1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
|
// SPDX-License-Identifier: LGPL-2.1-or-later
/**
* This file is part of libnvme.
* Copyright (c) 2022 Code Construct
*/
#undef NDEBUG
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <ccan/array_size/array_size.h>
#include <ccan/endian/endian.h>
#include "libnvme-mi.h"
#include "nvme/private.h"
#include "utils.h"
/* 4096 byte max MCTP message, plus space for header data */
#define MAX_BUFSIZ 8192
struct test_peer;
typedef int (*rx_test_fn)(struct test_peer *peer, void *buf, size_t len);
typedef int (*poll_test_fn)(struct test_peer *peer,
struct pollfd *fds, nfds_t nfds, int timeout);
/* Our fake MCTP "peer".
*
* The terms TX (transmit) and RX (receive) are from the perspective of
* the NVMe device. TX is device-to-libnvme, RX is libnvme-to-device.
*
* The RX and TX buffers are linear versions of the data sent and received by
* libnvme-mi, and *include* the MCTP message type byte (even though it's
* omitted in the sendmsg/recvmsg interface), so that the buffer inspection
* in the tests can exactly match the NVMe-MI spec packet diagrams.
*/
static struct test_peer {
/* rx (sendmsg) data sent from libnvme, and return value */
unsigned char rx_buf[MAX_BUFSIZ];
size_t rx_buf_len;
ssize_t rx_rc; /* if zero, return the sendmsg len */
int rx_errno;
/* tx (recvmsg) data to be received by libnvme and return value */
unsigned char tx_buf[MAX_BUFSIZ];
size_t tx_buf_len;
ssize_t tx_rc; /* if zero, return the recvmsg len */
int tx_errno;
/* Optional, called before TX, may set tx_buf according to request.
* Return value stored in tx_res, may be used by test */
rx_test_fn tx_fn;
void *tx_data;
int tx_fn_res;
poll_test_fn poll_fn;
void *poll_data;
/* store sd from socket() setup */
int sd;
} test_peer;
/* ensure tests start from a standard state */
void reset_test_peer(void)
{
int tmp = test_peer.sd;
memset(&test_peer, 0, sizeof(test_peer));
test_peer.tx_buf[0] = NVME_MI_MSGTYPE_NVME;
test_peer.rx_buf[0] = NVME_MI_MSGTYPE_NVME;
test_peer.sd = tmp;
}
/* calculate MIC of peer-to-libnvme data, expand buf by 4 bytes and insert
* the new MIC */
static void test_set_tx_mic(struct test_peer *peer)
{
extern __u32 nvme_mi_crc32_update(__u32 crc, void *data, size_t len);
__u32 crc = 0xffffffff;
assert(peer->tx_buf_len + sizeof(crc) <= MAX_BUFSIZ);
crc = nvme_mi_crc32_update(crc, peer->tx_buf, peer->tx_buf_len);
*(uint32_t *)(peer->tx_buf + peer->tx_buf_len) = cpu_to_le32(~crc);
peer->tx_buf_len += sizeof(crc);
}
int __wrap_socket(int family, int type, int protocol)
{
/* we do an open here to give the mi-mctp code something to close() */
test_peer.sd = open("/dev/null", 0);
return test_peer.sd;
}
ssize_t __wrap_sendmsg(int sd, const struct msghdr *hdr, int flags)
{
size_t i, pos;
assert(sd == test_peer.sd);
test_peer.rx_buf[0] = NVME_MI_MSGTYPE_NVME;
/* gather iovec into buf */
for (i = 0, pos = 1; i < hdr->msg_iovlen; i++) {
struct iovec *iov = &hdr->msg_iov[i];
assert(pos + iov->iov_len < MAX_BUFSIZ - 1);
memcpy(test_peer.rx_buf + pos, iov->iov_base, iov->iov_len);
pos += iov->iov_len;
}
test_peer.rx_buf_len = pos;
errno = test_peer.rx_errno;
return test_peer.rx_rc ?: (pos - 1);
}
ssize_t __wrap_recvmsg(int sd, struct msghdr *hdr, int flags)
{
size_t i, pos, len;
assert(sd == test_peer.sd);
if (test_peer.tx_fn) {
test_peer.tx_fn_res = test_peer.tx_fn(&test_peer,
test_peer.rx_buf,
test_peer.rx_buf_len);
} else {
