 26 3 22 24
+-------------------------------------------------------------------------------
+*/
+#define final(a,b,c) \
+{ \
+ c ^= b; c -= rot(b,14); \
+ a ^= c; a -= rot(c,11); \
+ b ^= a; b -= rot(a,25); \
+ c ^= b; c -= rot(b,16); \
+ a ^= c; a -= rot(c,4); \
+ b ^= a; b -= rot(a,14); \
+ c ^= b; c -= rot(b,24); \
+}
+
+/*
+--------------------------------------------------------------------
+ This works on all machines. To be useful, it requires
+ -- that the key be an array of uint32_t's, and
+ -- that the length be the number of uint32_t's in the key
+
+ The function hashword() is identical to hashlittle() on little-endian
+ machines, and identical to hashbig() on big-endian machines,
+ except that the length has to be measured in uint32_ts rather than in
+ bytes. hashlittle() is more complicated than hashword() only because
+ hashlittle() has to dance around fitting the key bytes into registers.
+--------------------------------------------------------------------
+*/
+uint32_t
+hashword(const uint32_t * k, /* the key, an array of uint32_t values */
+ size_t length, /* the length of the key, in uint32_ts */
+ uint32_t initval)
+{ /* the previous hash, or an arbitrary value */
+ uint32_t a, b, c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + (((uint32_t) length) << 2) + initval;
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3) {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a, b, c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 uint32_t's */
+ switch (length) { /* all the case statements fall through */
+ case 3:
+ c += k[2];
+ case 2:
+ b += k[1];
+ case 1:
+ a += k[0];
+ final(a, b, c);
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ return c;
+}
+
+
+/*
+--------------------------------------------------------------------
+hashword2() -- same as hashword(), but take two seeds and return two
+32-bit values. pc and pb must both be nonnull, and *pc and *pb must
+both be initialized with seeds. If you pass in (*pb)==0, the output
+(*pc) will be the same as the return value from hashword().
+--------------------------------------------------------------------
+*/
+void
+hashword2(const uint32_t * k, /* the key, an array of uint32_t values */
+ size_t length, /* the length of the key, in uint32_ts */
+ uint32_t * pc, /* IN: seed OUT: primary hash value */
+ uint32_t * pb)
+{ /* IN: more seed OUT: secondary hash value */
+ uint32_t a, b, c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t) (length << 2)) + *pc;
+ c += *pb;
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3) {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a, b, c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 uint32_t's */
+ switch (length) { /* all the case statements fall through */
+ case 3:
+ c += k[2];
+ case 2:
+ b += k[1];
+ case 1:
+ a += k[0];
+ final(a, b, c);
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ *pc = c;
+ *pb = b;
+}
+
+
+/*
+-------------------------------------------------------------------------------
+hashlittle() -- hash a variable-length key into a 32-bit value
+ k : the key (the unaligned variable-length array of bytes)
+ length : the length of the key, counting by bytes
+ initval : can be any 4-byte value
+Returns a 32-bit value. Every bit of the key affects every bit of
+the return value. Two keys differing by one or two bits will have
+totally different hash values.
+
+The best hash table sizes are powers of 2. There is no need to do
+mod a prime (mod is sooo slow!). If you need less than 32 bits,
+use a bitmask. For example, if you need only 10 bits, do
+ h = (h & hashmask(10));
+In which case, the hash table should have hashsize(10) elements.
+
+If you are hashing n strings (uint8_t **)k, do it like this:
+ for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
+
+By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
+code any way you wish, private, educational, or commercial. It's free.
+
+Use for hash table lookup, or anything where one collision in 2^^32 is
+acceptable. Do NOT use for cryptographic purposes.
