// SPDX-License-Identifier: LGPL-2.1-or-later /** * This file is part of libnvme. * Copyright (c) 2022 Code Construct */ #undef NDEBUG #include #include #include #include #include /* we define a custom transport, so need the internal headers */ #include "nvme/private.h" #include "libnvme-mi.h" #include "utils.h" typedef int (*test_submit_cb)(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data); struct test_transport_data { unsigned int magic; bool named; test_submit_cb submit_cb; void *submit_cb_data; }; static const int test_transport_magic = 0x74657374; static int test_transport_submit(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp) { struct test_transport_data *tpd = ep->transport_data; assert(tpd->magic == test_transport_magic); /* start from a minimal response: zeroed data, nmp to match request */ memset(resp->hdr, 0, resp->hdr_len); memset(resp->data, 0, resp->data_len); resp->hdr->type = NVME_MI_MSGTYPE_NVME; resp->hdr->nmp = req->hdr->nmp | (NVME_MI_ROR_RSP << 7); if (tpd->submit_cb) return tpd->submit_cb(ep, req, resp, tpd->submit_cb_data); return 0; } static void test_transport_close(struct nvme_mi_ep *ep) { struct test_transport_data *tpd = ep->transport_data; assert(tpd->magic == test_transport_magic); free(tpd); } static int test_transport_desc_ep(struct nvme_mi_ep *ep, char *buf, size_t len) { struct test_transport_data *tpd = ep->transport_data; assert(tpd->magic == test_transport_magic); if (!tpd->named) return -1; snprintf(buf, len, "test endpoint 0x%x", tpd->magic); return 0; } /* internal test helper to generate correct response crc */ static void test_transport_resp_calc_mic(struct nvme_mi_resp *resp) { extern __u32 nvme_mi_crc32_update(__u32 crc, void *data, size_t len); __u32 crc = 0xffffffff; crc = nvme_mi_crc32_update(crc, resp->hdr, resp->hdr_len); crc = nvme_mi_crc32_update(crc, resp->data, resp->data_len); resp->mic = ~crc; } static const struct nvme_mi_transport test_transport = { .name = "test-mi", .mic_enabled = true, .submit = test_transport_submit, .close = test_transport_close, .desc_ep = test_transport_desc_ep, }; static void test_set_transport_callback(nvme_mi_ep_t ep, test_submit_cb cb, void *data) { struct test_transport_data *tpd = ep->transport_data; assert(tpd->magic == test_transport_magic); tpd->submit_cb = cb; tpd->submit_cb_data = data; } nvme_mi_ep_t nvme_mi_open_test(nvme_root_t root) { struct test_transport_data *tpd; struct nvme_mi_ep *ep; ep = nvme_mi_init_ep(root); assert(ep); tpd = malloc(sizeof(*tpd)); assert(tpd); tpd->magic = test_transport_magic; tpd->named = true; ep->transport = &test_transport; ep->transport_data = tpd; return ep; } unsigned int count_root_eps(nvme_root_t root) { unsigned int i = 0; nvme_mi_ep_t ep; nvme_mi_for_each_endpoint(root, ep) i++; return i; } /* test that the root->endpoints list is updated on endpoint * creation/destruction */ static void test_endpoint_lifetime(nvme_mi_ep_t ep) { nvme_root_t root = ep->root; unsigned int count; nvme_mi_ep_t ep2; count = count_root_eps(root); assert(count == 1); ep2 = nvme_mi_open_test(root); count = count_root_eps(root); assert(count == 2); nvme_mi_close(ep2); count = count_root_eps(root); assert(count == 1); } unsigned int count_ep_controllers(nvme_mi_ep_t ep) { unsigned int i = 0; nvme_mi_ctrl_t ctrl; nvme_mi_for_each_ctrl(ep, ctrl) i++; return i; } /* test that the ep->controllers list is updated