/* set up a few default response fields; caller may have
* initialised the rest of the response */
test_peer.tx_buf[0] = NVME_MI_MSGTYPE_NVME;
test_peer.tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
test_set_tx_mic(&test_peer);
}
/* scatter buf into iovec */
for (i = 0, pos = 1; i < hdr->msg_iovlen && pos < test_peer.tx_buf_len;
i++) {
struct iovec *iov = &hdr->msg_iov[i];
len = iov->iov_len;
if (len > test_peer.tx_buf_len - pos)
len = test_peer.tx_buf_len - pos;
memcpy(iov->iov_base, test_peer.tx_buf + pos, len);
pos += len;
}
errno = test_peer.tx_errno;
return test_peer.tx_rc ?: (pos - 1);
}
int __wrap_poll(struct pollfd *fds, nfds_t nfds, int timeout)
{
if (!test_peer.poll_fn)
return 1;
return test_peer.poll_fn(&test_peer, fds, nfds, timeout);
}
struct mctp_ioc_tag_ctl;
#ifdef SIOCMCTPALLOCTAG
int test_ioctl_tag(int sd, unsigned long req, struct mctp_ioc_tag_ctl *ctl)
{
assert(sd == test_peer.sd);
switch (req) {
case SIOCMCTPALLOCTAG:
ctl->tag = 1 | MCTP_TAG_PREALLOC | MCTP_TAG_OWNER;
break;
case SIOCMCTPDROPTAG:
assert(tag == 1 | MCTP_TAG_PREALLOC | MCTP_TAG_OWNER);
break;
};
return 0;
}
#else
int test_ioctl_tag(int sd, unsigned long req, struct mctp_ioc_tag_ctl *ctl)
{
assert(sd == test_peer.sd);
return 0;
}
#endif
static struct __mi_mctp_socket_ops ops = {
__wrap_socket,
__wrap_sendmsg,
__wrap_recvmsg,
__wrap_poll,
test_ioctl_tag,
};
/* tests */
static void test_rx_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->rx_rc = -1;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static int tx_none(struct test_peer *peer, void *buf, size_t len)
{
return 0;
}
static void test_tx_none(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->tx_buf_len = 0;
peer->tx_fn = tx_none;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static void test_tx_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->tx_rc = -1;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static void test_tx_short(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->tx_buf_len = 11;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static int poll_fn_err(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
return -1;
}
static void test_poll_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->poll_fn = poll_fn_err;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static void test_read_mi_data(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
/* empty response data */
peer->tx_buf_len = 8 + 32;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
static void test_mi_resp_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
/* simple error response */
peer->tx_buf[4] = 0x02; /* internal error */
peer->tx_buf_len = 8;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0x2);
}
static void test_admin_resp_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
int rc;
ctrl = nvme_mi_init_ctrl(ep, 1);
assert(ctrl);
/* Simple error response, will be shorter than the expected Admin
* command response header. */
peer->tx_buf[4] = 0x02; /* internal error */
peer->tx_buf_len = 8;
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(rc == 0x2);
}
/* test: all 4-byte aligned response sizes - should be decoded into the
* response status value. We use an admin command here as the header size will
* be larger than the minimum header size (it contains the completion
* doublewords), and we need to ensure that an error response is correctly
* interpreted, including having the MIC extracted from the message.