+-------------------------------------------------------------------------------
+*/
+
+uint32_t
+hashlittle(const void *key, size_t length, uint32_t initval)
+{
+ uint32_t a, b, c; /* internal state */
+ union
+ {
+ const void *ptr;
+ size_t i;
+ } u; /* needed for Mac Powerbook G4 */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t) length) + initval;
+
+ u.ptr = key;
+ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
+ const uint32_t *k = (const uint32_t *) key; /* read 32-bit chunks */
+#ifdef VALGRIND
+ const uint8_t *k8;
+#endif
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12) {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a, b, c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
+ * then masks off the part it's not allowed to read. Because the
+ * string is aligned, the masked-off tail is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+#ifndef VALGRIND
+
+ switch (length) {
+ case 12:
+ c += k[2];
+ b += k[1];
+ a += k[0];
+ break;
+ case 11:
+ c += k[2] & 0xffffff;
+ b += k[1];
+ a += k[0];
+ break;
+ case 10:
+ c += k[2] & 0xffff;
+ b += k[1];
+ a += k[0];
+ break;
+ case 9:
+ c += k[2] & 0xff;
+ b += k[1];
+ a += k[0];
+ break;
+ case 8:
+ b += k[1];
+ a += k[0];
+ break;
+ case 7:
+ b += k[1] & 0xffffff;
+ a += k[0];
+ break;
+ case 6:
+ b += k[1] & 0xffff;
+ a += k[0];
+ break;
+ case 5:
+ b += k[1] & 0xff;
+ a += k[0];
+ break;
+ case 4:
+ a += k[0];
+ break;
+ case 3:
+ a += k[0] & 0xffffff;
+ break;
+ case 2:
+ a += k[0] & 0xffff;
+ break;
+ case 1:
+ a += k[0] & 0xff;
+ break;
+ case 0:
+ return c; /* zero length strings require no mixing */
+ }
+
+#else /* make valgrind happy */
+
+ k8 = (const uint8_t *) k;
+ switch (length) {
+ case 12:
+ c += k[2];
+ b += k[1];
+ a += k[0];
+ break;
+ case 11:
+ c += ((uint32_t) k8[10]) << 16; /* fall through */
+ case 10:
+ c += ((uint32_t) k8[9]) << 8; /* fall through */
+ case 9:
+ c += k8[8]; /* fall through */
+ case 8:
+ b += k[1];
+ a += k[0];
+ break;
+ case 7:
+ b += ((uint32_t) k8[6]) << 16; /* fall through */
+ case 6:
+ b += ((uint32_t) k8[5]) << 8; /* fall through */
+ case 5:
+ b += k8[4]; /* fall through */
+ case 4:
+ a += k[0];
+ break;
+ case 3:
+ a += ((uint32_t) k8[2]) << 16; /* fall through */
+ case 2:
+ a += ((uint32_t) k8[1]) << 8; /* fall through */
+ case 1:
+ a += k8[0];
+ break;
+ case 0:
+ return c;
+ }
+
+#endif /* !valgrind */
+
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
+ const uint16_t *k = (const uint16_t *) key; /* read 16-bit chunks */
+ const uint8_t *k8;
+
+ /*--------------- all but last block: aligned reads and different mixing */
+ while (length > 12) {
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ b += k[2] + (((uint32_t) k[3]) << 16);
+ c += k[4] + (((uint32_t) k[5]) << 16);
+ mix(a, b, c);
+ length -= 12;
+ k += 6;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ k8 = (const uint8_t *) k;
+ switch (length) {
+ case 12:
+ c += k[4] + (((uint32_t) k[5]) << 16);
+ b += k[2] + (((uint32_t) k[3]) << 16);
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 11:
+ c += ((uint32_t) k8[10]) << 16; /* fall through */
+ case 10:
+ c += k[4];
+ b += k[2] + (((uint32_t) k[3]) << 16);
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 9:
+ c += k8[8]; /* fall through */
+ case 8:
+ b += k[2] + (((uint32_t) k[3]) << 16);
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 7:
+ b += ((uint32_t) k8[6]) << 16; /* fall through */
+ case 6:
+ b += k[2];
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 5:
+ b += k8[4]; /* fall through */
+ case 4:
