1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
# This file defines how PyOxidizer application building and packaging is
# performed. See PyOxidizer's documentation at
# https://pyoxidizer.readthedocs.io/en/stable/ for details of this
# configuration file format.
# Obtain the default PythonDistribution for our build target. We link
# this distribution into our produced executable and extract the Python
# standard library from it.
def make_dist():
return default_python_distribution()
# Configuration files consist of functions which define build "targets."
# This function creates a Python executable and installs it in a destination
# directory.
def make_exe(dist):
# This function creates a `PythonPackagingPolicy` instance, which
# influences how executables are built and how resources are added to
# the executable. You can customize the default behavior by assigning
# to attributes and calling functions.
policy = dist.make_python_packaging_policy()
# Enable support for non-classified "file" resources to be added to
# resource collections.
# policy.allow_files = True
# Control support for loading Python extensions and other shared libraries
# from memory. This is only supported on Windows and is ignored on other
# platforms.
# policy.allow_in_memory_shared_library_loading = True
# Control whether to generate Python bytecode at various optimization
# levels. The default optimization level used by Python is 0.
# policy.bytecode_optimize_level_zero = True
# policy.bytecode_optimize_level_one = True
policy.bytecode_optimize_level_two = True
# Package all available Python extensions in the distribution.
policy.extension_module_filter = "all"
# Package the minimum set of Python extensions in the distribution needed
# to run a Python interpreter. Various functionality from the Python
# standard library won't work with this setting! But it can be used to
# reduce the size of generated executables by omitting unused extensions.
# policy.extension_module_filter = "minimal"
# Package Python extensions in the distribution not having additional
# library dependencies. This will exclude working support for SSL,
# compression formats, and other functionality.
# policy.extension_module_filter = "no-libraries"
# Package Python extensions in the distribution not having a dependency on
# copyleft licensed software like GPL.
# policy.extension_module_filter = "no-copyleft"
# Controls whether the file scanner attempts to classify files and emit
# resource-specific values.
# policy.file_scanner_classify_files = True
# Controls whether `File` instances are emitted by the file scanner.
# policy.file_scanner_emit_files = False
# Controls the `add_include` attribute of "classified" resources
# (`PythonModuleSource`, `PythonPackageResource`, etc).
# policy.include_classified_resources = True
# Toggle whether Python module source code for modules in the Python
# distribution's standard library are included.
policy.include_distribution_sources = True
# Toggle whether Python package resource files for the Python standard
# library are included.
policy.include_distribution_resources = False
# Controls the `add_include` attribute of `File` resources.
policy.include_file_resources = False
# Controls the `add_include` attribute of `PythonModuleSource` not in
# the standard library.
# policy.include_non_distribution_sources = True
# Toggle whether files associated with tests are included.
policy.include_test = False
# Resources are loaded from "in-memory" or "filesystem-relative" paths.
# The locations to attempt to add resources to are defined by the
# `resources_location` and `resources_location_fallback` attributes.
# The former is the first/primary location to try and the latter is
# an optional fallback.
# Use in-memory location for adding resources by default.
# policy.resources_location = "in-memory"
# Use filesystem-relative location for adding resources by default.
policy.resources_location = "filesystem-relative:lib"
# Attempt to add resources relative to the built binary when
# `resources_location` fails.
# policy.resources_location_fallback = "filesystem-relative:prefix"
# Clear out a fallback resource location.
# policy.resources_location_fallback = None
# Define a preferred Python extension module variant in the Python distribution
# to use.
# policy.set_preferred_extension_module_variant("foo", "bar")
# Configure policy values to classify files as typed resources.
# (This is the default.)
# policy.set_resource_handling_mode("classify")
# Configure policy values to handle files as files and not attempt
# to classify files as specific types.
# policy.set_resource_handling_mode("files")
# This variable defines the configuration of the embedded Python
# interpreter. By default, the interpreter will run a Python REPL
# using settings that are appropriate for an "isolated" run-time
# environment.
#
# The configuration of the embedded Python interpreter can be modified
# by setting attributes on the instance. Some of these are
# documented below.
python_config = dist.make_python_interpreter_config()
# Make the embedded interpreter behave like a `python` process.
# python_config.config_profile = "python"
# Set initial value for `sys.path`. If the string `$ORIGIN` exists in
# a value, it will be expanded to the directory of the built executable.
python_config.module_search_paths = ["$ORIGIN/lib"]
# Use jemalloc as Python's memory allocator.
# python_config.allocator_backend = "jemalloc"
# Use mimalloc as Python's memory allocator.
# python_config.allocator_backend = "mimalloc"
# Use snmalloc as Python's memory allocator.
# python_config.allocator_backend = "snmalloc"
# Let Python choose which memory allocator to use. (This will likely
# use the malloc()/free() linked into the program.
python_config.allocator_backend = "default"