on controller * creation/destruction */ static void test_ctrl_lifetime(nvme_mi_ep_t ep) { nvme_mi_ctrl_t c1, c2; int count; ep->controllers_scanned = true; count = count_ep_controllers(ep); assert(count == 0); c1 = nvme_mi_init_ctrl(ep, 1); count = count_ep_controllers(ep); assert(count == 1); c2 = nvme_mi_init_ctrl(ep, 2); count = count_ep_controllers(ep); assert(count == 2); nvme_mi_close_ctrl(c1); count = count_ep_controllers(ep); assert(count == 1); nvme_mi_close_ctrl(c2); count = count_ep_controllers(ep); assert(count == 0); } /* test: basic read MI datastructure command */ static int test_read_mi_data_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { __u8 ror, mt, *hdr, *buf; assert(req->hdr->type == NVME_MI_MSGTYPE_NVME); ror = req->hdr->nmp >> 7; mt = req->hdr->nmp >> 3 & 0x7; assert(ror == NVME_MI_ROR_REQ); assert(mt == NVME_MI_MT_MI); /* do we have enough for a mi header? */ assert(req->hdr_len == sizeof(struct nvme_mi_mi_req_hdr)); /* inspect response as raw bytes */ hdr = (__u8 *)req->hdr; assert(hdr[4] == nvme_mi_mi_opcode_mi_data_read); /* create basic response */ assert(resp->hdr_len >= sizeof(struct nvme_mi_mi_resp_hdr)); assert(resp->data_len >= 4); hdr = (__u8 *)resp->hdr; hdr[4] = 0; /* status */ buf = (__u8 *)resp->data; memset(buf, 0, resp->data_len); buf[0] = 1; /* NUMP */ buf[1] = 1; /* MJR */ buf[2] = 2; /* MNR */ test_transport_resp_calc_mic(resp); return 0; } static void test_read_mi_data(nvme_mi_ep_t ep) { struct nvme_mi_read_nvm_ss_info ss_info; int rc; test_set_transport_callback(ep, test_read_mi_data_cb, NULL); rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info); assert(rc == 0); } /* test: failed transport */ static int test_transport_fail_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { return -1; } static void test_transport_fail(nvme_mi_ep_t ep) { struct nvme_mi_read_nvm_ss_info ss_info; int rc; test_set_transport_callback(ep, test_transport_fail_cb, NULL); rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info); assert(rc != 0); } static void test_transport_describe(nvme_mi_ep_t ep) { struct test_transport_data *tpd; char *str; tpd = (struct test_transport_data *)ep->transport_data; tpd->named = false; str = nvme_mi_endpoint_desc(ep); assert(str); assert(!strcmp(str, "test-mi endpoint")); free(str); tpd->named = true; str = nvme_mi_endpoint_desc(ep); assert(str); assert(!strcmp(str, "test-mi: test endpoint 0x74657374")); free(str); } /* test: invalid crc */ static int test_invalid_crc_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { resp->mic = 0; return 0; } static void test_invalid_crc(nvme_mi_ep_t ep) { struct nvme_mi_read_nvm_ss_info ss_info; int rc; test_set_transport_callback(ep, test_invalid_crc_cb, NULL); rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info); assert(rc != 0); } /* test: test that the controller list populates the endpoint's list of * controllers */ static int test_scan_ctrl_list_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { __u8 ror, mt, *hdr, *buf; assert(req->hdr->type == NVME_MI_MSGTYPE_NVME); ror = req->hdr->nmp >> 7; mt = req->hdr->nmp >> 3 & 0x7; assert(ror == NVME_MI_ROR_REQ); assert(mt == NVME_MI_MT_MI); /* do we have enough for a mi header? */ assert(req->hdr_len == sizeof(struct nvme_mi_mi_req_hdr)); /* inspect response as raw bytes */ hdr = (__u8 *)req->hdr; assert(hdr[4] == nvme_mi_mi_opcode_mi_data_read); assert(hdr[11] == nvme_mi_dtyp_ctrl_list); /* create