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 3:
+ a += ((uint32_t) k8[2]) << 16; /* fall through */
+ case 2:
+ a += k[0];
+ break;
+ case 1:
+ a += k8[0];
+ break;
+ case 0:
+ return c; /* zero length requires no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const uint8_t *k = (const uint8_t *) key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12) {
+ a += k[0];
+ a += ((uint32_t) k[1]) << 8;
+ a += ((uint32_t) k[2]) << 16;
+ a += ((uint32_t) k[3]) << 24;
+ b += k[4];
+ b += ((uint32_t) k[5]) << 8;
+ b += ((uint32_t) k[6]) << 16;
+ b += ((uint32_t) k[7]) << 24;
+ c += k[8];
+ c += ((uint32_t) k[9]) << 8;
+ c += ((uint32_t) k[10]) << 16;
+ c += ((uint32_t) k[11]) << 24;
+ mix(a, b, c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch (length) { /* all the case statements fall through */
+ case 12:
+ c += ((uint32_t) k[11]) << 24;
+ case 11:
+ c += ((uint32_t) k[10]) << 16;
+ case 10:
+ c += ((uint32_t) k[9]) << 8;
+ case 9:
+ c += k[8];
+ case 8:
+ b += ((uint32_t) k[7]) << 24;
+ case 7:
+ b += ((uint32_t) k[6]) << 16;
+ case 6:
+ b += ((uint32_t) k[5]) << 8;
+ case 5:
+ b += k[4];
+ case 4:
+ a += ((uint32_t) k[3]) << 24;
+ case 3:
+ a += ((uint32_t) k[2]) << 16;
+ case 2:
+ a += ((uint32_t) k[1]) << 8;
+ case 1:
+ a += k[0];
+ break;
+ case 0:
+ return c;
+ }
+ }
+
+ final(a, b, c);
+ return c;
+}
+
+
+/*
+ * hashlittle2: return 2 32-bit hash values
+ *
+ * This is identical to hashlittle(), except it returns two 32-bit hash
+ * values instead of just one. This is good enough for hash table
+ * lookup with 2^^64 buckets, or if you want a second hash if you're not
+ * happy with the first, or if you want a probably-unique 64-bit ID for
+ * the key. *pc is better mixed than *pb, so use *pc first. If you want
+ * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
+ */
+void
+hashlittle2(const void *key, /* the key to hash */
+ size_t length, /* length of the key */
+ uint32_t * pc, /* IN: primary initval, OUT: primary hash */
+ uint32_t * pb)
+{ /* IN: secondary initval, OUT: secondary hash */
+ uint32_t a, b, c; /* internal state */
+ union
+ {
+ const void *ptr;
+ size_t i;
+ } u; /* needed for Mac Powerbook G4 */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t) length) + *pc;
+ c += *pb;
+
+ u.ptr = key;
+ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
+ const uint32_t *k = (const uint32_t *) key; /* read 32-bit chunks */
+#ifdef VALGRIND
+ const uint8_t *k8;
+#endif
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12) {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a, b, c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
+ * then masks off the part it's not allowed to read. Because the
+ * string is aligned, the masked-off tail is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+#ifndef VALGRIND
+
+ switch (length) {
+ case 12:
+ c += k[2];
+ b += k[1];
+ a += k[0];
+ break;
+ case 11:
+ c += k[2] & 0xffffff;
+ b += k[1];
+ a += k[0];
+ break;
+ case 10:
+ c += k[2] & 0xffff;
+ b += k[1];
+ a += k[0];
+ break;
+ case 9:
+ c += k[2] & 0xff;
+ b += k[1];
+ a += k[0];
+ break;
+ case 8:
+ b += k[1];
+ a += k[0];
+ break;
+ case 7:
+ b += k[1] & 0xffffff;
+ a += k[0];
+ break;
+ case 6:
+ b += k[1] & 0xffff;
+ a += k[0];
+ break;
+ case 5:
+ b += k[1] & 0xff;
+ a += k[0];
+ break;
+ case 4:
+ a += k[0];
+ break;
+ case 3:
+ a += k[0] & 0xffffff;
+ break;
+ case 2:
+ a += k[0] & 0xffff;
+ break;
+ case 1:
+ a += k[0] & 0xff;
+ break;
+ case 0:
+ *pc = c;
+ *pb = b;
+ return; /* zero length strings require no mixing */
+ }
+
+#else /* make valgrind happy */
+
+ k8 = (const uint8_t *) k;