*/
static void test_admin_resp_sizes(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
unsigned int i;
int rc;
ctrl = nvme_mi_init_ctrl(ep, 1);
assert(ctrl);
peer->tx_buf[4] = 0x02; /* internal error */
for (i = 8; i <= 4096 + 8; i+=4) {
peer->tx_buf_len = i;
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(rc == 2);
}
nvme_mi_close_ctrl(ctrl);
}
/* test: unaligned response sizes - should always report a transport error */
static void test_admin_resp_sizes_unaligned(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
unsigned int i;
int rc;
ctrl = nvme_mi_init_ctrl(ep, 1);
assert(ctrl);
peer->tx_buf[4] = 0x02; /* internal error */
for (i = 8; i <= 4096 + 8; i++) {
peer->tx_buf_len = i;
if (!(i & 0x3))
continue;
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(rc < 0);
}
nvme_mi_close_ctrl(ctrl);
}
/* test: timeout value passed to poll */
static int poll_fn_timeout_value(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
assert(timeout == 3141);
return 1;
}
static void test_poll_timeout_value(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
/* empty response data */
peer->tx_buf_len = 8 + 32;
peer->poll_fn = poll_fn_timeout_value;
nvme_mi_ep_set_timeout(ep, 3141);
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
/* test: poll timeout expiry */
static int poll_fn_timeout(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
return 0;
}
static void test_poll_timeout(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->poll_fn = poll_fn_timeout;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
assert(errno == ETIMEDOUT);
}
/* test: send a More Processing Required response, then the actual response */
struct mpr_tx_info {
int msg_no;
size_t final_len;
};
static int tx_mpr(struct test_peer *peer, void *buf, size_t len)
{
struct mpr_tx_info *tx_info = peer->tx_data;
memset(peer->tx_buf, 0, sizeof(peer->tx_buf));
peer->tx_buf[0] = NVME_MI_MSGTYPE_NVME;
peer->tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
switch (tx_info->msg_no) {
case 1:
peer->tx_buf[4] = NVME_MI_RESP_MPR;
peer->tx_buf_len = 8;
break;
case 2:
peer->tx_buf[4] = NVME_MI_RESP_SUCCESS;
peer->tx_buf_len = tx_info->final_len;
break;
default:
assert(0);
}
test_set_tx_mic(peer);
tx_info->msg_no++;
return 0;
}
static void test_mpr_mi(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_tx_info tx_info;
int rc;
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
peer->tx_fn = tx_mpr;
peer->tx_data = &tx_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
static void test_mpr_admin(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct mpr_tx_info tx_info;
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
int rc;
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_admin_resp_hdr) + sizeof(id);
peer->tx_fn = tx_mpr;
peer->tx_data = &tx_info;
ctrl = nvme_mi_init_ctrl(ep, 1);
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(rc == 0);
nvme_mi_close_ctrl(ctrl);
}
/* helpers for the MPR + poll tests */
struct mpr_poll_info {
int poll_no;
uint16_t mprt;
unsigned int timeouts[2];
};
static int poll_fn_mpr_poll(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
struct mpr_poll_info *info = peer->poll_data;
switch (info->poll_no) {
case 1:
case 2:
assert(timeout == info->timeouts[info->poll_no - 1]);
break;
default:
assert(0);
}
info->poll_no++;
return 1;
}
static int tx_fn_mpr_poll(struct test_peer *peer, void *buf, size_t len)
{
struct mpr_tx_info *tx_info = peer->tx_data;
struct mpr_poll_info *poll_info = peer->poll_data;
unsigned int mprt;