basic response */ assert(resp->hdr_len >= sizeof(struct nvme_mi_mi_resp_hdr)); assert(resp->data_len >= 4); hdr = (__u8 *)resp->hdr; hdr[4] = 0; /* status */ buf = (__u8 *)resp->data; memset(buf, 0, resp->data_len); buf[0] = 3; buf[1] = 0; /* num controllers */ buf[2] = 1; buf[3] = 0; /* id 1 */ buf[4] = 4; buf[5] = 0; /* id 4 */ buf[6] = 5; buf[7] = 0; /* id 5 */ test_transport_resp_calc_mic(resp); return 0; } static void test_scan_ctrl_list(nvme_mi_ep_t ep) { struct nvme_mi_ctrl *ctrl; ep->controllers_scanned = false; test_set_transport_callback(ep, test_scan_ctrl_list_cb, NULL); nvme_mi_scan_ep(ep, false); ctrl = nvme_mi_first_ctrl(ep); assert(ctrl); assert(ctrl->id == 1); ctrl = nvme_mi_next_ctrl(ep, ctrl); assert(ctrl); assert(ctrl->id == 4); ctrl = nvme_mi_next_ctrl(ep, ctrl); assert(ctrl); assert(ctrl->id == 5); ctrl = nvme_mi_next_ctrl(ep, ctrl); assert(ctrl == NULL); } /* test: simple NVMe admin request/response */ static int test_admin_id_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { __u8 ror, mt, *hdr; __u32 dlen, cdw10; __u16 ctrl_id; __u8 flags; assert(req->hdr->type == NVME_MI_MSGTYPE_NVME); ror = req->hdr->nmp >> 7; mt = req->hdr->nmp >> 3 & 0x7; assert(ror == NVME_MI_ROR_REQ); assert(mt == NVME_MI_MT_ADMIN); /* do we have enough for a mi header? */ assert(req->hdr_len == sizeof(struct nvme_mi_admin_req_hdr)); /* inspect response as raw bytes */ hdr = (__u8 *)req->hdr; assert(hdr[4] == nvme_admin_identify); flags = hdr[5]; ctrl_id = hdr[7] << 8 | hdr[6]; assert(ctrl_id == 0x5); /* controller id */ /* we requested a full id; if we've set the length flag, * ensure the length matches */ dlen = hdr[35] << 24 | hdr[34] << 16 | hdr[33] << 8 | hdr[32]; if (flags & 0x1) { assert(dlen == sizeof(struct nvme_id_ctrl)); } assert(!(flags & 0x2)); /* CNS value of 1 in cdw10 field */ cdw10 = hdr[47] << 24 | hdr[46] << 16 | hdr[45] << 8 | hdr[44]; assert(cdw10 == 0x1); /* create valid (but somewhat empty) response */ hdr = (__u8 *)resp->hdr; hdr[4] = 0x00; /* status: success */ test_transport_resp_calc_mic(resp); return 0; } static void test_admin_id(nvme_mi_ep_t ep) { struct nvme_id_ctrl id; nvme_mi_ctrl_t ctrl; int rc; test_set_transport_callback(ep, test_admin_id_cb, NULL); ctrl = nvme_mi_init_ctrl(ep, 5); assert(ctrl); rc = nvme_mi_admin_identify_ctrl(ctrl, &id); assert(rc == 0); } /* test: simple NVMe error response */ static int test_admin_err_resp_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { __u8 ror, mt, *hdr; assert(req->hdr->type == NVME_MI_MSGTYPE_NVME); ror = req->hdr->nmp >> 7; mt = req->hdr->nmp >> 3 & 0x7; assert(ror == NVME_MI_ROR_REQ); assert(mt == NVME_MI_MT_ADMIN); /* do we have enough for a mi header? */ assert(req->hdr_len == sizeof(struct nvme_mi_admin_req_hdr)); /* inspect response as raw bytes */ hdr = (__u8 *)req->hdr; assert(hdr[4] == nvme_admin_identify); /* we need at least 8 bytes for error information */ assert(resp->hdr_len >= 8); /* create error response */ hdr = (__u8 *)resp->hdr; hdr[4] = 0x02; /* status: internal error */ hdr[5] = 0; hdr[6] = 0; hdr[7] = 0; resp->hdr_len = 8; resp->data_len = 0; test_transport_resp_calc_mic(resp); return 0; } static void test_admin_err_resp(nvme_mi_ep_t ep) { struct nvme_id_ctrl id; nvme_mi_ctrl_t ctrl; int rc; test_set_transport_callback(ep, test_admin_err_resp_cb, NULL); ctrl = nvme_mi_init_ctrl(ep, 