+ switch (length) {
+ case 12:
+ c += k[2];
+ b += k[1];
+ a += k[0];
+ break;
+ case 11:
+ c += ((uint32_t) k8[10]) << 16; /* fall through */
+ case 10:
+ c += ((uint32_t) k8[9]) << 8; /* fall through */
+ case 9:
+ c += k8[8]; /* fall through */
+ case 8:
+ b += k[1];
+ a += k[0];
+ break;
+ case 7:
+ b += ((uint32_t) k8[6]) << 16; /* fall through */
+ case 6:
+ b += ((uint32_t) k8[5]) << 8; /* fall through */
+ case 5:
+ b += k8[4]; /* fall through */
+ case 4:
+ a += k[0];
+ break;
+ case 3:
+ a += ((uint32_t) k8[2]) << 16; /* fall through */
+ case 2:
+ a += ((uint32_t) k8[1]) << 8; /* fall through */
+ case 1:
+ a += k8[0];
+ break;
+ case 0:
+ *pc = c;
+ *pb = b;
+ return; /* zero length strings require no mixing */
+ }
+
+#endif /* !valgrind */
+
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
+ const uint16_t *k = (const uint16_t *) key; /* read 16-bit chunks */
+ const uint8_t *k8;
+
+ /*--------------- all but last block: aligned reads and different mixing */
+ while (length > 12) {
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ b += k[2] + (((uint32_t) k[3]) << 16);
+ c += k[4] + (((uint32_t) k[5]) << 16);
+ mix(a, b, c);
+ length -= 12;
+ k += 6;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ k8 = (const uint8_t *) k;
+ switch (length) {
+ case 12:
+ c += k[4] + (((uint32_t) k[5]) << 16);
+ b += k[2] + (((uint32_t) k[3]) << 16);
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 11:
+ c += ((uint32_t) k8[10]) << 16; /* fall through */
+ case 10:
+ c += k[4];
+ b += k[2] + (((uint32_t) k[3]) << 16);
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 9:
+ c += k8[8]; /* fall through */
+ case 8:
+ b += k[2] + (((uint32_t) k[3]) << 16);
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 7:
+ b += ((uint32_t) k8[6]) << 16; /* fall through */
+ case 6:
+ b += k[2];
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 5:
+ b += k8[4]; /* fall through */
+ case 4:
+ a += k[0] + (((uint32_t) k[1]) << 16);
+ break;
+ case 3:
+ a += ((uint32_t) k8[2]) << 16; /* fall through */
+ case 2:
+ a += k[0];
+ break;
+ case 1:
+ a += k8[0];
+ break;
+ case 0:
+ *pc = c;
+ *pb = b;
+ return; /* zero length strings require no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const uint8_t *k = (const uint8_t *) key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12) {
+ a += k[0];
+ a += ((uint32_t) k[1]) << 8;
+ a += ((uint32_t) k[2]) << 16;
+ a += ((uint32_t) k[3]) << 24;
+ b += k[4];
+ b += ((uint32_t) k[5]) << 8;
+ b += ((uint32_t) k[6]) << 16;
+ b += ((uint32_t) k[7]) << 24;
+ c += k[8];
+ c += ((uint32_t) k[9]) << 8;
+ c += ((uint32_t) k[10]) << 16;
+ c += ((uint32_t) k[11]) << 24;
+ mix(a, b, c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch (length) { /* all the case statements fall through */
+ case 12:
+ c += ((uint32_t) k[11]) << 24;
+ case 11:
+ c += ((uint32_t) k[10]) << 16;
+ case 10:
+ c += ((uint32_t) k[9]) << 8;
+ case 9:
+ c += k[8];
+ case 8:
+ b += ((uint32_t) k[7]) << 24;
+ case 7:
+ b += ((uint32_t) k[6]) << 16;
+ case 6:
+ b += ((uint32_t) k[5]) << 8;
+ case 5:
+ b += k[4];
+ case 4:
+ a += ((uint32_t) k[3]) << 24;
+ case 3:
+ a += ((uint32_t) k[2]) << 16;
+ case 2:
+ a += ((uint32_t) k[1]) << 8;
+ case 1:
+ a += k[0];
+ break;
+ case 0:
+ *pc = c;
+ *pb = b;
+ return; /* zero length strings require no mixing */
+ }
+ }
+
+ final(a, b, c);
+ *pc = c;
+ *pb = b;
+}
+
+
+
+/*
+ * hashbig():
+ * This is the same as hashword() on big-endian machines. It is different
+ * from hashlittle() on all machines. hashbig() takes advantage of
+ * big-endian byte ordering.