memset(peer->tx_buf, 0, sizeof(peer->tx_buf));
peer->tx_buf[0] = NVME_MI_MSGTYPE_NVME;
peer->tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
switch (tx_info->msg_no) {
case 1:
peer->tx_buf[4] = NVME_MI_RESP_MPR;
peer->tx_buf_len = 8;
mprt = poll_info->mprt;
peer->tx_buf[7] = mprt >> 8;
peer->tx_buf[6] = mprt & 0xff;
break;
case 2:
peer->tx_buf[4] = NVME_MI_RESP_SUCCESS;
peer->tx_buf_len = tx_info->final_len;
break;
default:
assert(0);
}
test_set_tx_mic(peer);
tx_info->msg_no++;
return 0;
}
/* test: correct timeout value used from MPR response */
static void test_mpr_timeouts(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_poll_info poll_info;
struct mpr_tx_info tx_info;
int rc;
nvme_mi_ep_set_timeout(ep, 3141);
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
poll_info.poll_no = 1;
poll_info.mprt = 1234;
poll_info.timeouts[0] = 3141;
poll_info.timeouts[1] = 1234 * 100;
peer->tx_fn = tx_fn_mpr_poll;
peer->tx_data = &tx_info;
peer->poll_fn = poll_fn_mpr_poll;
peer->poll_data = &poll_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
/* test: MPR value is limited to the max mpr */
static void test_mpr_timeout_clamp(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_poll_info poll_info;
struct mpr_tx_info tx_info;
int rc;
nvme_mi_ep_set_timeout(ep, 3141);
nvme_mi_ep_set_mprt_max(ep, 123400);
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
poll_info.poll_no = 1;
poll_info.mprt = 1235;
poll_info.timeouts[0] = 3141;
poll_info.timeouts[1] = 1234 * 100;
peer->tx_fn = tx_fn_mpr_poll;
peer->tx_data = &tx_info;
peer->poll_fn = poll_fn_mpr_poll;
peer->poll_data = &poll_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
/* test: MPR value of zero doesn't result in poll with zero timeout */
static void test_mpr_mprt_zero(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_poll_info poll_info;
struct mpr_tx_info tx_info;
int rc;
nvme_mi_ep_set_timeout(ep, 3141);
nvme_mi_ep_set_mprt_max(ep, 123400);
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
poll_info.poll_no = 1;
poll_info.mprt = 0;
poll_info.timeouts[0] = 3141;
poll_info.timeouts[1] = 3141;
peer->tx_fn = tx_fn_mpr_poll;
peer->tx_data = &tx_info;
peer->poll_fn = poll_fn_mpr_poll;
peer->poll_data = &poll_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
#define DEFINE_TEST(name) { #name, test_ ## name }
struct test {
const char *name;
void (*fn)(nvme_mi_ep_t, struct test_peer *);
} tests[] = {
DEFINE_TEST(rx_err),
DEFINE_TEST(tx_none),
DEFINE_TEST(tx_err),
DEFINE_TEST(tx_short),
DEFINE_TEST(read_mi_data),
DEFINE_TEST(poll_err),
DEFINE_TEST(mi_resp_err),
DEFINE_TEST(admin_resp_err),
DEFINE_TEST(admin_resp_sizes),
DEFINE_TEST(admin_resp_sizes_unaligned),
DEFINE_TEST(poll_timeout_value),
DEFINE_TEST(poll_timeout),
DEFINE_TEST(mpr_mi),
DEFINE_TEST(mpr_admin),
DEFINE_TEST(mpr_timeouts),
DEFINE_TEST(mpr_timeout_clamp),
DEFINE_TEST(mpr_mprt_zero),
};
static void run_test(struct test *test, FILE *logfd, nvme_mi_ep_t ep,
struct test_peer *peer)
{
printf("Running test %s...", test->name);
fflush(stdout);
test->fn(ep, peer);
printf(" OK\n");
test_print_log_buf(logfd);
}
int main(void)
{
nvme_root_t root;
nvme_mi_ep_t ep;
unsigned int i;
FILE *fd;
fd = test_setup_log();
__nvme_mi_mctp_set_ops(&ops);
root = nvme_mi_create_root(fd, DEFAULT_LOGLEVEL);
assert(root);
ep = nvme_mi_open_mctp(root, 0, 0);
assert(ep);
for (i = 0; i < ARRAY_SIZE(tests); i++) {
reset_test_peer();
run_test(&tests[i], fd, ep, &test_peer);
}
nvme_mi_close(ep);
nvme_mi_free_root(root);
test_close_log(fd);
return EXIT_SUCCESS;
}
|