# Enable the use of a custom allocator backend with the "raw" memory domain.
# python_config.allocator_raw = True
# Enable the use of a custom allocator backend with the "mem" memory domain.
# python_config.allocator_mem = True
# Enable the use of a custom allocator backend with the "obj" memory domain.
# python_config.allocator_obj = True
# Enable the use of a custom allocator backend with pymalloc's arena
# allocator.
# python_config.allocator_pymalloc_arena = True
# Enable Python memory allocator debug hooks.
# python_config.allocator_debug = True
# Control whether `oxidized_importer` is the first importer on
# `sys.meta_path`.
# python_config.oxidized_importer = False
# Enable the standard path-based importer which attempts to load
# modules from the filesystem.
# python_config.filesystem_importer = True
# Set `sys.frozen = True`
# python_config.sys_frozen = True
# Set `sys.meipass`
# python_config.sys_meipass = True
# Write files containing loaded modules to the directory specified
# by the given environment variable.
# python_config.write_modules_directory_env = "/tmp/oxidized/loaded_modules"
# Evaluate a string as Python code when the interpreter starts.
python_config.run_command = "from iredis.entry import main; main()"
# Run a Python module as __main__ when the interpreter starts.
# python_config.run_module = "<module>"
# Run a Python file when the interpreter starts.
# python_config.run_filename = "/path/to/file"
# Produce a PythonExecutable from a Python distribution, embedded
# resources, and other options. The returned object represents the
# standalone executable that will be built.
exe = dist.to_python_executable(
name="iredis",
# If no argument passed, the default `PythonPackagingPolicy` for the
# distribution is used.
packaging_policy=policy,
# If no argument passed, the default `PythonInterpreterConfig` is used.
config=python_config,
)
# Install tcl/tk support files to a specified directory so the `tkinter` Python
# module works.
# exe.tcl_files_path = "lib"
# Never attempt to copy Windows runtime DLLs next to the built executable.
# exe.windows_runtime_dlls_mode = "never"
# Copy Windows runtime DLLs next to the built executable when they can be
# located.
# exe.windows_runtime_dlls_mode = "when-present"
# Copy Windows runtime DLLs next to the build executable and error if this
# cannot be done.
# exe.windows_runtime_dlls_mode = "always"
# Make the executable a console application on Windows.
# exe.windows_subsystem = "console"
# Make the executable a non-console application on Windows.
# exe.windows_subsystem = "windows"
# Invoke `pip download` to install a single package using wheel archives
# obtained via `pip download`. `pip_download()` returns objects representing
# collected files inside Python wheels. `add_python_resources()` adds these
# objects to the binary, with a load location as defined by the packaging
# policy's resource location attributes.
#exe.add_python_resources(exe.pip_download(["pyflakes==2.2.0"]))
# Invoke `pip install` with our Python distribution to install a single package.
# `pip_install()` returns objects representing installed files.
# `add_python_resources()` adds these objects to the binary, with a load
# location as defined by the packaging policy's resource location
# attributes.
exe.add_python_resources(exe.pip_install(["$WHEEL_PATH"]))
# Invoke `pip install` using a requirements file and add the collected resources
# to our binary.
#exe.add_python_resources(exe.pip_install(["-r", "requirements.txt"]))
# Read Python files from a local directory and add them to our embedded
# context, taking just the resources belonging to the `foo` and `bar`
# Python packages.
#exe.add_python_resources(exe.read_package_root(
# path="/src/mypackage",
# packages=["foo", "bar"],
#))
# Discover Python files from a virtualenv and add them to our embedded
# context.
#exe.add_python_resources(exe.read_virtualenv(path="/path/to/venv"))
# Filter all resources collected so far through a filter of names
# in a file.
#exe.filter_from_files(files=["/path/to/filter-file"]))
# Return our `PythonExecutable` instance so it can be built and
# referenced by other consumers of this target.
return exe
def make_embedded_resources(exe):
return exe.to_embedded_resources()
def make_install(exe):
# Create an object that represents our installed application file layout.
files = FileManifest()
# Add the generated executable to our install layout in the root directory.
files.add_python_resource(".", exe)
return files
def make_msi(exe):
# See the full docs for more. But this will convert your Python executable
# into a `WiXMSIBuilder` Starlark type, which will be converted to a Windows
# .msi installer when it is built.
return exe.to_wix_msi_builder(
# Simple identifier of your app.
"iredis",
# The name of your application.
"iredis",
# The version of your application.
"1.9.1",
# The author/manufacturer of your application.
"laixintao"
)
# Dynamically enable automatic code signing.
def register_code_signers():
# You will need to run with `pyoxidizer build --var ENABLE_CODE_SIGNING 1` for
# this if block to be evaluated.
if not VARS.get("ENABLE_CODE_SIGNING"):
return
# Use a code signing certificate in a .pfx/.p12 file, prompting the
# user for its path and password to open.
# pfx_path = prompt_input("path to code signing certificate file")
# pfx_password = prompt_password(
# "password for code signing certificate file",
# confirm = True
# )
# signer = code_signer_from_pfx_file(pfx_path, pfx_password)
# Use a code signing certificate in the Windows certificate store, specified
# by its SHA-1 thumbprint. (This allows you to use YubiKeys and other
# hardware tokens if they speak to the Windows certificate APIs.)
# sha1_thumbprint = prompt_input(
# "SHA-1 thumbprint of code signing certificate in Windows store"
# )
# signer = code_signer_from_windows_store_sha1_thumbprint(sha1_thumbprint)
# Choose a code signing certificate automatically from the Windows
# certificate store.
# signer = code_signer_from_windows_store_auto()
# Activate your signer so it gets called automatically.
# signer.activate()
# Call our function to set up automatic code signers.
register_code_signers()
# Tell PyOxidizer about the build targets defined above.
register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"])
register_target("resources", make_embedded_resources, depends=["exe"], default_build_script=True)
register_target("install", make_install, depends=["exe"], default=True)
register_target("msi_installer", make_msi, depends=["exe"])
# Resolve whatever targets the invoker of this configuration file is requesting
# be resolved.
resolve_targets()
# END OF COMMON USER-ADJUSTED SETTINGS.
#
# Everything below this is typically managed by PyOxidizer and doesn't need
# to be updated by people.
PYOXIDIZER_VERSION = "0.14.1"
PYOXIDIZER_COMMIT = "UNKNOWN"
|