+ */
+uint32_t
+hashbig(const void *key, size_t length, uint32_t initval)
+{
+ uint32_t a, b, c;
+ union
+ {
+ const void *ptr;
+ size_t i;
+ } u; /* to cast key to (size_t) happily */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t) length) + initval;
+
+ u.ptr = key;
+ if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
+ const uint32_t *k = (const uint32_t *) key; /* read 32-bit chunks */
+#ifdef VALGRIND
+ const uint8_t *k8;
+#endif
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12) {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a, b, c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]<<8" actually reads beyond the end of the string, but
+ * then shifts out the part it's not allowed to read. Because the
+ * string is aligned, the illegal read is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+#ifndef VALGRIND
+
+ switch (length) {
+ case 12:
+ c += k[2];
+ b += k[1];
+ a += k[0];
+ break;
+ case 11:
+ c += k[2] & 0xffffff00;
+ b += k[1];
+ a += k[0];
+ break;
+ case 10:
+ c += k[2] & 0xffff0000;
+ b += k[1];
+ a += k[0];
+ break;
+ case 9:
+ c += k[2] & 0xff000000;
+ b += k[1];
+ a += k[0];
+ break;
+ case 8:
+ b += k[1];
+ a += k[0];
+ break;
+ case 7:
+ b += k[1] & 0xffffff00;
+ a += k[0];
+ break;
+ case 6:
+ b += k[1] & 0xffff0000;
+ a += k[0];
+ break;
+ case 5:
+ b += k[1] & 0xff000000;
+ a += k[0];
+ break;
+ case 4:
+ a += k[0];
+ break;
+ case 3:
+ a += k[0] & 0xffffff00;
+ break;
+ case 2:
+ a += k[0] & 0xffff0000;
+ break;
+ case 1:
+ a += k[0] & 0xff000000;
+ break;
+ case 0:
+ return c; /* zero length strings require no mixing */
+ }
+
+#else /* make valgrind happy */
+
+ k8 = (const uint8_t *) k;
+ switch (length) { /* all the case statements fall through */
+ case 12:
+ c += k[2];
+ b += k[1];
+ a += k[0];
+ break;
+ case 11:
+ c += ((uint32_t) k8[10]) << 8; /* fall through */
+ case 10:
+ c += ((uint32_t) k8[9]) << 16; /* fall through */
+ case 9:
+ c += ((uint32_t) k8[8]) << 24; /* fall through */
+ case 8:
+ b += k[1];
+ a += k[0];
+ break;
+ case 7:
+ b += ((uint32_t) k8[6]) << 8; /* fall through */
+ case 6:
+ b += ((uint32_t) k8[5]) << 16; /* fall through */
+ case 5:
+ b += ((uint32_t) k8[4]) << 24; /* fall through */
+ case 4:
+ a += k[0];
+ break;
+ case 3:
+ a += ((uint32_t) k8[2]) << 8; /* fall through */
+ case 2:
+ a += ((uint32_t) k8[1]) << 16; /* fall through */
+ case 1:
+ a += ((uint32_t) k8[0]) << 24;
+ break;
+ case 0:
+ return c;
+ }
+
+#endif /* !VALGRIND */
+
+ } else { /* need to read the key one byte at a time */
+ const uint8_t *k = (const uint8_t *) key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12) {