1); assert(ctrl); rc = nvme_mi_admin_identify_ctrl(ctrl, &id); assert(rc != 0); } /* invalid Admin command transfers */ static int test_admin_invalid_formats_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { /* none of the tests should result in message transfer */ assert(0); return -1; } static void test_admin_invalid_formats(nvme_mi_ep_t ep) { struct nvme_mi_admin_resp_hdr resp = { 0 }; struct nvme_mi_admin_req_hdr req = { 0 }; nvme_mi_ctrl_t ctrl; size_t len; int rc; test_set_transport_callback(ep, test_admin_invalid_formats_cb, NULL); ctrl = nvme_mi_init_ctrl(ep, 1); assert(ctrl); /* unaligned req size */ len = 0; rc = nvme_mi_admin_xfer(ctrl, &req, 1, &resp, 0, &len); assert(rc != 0); /* unaligned resp size */ len = 1; rc = nvme_mi_admin_xfer(ctrl, &req, 0, &resp, 0, &len); assert(rc != 0); /* unaligned resp offset */ len = 4; rc = nvme_mi_admin_xfer(ctrl, &req, 0, &resp, 1, &len); assert(rc != 0); /* resp too large */ len = 4096 + 4; rc = nvme_mi_admin_xfer(ctrl, &req, 0, &resp, 0, &len); assert(rc != 0); /* resp offset too large */ len = 4; rc = nvme_mi_admin_xfer(ctrl, &req, 0, &resp, (off_t)1 << 32, &len); assert(rc != 0); /* resp offset with no len */ len = 0; rc = nvme_mi_admin_xfer(ctrl, &req, 0, &resp, 4, &len); assert(rc != 0); /* req and resp payloads */ len = 4; rc = nvme_mi_admin_xfer(ctrl, &req, 4, &resp, 0, &len); assert(rc != 0); } /* test: header length too small */ static int test_resp_hdr_small_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { resp->hdr_len = 2; test_transport_resp_calc_mic(resp); return 0; } static void test_resp_hdr_small(nvme_mi_ep_t ep) { struct nvme_mi_read_nvm_ss_info ss_info; int rc; test_set_transport_callback(ep, test_resp_hdr_small_cb, NULL); rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info); assert(rc != 0); } /* test: respond with a request message */ static int test_resp_req_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { resp->hdr->nmp &= ~(NVME_MI_ROR_RSP << 7); test_transport_resp_calc_mic(resp); return 0; } static void test_resp_req(nvme_mi_ep_t ep) { struct nvme_mi_read_nvm_ss_info ss_info; int rc; test_set_transport_callback(ep, test_resp_req_cb, NULL); rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info); assert(rc != 0); } /* test: invalid MCTP type in response */ static int test_resp_invalid_type_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { resp->hdr->type = 0x3; test_transport_resp_calc_mic(resp); return 0; } static void test_resp_invalid_type(nvme_mi_ep_t ep) { struct nvme_mi_read_nvm_ss_info ss_info; int rc; test_set_transport_callback(ep, test_resp_invalid_type_cb, NULL); rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info); assert(rc != 0); } /* test: response with mis-matching command slot */ static int test_resp_csi_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { resp->hdr->nmp ^= 0x1; test_transport_resp_calc_mic(resp); return 0; } static void test_resp_csi(nvme_mi_ep_t ep) { struct nvme_mi_read_nvm_ss_info ss_info; int rc; test_set_transport_callback(ep, test_resp_csi_cb, NULL); rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info); assert(rc != 0); } /* test: config get MTU request & response layout, ensure we're handling * endianness in the 3-byte NMRESP field correctly */ static int test_mi_config_get_mtu_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { struct nvme_mi_mi_resp_hdr *mi_resp; uint8_t *buf; assert(req->hdr_len == sizeof(struct nvme_mi_mi_req_hdr)); assert(req->data_len == 0); /* validate req as raw bytes */ buf = (void *)req->hdr; assert(buf[4] == nvme_mi_mi_opcode_configuration_get); /* dword 0: port and config id */ assert(buf[11] == 0x5); assert(buf[8] == NVME_MI_CONFIG_MCTP_MTU); /* set MTU in response */ mi_resp = (void *)resp->hdr; mi_resp->nmresp[1] = 0x12; mi_resp->nmresp[0] = 0x34; resp->hdr_len = sizeof(*mi_resp); resp->data_len = 0; test_transport_resp_calc_mic(resp); return 0; } static void test_mi_config_get_mtu(nvme_mi_ep_t ep) { uint16_t mtu; int rc; test_set_transport_callback(ep, test_mi_config_get_mtu_cb, NULL); rc = nvme_mi_mi_config_get_mctp_mtu(ep, 5, &mtu); assert(rc == 0); assert(mtu == 0x1234); } /* test: config set SMBus freq, both valid and invalid */ static int test_mi_config_set_freq_cb(struct nvme_mi_ep *ep, struct nvme_mi_req *req, struct nvme_mi_resp *resp, void *data) { struct nvme_mi_mi_resp_hdr *mi_resp; uint8_t *buf; assert(req->hdr_len == sizeof(struct nvme_mi_mi_req_hdr)); assert(req->data_len == 0); /* validate req as raw bytes */ buf = (void *)req->hdr; assert(buf[4] == nvme_mi_mi_opcode_configuration_set); /* dword 0: port and config id */ assert(buf[11] == 0x5); assert(buf[8] == NVME_MI_CONFIG_SMBUS_FREQ); mi_resp = (void *)resp->hdr; resp->hdr_len = sizeof(*mi_resp); resp->data_len = 0; /* accept 100 & 400, reject others */ switch (buf[9]) { case NVME_MI_CONFIG_SMBUS_FREQ_100kHz: case NVME_MI_CONFIG_SMBUS_FREQ_400kHz: mi_resp->status = 0; break; case NVME_MI_CONFIG_SMBUS_FREQ_1MHz: default: mi_resp->status = 0x4; break; } test_transport_resp_calc_mic(resp); return 0; } static void test_mi_config_set_freq(nvme_mi_ep_t ep) { int rc; test_set_transport_callback(ep, test_mi_config_set_freq_cb, NULL); rc = nvme_mi_mi_config_set_smbus_freq(ep, 5, NVME_MI_CONFIG_SMBUS_FREQ_100kHz); assert(rc == 0); } static void test_mi_config_set_freq_invalid(nvme_mi_ep_t ep) { int rc; test_set_transport_callback(ep, test_mi_config_set_freq_cb, NULL); rc = nvme_mi_mi_config_set_smbus_freq(ep, 5, NVME_MI_CONFIG_SMBUS_FREQ_1MHz); assert(rc == 4); } #define DEFINE_TEST(name) { #name, test_ ## name } struct test { const char *name; void (*fn)(nvme_mi_ep_t); } tests[] = { DEFINE_TEST(endpoint_lifetime), DEFINE_TEST(ctrl_lifetime), DEFINE_TEST(read_mi_data), DEFINE_TEST(transport_fail), DEFINE_TEST(transport_describe), DEFINE_TEST(scan_ctrl_list), DEFINE_TEST(invalid_crc), DEFINE_TEST(admin_id), DEFINE_TEST(admin_err_resp), DEFINE_TEST(admin_invalid_formats), DEFINE_TEST(resp_req), DEFINE_TEST(resp_hdr_small), DEFINE_TEST(resp_invalid_type), DEFINE_TEST(resp_csi), DEFINE_TEST(mi_config_get_mtu), DEFINE_TEST(mi_config_set_freq), DEFINE_TEST(mi_config_set_freq_invalid), }; static void run_test(struct test *test, FILE *logfd, nvme_mi_ep_t ep) { printf("Running test %s...", test->name); fflush(stdout); test->fn(ep); /* tests will assert on failure; if we're here, we're OK */ printf(" OK\n"); test_print_log_buf(logfd); } int main(void) { nvme_root_t root; nvme_mi_ep_t ep; unsigned int i; FILE *fd; fd = test_setup_log(); root = nvme_mi_create_root(fd, DEFAULT_LOGLEVEL); assert(root); ep = nvme_mi_open_test(root); assert(ep); for (i = 0; i < ARRAY_SIZE(tests); i++) { run_test(&tests[i], fd, ep); } nvme_mi_close(ep); nvme_mi_free_root(root); test_close_log(fd); return EXIT_SUCCESS; }