+ a += ((uint32_t) k[0]) << 24;
+ a += ((uint32_t) k[1]) << 16;
+ a += ((uint32_t) k[2]) << 8;
+ a += ((uint32_t) k[3]);
+ b += ((uint32_t) k[4]) << 24;
+ b += ((uint32_t) k[5]) << 16;
+ b += ((uint32_t) k[6]) << 8;
+ b += ((uint32_t) k[7]);
+ c += ((uint32_t) k[8]) << 24;
+ c += ((uint32_t) k[9]) << 16;
+ c += ((uint32_t) k[10]) << 8;
+ c += ((uint32_t) k[11]);
+ mix(a, b, c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch (length) { /* all the case statements fall through */
+ case 12:
+ c += k[11];
+ case 11:
+ c += ((uint32_t) k[10]) << 8;
+ case 10:
+ c += ((uint32_t) k[9]) << 16;
+ case 9:
+ c += ((uint32_t) k[8]) << 24;
+ case 8:
+ b += k[7];
+ case 7:
+ b += ((uint32_t) k[6]) << 8;
+ case 6:
+ b += ((uint32_t) k[5]) << 16;
+ case 5:
+ b += ((uint32_t) k[4]) << 24;
+ case 4:
+ a += k[3];
+ case 3:
+ a += ((uint32_t) k[2]) << 8;
+ case 2:
+ a += ((uint32_t) k[1]) << 16;
+ case 1:
+ a += ((uint32_t) k[0]) << 24;
+ break;
+ case 0:
+ return c;
+ }
+ }
+
+ final(a, b, c);
+ return c;
+}
+
+
+#if SELF_TEST
+
+/* used for timings */
+void
+driver1()
+{
+ uint8_t buf[256];
+ uint32_t i;
+ uint32_t h = 0;
+ time_t a, z;
+
+ time(&a);
+ for (i = 0; i < 256; ++i)
+ buf[i] = 'x';
+ for (i = 0; i < 1; ++i) {
+ h = hashlittle(&buf[0], 1, h);
+ }
+ time(&z);
+ if (z - a > 0)
+ printf("time %d %.8x\n", z - a, h);
+}
+
+/* check that every input bit changes every output bit half the time */
+#define HASHSTATE 1
+#define HASHLEN 1
+#define MAXPAIR 60
+#define MAXLEN 70
+void
+driver2()
+{
+ uint8_t qa[MAXLEN + 1], qb[MAXLEN + 2], *a = &qa[0], *b = &qb[1];
+ uint32_t c[HASHSTATE], d[HASHSTATE], i = 0, j = 0, k, l, m = 0, z;
+ uint32_t e[HASHSTATE], f[HASHSTATE], g[HASHSTATE], h[HASHSTATE];
+ uint32_t x[HASHSTATE], y[HASHSTATE];
+ uint32_t hlen;
+
+ printf("No more than %d trials should ever be needed \n", MAXPAIR / 2);
+ for (hlen = 0; hlen < MAXLEN; ++hlen) {
+ z = 0;
+ for (i = 0; i < hlen; ++i) {
+/*----------------------- for each input byte, */
+ for (j = 0; j < 8; ++j) {
+/*------------------------ for each input bit, */
+ for (m = 1; m < 8; ++m) {
+/*------------ for serveral possible initvals, */
+ for (l = 0; l < HASHSTATE; ++l)
+ e[l] = f[l] = g[l] = h[l] = x[l] = y[l] = ~((uint32_t) 0);
+
+ /*---- check that every output bit is affected by that input bit */
+ for (k = 0; k < MAXPAIR; k += 2) {
+ uint32_t finished = 1;
+ /* keys have one bit different */
+ for (l = 0; l < hlen + 1; ++l) {
+ a[l] = b[l] = (uint8_t) 0;
+ }
+ /* have a and b be two keys differing in only one bit */
+ a[i] ^= (k << j);
+ a[i] ^= (k >> (8 - j));
+ c[0] = hashlittle(a, hlen, m);
+ b[i] ^= ((k + 1) << j);
+ b[i] ^= ((k + 1) >> (8 - j));
+ d[0] = hashlittle(b, hlen, m);
+ /* check every bit is 1, 0, set, and not set at least once */
+ for (l = 0; l < HASHSTATE; ++l) {
+ e[l] &= (c[l] ^ d[l]);
+ f[l] &= ~(c[l] ^ d[l]);
+ g[l] &= c[l];
+ h[l] &= ~c[l];
+ x[l] &= d[l];
+ y[l] &= ~d[l];
+ if (e[l] | f[l] | g[l] | h[l] | x[l] | y[l])
+ finished = 0;
+ }
+ if (finished)
+ break;
+ }
+ if (k > z)
+ z = k;
+ if (k == MAXPAIR) {
+ printf("Some bit didn't change: ");
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x ", e[0], f[0], g[0], h[0], x[0], y[0]);
+ printf("i %d j %d m %d len %d\n", i, j, m, hlen);
+ }
+ if (z == MAXPAIR)
+ goto done;
+ }
+ }
+ }
+ done:
+ if (z < MAXPAIR) {
+ printf("Mix success %2d bytes %2d initvals ", i, m);
+ printf("required %d trials\n", z / 2);
+ }
+ }
+ printf("\n");
+}
+
+/* Check for reading beyond the end of the buffer and alignment problems */
+void
+driver3()
+{
+ uint8_t buf[MAXLEN + 20], *b;
+ uint32_t len;
+ uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
+ uint32_t h;
+ uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
+ uint32_t i;
+ uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
+ uint32_t j;
+ uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
+ uint32_t ref, x, y;
+ uint8_t *p;
+
+ printf("Endianness. These lines should all be the same (for values filled in):\n");
+ printf("%.8x %.8x %.8x\n",
+ hashword((const uint32_t *) q, (sizeof(q) - 1) / 4, 13),
+ hashword((const uint32_t *) q, (sizeof(q) - 5) / 4, 13),
+ hashword((const uint32_t *) q, (sizeof(q) - 9) / 4, 13));
+ p = q;
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
+ hashlittle(p, sizeof(q) - 1, 13), hashlittle(p, sizeof(q) - 2, 13),
+ hashlittle(p, sizeof(q) - 3, 13), hashlittle(p, sizeof(q) - 4, 13),
+ hashlittle(p, sizeof(q) - 5, 13), hashlittle(p, sizeof(q) - 6, 13),
+ hashlittle(p, sizeof(q) - 7, 13), hashlittle(p, sizeof(q) - 8, 13),
+ hashlittle(p, sizeof(q) - 9, 13), hashlittle(p, sizeof(q) - 10, 13),
+ hashlittle(p, sizeof(q) - 11, 13), hashlittle(p, sizeof(q) - 12, 13));
+ p = &qq[1];
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
+ hashlittle(p, sizeof(q) - 1, 13), hashlittle(p, sizeof(q) - 2, 13),
+ hashlittle(p, sizeof(q) - 3, 13), hashlittle(p, sizeof(q) - 4, 13),
+ hashlittle(p, sizeof(q) - 5, 13), hashlittle(p, sizeof(q) - 6, 13),
+ hashlittle(p, sizeof(q) - 7, 13), hashlittle(p, sizeof(q) - 8, 13),
+ hashlittle(p, sizeof(q) - 9, 13), hashlittle(p, sizeof(q) - 10, 13),
+ hashlittle(p, sizeof(q) - 11, 13), hashlittle(p, sizeof(q) - 12, 13));
+ p = &qqq[2];
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
+ hashlittle(p, sizeof(q) - 1, 13), hashlittle(p, sizeof(q) - 2, 13),
+ hashlittle(p, sizeof(q) - 3, 13), hashlittle(p, sizeof(q) - 4, 13),
+ hashlittle(p, sizeof(q) - 5, 13), hashlittle(p, sizeof(q) - 6, 13),
+ hashlittle(p, sizeof(q) - 7, 13), hashlittle(p, sizeof(q) - 8, 13),
+ hashlittle(p, sizeof(q) - 9, 13), hashlittle(p, sizeof(q) - 10, 13),
+ hashlittle(p, sizeof(q) - 11, 13), hashlittle(p, sizeof(q) - 12, 13));
+ p = &qqqq[3];
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
+ hashlittle(p, sizeof(q) - 1, 13), hashlittle(p, sizeof(q) - 2, 13),
+ hashlittle(p, sizeof(q) - 3, 13), hashlittle(p, sizeof(q) - 4, 13),
+ hashlittle(p, sizeof(q) - 5, 13), hashlittle(p, sizeof(q) - 6, 13),
+ hashlittle(p, sizeof(q) - 7, 13), hashlittle(p, sizeof(q) - 8, 13),
+ hashlittle(p, sizeof(q) - 9, 13), hashlittle(p, sizeof(q) - 10, 13),
+ hashlittle(p, sizeof(q) - 11, 13), hashlittle(p, sizeof(q) - 12, 13));
+ printf("\n");
+
+ /* check that hashlittle2 and hashlittle produce the same results */
+ i = 47;
+ j = 0;
+ hashlittle2(q, sizeof(q), &i, &j);
+ if (hashlittle(q, sizeof(q), 47) != i)
+ printf("hashlittle2 and hashlittle mismatch\n");
+
+ /* check that hashword2 and hashword produce the same results */
+ len = 0xdeadbeef;
+ i = 47, j = 0;
+ hashword2(&len, 1, &i, &j);
+ if (hashword(&len, 1, 47) != i)
+ printf("hashword2 and hashword mismatch %x %x\n", i, hashword(&len, 1, 47));
+
+ /* check hashlittle doesn't read before or after the ends of the string */
+ for (h = 0, b = buf + 1; h < 8; ++h, ++b) {
+ for (i = 0; i < MAXLEN; ++i) {
+ len = i;
+ for (j = 0; j < i; ++j)
+ *(b + j) = 0;
+
+ /* these should all be equal */
+ ref = hashlittle(b, len, (uint32_t) 1);
+ *(b + i) = (uint8_t) ~ 0;
+ *(b - 1) = (uint8_t) ~ 0;
+ x = hashlittle(b, len, (uint32_t) 1);
+ y = hashlittle(b, len, (uint32_t) 1);
+ if ((ref != x) || (ref != y)) {
+ printf("alignment error: %.8x %.8x %.8x %d %d\n", ref, x, y, h, i);
+ }
+ }
+ }
+}
+
+/* check for problems with nulls */
+void
+driver4()
+{
+ uint8_t buf[1];
+ uint32_t h, i, state[HASHSTATE];
+
+
+ buf[0] = ~0;
+ for (i = 0; i < HASHSTATE; ++i)
+ state[i] = 1;
+ printf("These should all be different\n");
+ for (i = 0, h = 0; i < 8; ++i) {
+ h = hashlittle(buf, 0, h);
+ printf("%2d 0-byte strings, hash is %.8x\n", i, h);
+ }
+}
+
+
+int
+main()
+{
+ driver1(); /* test that the key is hashed: used for timings */
+ driver2(); /* test that whole key is hashed thoroughly */
+ driver3(); /* test that nothing but the key is hashed */
+ driver4(); /* test hashing multiple buffers (all buffers are null) */
+ return 1;
+}
+
+#endif /* SELF_TEST */