/** * @file printer_tree.c * @author Adam Piecek * @brief RFC tree printer for libyang data structure * * Copyright (c) 2015 - 2021 CESNET, z.s.p.o. * * This source code is licensed under BSD 3-Clause License (the "License"). * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://opensource.org/licenses/BSD-3-Clause * * @section TRP_DESIGN Design * * @code * +---------+ +---------+ +---------+ * output | trp | | trb | | tro | * <---+ Print +<---+ Browse +<-->+ Obtain | * | | | | | | * +---------+ +----+----+ +---------+ * ^ * | * +----+----+ * | trm | * | Manager | * | | * +----+----+ * ^ * | input * + * @endcode * * @subsection TRP_GLOSSARY Glossary * * @subsubsection TRP_trm trm * Manager functions are at the peak of abstraction. They are * able to print individual sections of the YANG tree diagram * (eg module, notifications, rpcs ...) and they call * Browse functions (@ref TRP_trb). * * @subsubsection TRP_trb trb * Browse functions contain a general algorithm (Preorder DFS) * for traversing the tree. It does not matter what data type * the tree contains (@ref lysc_node or @ref lysp_node), because it * requires a ready-made getter functions for traversing the tree * (@ref trt_fp_all) and transformation function to its own node * data type (@ref trt_node). These getter functions are generally * referred to as @ref TRP_tro. Browse functions can repeatedly * traverse nodes in the tree, for example, to calculate the alignment * gap before the nodes \ in the YANG Tree Diagram. * The obtained @ref trt_node is passed to the @ref TRP_trp functions * to print the Tree diagram. * * @subsubsection TRP_tro tro * Functions that provide an extra wrapper for the libyang library. * The Obtain functions are further specialized according to whether * they operate on lysp_tree (@ref TRP_trop) or lysc_tree * (@ref TRP_troc). If they are general algorithms, then they have the * prefix \b tro_. The Obtain functions provide information to * @ref TRP_trb functions for printing the Tree diagram. * * @subsubsection TRP_trop trop * Functions for Obtaining information from Parsed schema tree. * * @subsubsection TRP_troc troc * Functions for Obtaining information from Compiled schema tree. * * @subsubsection TRP_trp trp * Print functions take care of the printing YANG diagram. They can * also split one node into multiple lines if the node does not fit * on one line. * * @subsubsection TRP_trt trt * Data type marking in the printer_tree module. * * @subsubsection TRP_trg trg * General functions. * * @subsection TRP_ADJUSTMENTS Adjustments * It is assumed that the changes are likely to take place mainly for * @ref TRP_tro, @ref TRP_trop or @ref TRP_troc functions because * they are the only ones dependent on libyang implementation. * In special cases, changes will also need to be made to the * @ref TRP_trp functions if a special algorithm is needed to print * (right now this is prepared for printing list's keys * and if-features). */ #include #include #include "compat.h" #include "ly_common.h" #include "out_internal.h" #include "plugins_exts.h" #include "plugins_types.h" #include "printer_internal.h" #include "printer_schema.h" #include "tree_schema_internal.h" #include "xpath.h" /** * @brief List of available actions. */ typedef enum { TRD_PRINT = 0, /**< Normal behavior. It just prints. */ TRD_CHAR_COUNT /**< Characters will be counted instead of printing. */ } trt_ly_out_clb_arg_flag; /** * @brief Structure is passed as 'writeclb' argument * to the ::ly_out_new_clb(). */ struct ly_out_clb_arg { trt_ly_out_clb_arg_flag mode; /**< flag specifying which action to take. */ struct ly_out *out; /**< The ly_out pointer delivered to the printer tree module via the main interface. */ size_t counter; /**< Counter of printed characters. */ LY_ERR last_error; /**< The last error that occurred. If no error has occurred, it will be ::LY_SUCCESS. */ }; /** * @brief Initialize struct ly_out_clb_arg with default settings. */ #define TRP_INIT_LY_OUT_CLB_ARG(MODE, OUT, COUNTER, LAST_ERROR) \ (struct ly_out_clb_arg) { \ .mode = MODE, .out = OUT, \ .counter = COUNTER, .last_error = LAST_ERROR \ } /********************************************************************** * Print getters *********************************************************************/ /** * @brief Callback functions that prints special cases. * * It just groups together tree context with trt_fp_print. */ struct trt_cf_print { const struct trt_tree_ctx *ctx; /**< Context of libyang tree. */ void (*pf)(const struct trt_tree_ctx *, struct ly_out *); /**< Pointing to function which printing list's keys or features. */ }; /** * @brief Callback functions for printing special cases. * * Functions with the suffix 'trp' can print most of the text on * output, just by setting the pointer to the string. But in some * cases, it's not that simple, because its entire string is fragmented * in memory. For example, for printing list's keys or if-features. * However, this depends on how the libyang library is implemented. * This implementation of the printer_tree module goes through * a lysp tree, but if it goes through a lysc tree, these special cases * would be different. * Functions must print including spaces or delimiters between names. */ struct trt_fp_print { void (*print_features_names)(const struct trt_tree_ctx *, struct ly_out *); /**< Print list of features without {}? wrapper. */ void (*print_keys)(const struct trt_tree_ctx *, struct ly_out *); /**< Print list's keys without [] wrapper. */ }; /** * @brief Package which only groups getter function. */ struct trt_pck_print { const struct trt_tree_ctx *tree_ctx; /**< Context of libyang tree. */ struct trt_fp_print fps; /**< Print function. */ }; /** * @brief Initialize struct trt_pck_print by parameters. */ #define TRP_INIT_PCK_PRINT(TREE_CTX, FP_PRINT) \ (struct trt_pck_print) {.tree_ctx = TREE_CTX, .fps = FP_PRINT} /********************************************************************** * Indent *********************************************************************/ /** * @brief Constants which are defined in the RFC or are observable * from the pyang tool. */ typedef enum { TRD_INDENT_EMPTY = 0, /**< If the node is a case node, there is no space before the \. */ TRD_INDENT_LONG_LINE_BREAK = 2, /**< The new line should be indented so that it starts below \ with a whitespace offset of at least two characters. */ TRD_INDENT_LINE_BEGIN = 2, /**< Indent below the keyword (module, augment ...). */ TRD_INDENT_BTW_SIBLINGS = 2, /**< Indent between | and | characters. */ TRD_INDENT_BEFORE_KEYS = 1, /**< "..."___\. */ TRD_INDENT_BEFORE_TYPE = 4, /**< "..."___\, but if mark is set then indent == 3. */ TRD_INDENT_BEFORE_IFFEATURES = 1 /**< "..."___\. */ } trt_cnf_indent; /** * @brief Type of indent in node. */ typedef enum { TRD_INDENT_IN_NODE_NORMAL = 0, /**< Node fits on one line. */ TRD_INDENT_IN_NODE_DIVIDED, /**< The node must be split into multiple rows. */ TRD_INDENT_IN_NODE_FAILED /**< Cannot be crammed into one line. The condition for the maximum line length is violated. */ } trt_indent_in_node_type; /** Constant to indicate the need to break a line. */ #define TRD_LINEBREAK -1 /** * @brief Records the alignment between the individual * elements of the node. * * @see trp_default_indent_in_node, trp_try_normal_indent_in_node */ struct trt_indent_in_node { trt_indent_in_node_type type; /**< Type of indent in node. */ int16_t btw_name_opts; /**< Indent between node name and \. */ int16_t btw_opts_type; /**< Indent between \ and \. */ int16_t btw_type_iffeatures; /**< Indent between type and features. Ignored if \ missing. */ }; /** * @brief Type of wrappers to be printed. */ typedef enum { TRD_WRAPPER_TOP = 0, /**< Related to the module. */ TRD_WRAPPER_BODY /**< Related to e.g. Augmentations or Groupings */ } trd_wrapper_type; /** * @brief For resolving sibling symbol ('|') placement. * * Bit indicates where the sibling symbol must be printed. * This place is in multiples of ::TRD_INDENT_BTW_SIBLINGS. * * @see TRP_INIT_WRAPPER_TOP, TRP_INIT_WRAPPER_BODY, * trp_wrapper_set_mark, trp_wrapper_set_shift, * trp_wrapper_if_last_sibling, trp_wrapper_eq, trp_print_wrapper */ struct trt_wrapper { trd_wrapper_type type; /**< Location of the wrapper. */ uint64_t bit_marks1; /**< The set bits indicate where the '|' character is to be printed. It follows that the maximum immersion of the printable node is 64. */ uint32_t actual_pos; /**< Actual position in bit_marks. */ }; /** * @brief Get wrapper related to the module section. * * @code * module: * +-- * | * @endcode */ #define TRP_INIT_WRAPPER_TOP \ (struct trt_wrapper) { \ .type = TRD_WRAPPER_TOP, .actual_pos = 0, .bit_marks1 = 0 \ } /** * @brief Get wrapper related to subsection * e.g. Augmenations or Groupings. * * @code * module: * +-- * * augment : * +-- * @endcode */ #define TRP_INIT_WRAPPER_BODY \ (struct trt_wrapper) { \ .type = TRD_WRAPPER_BODY, .actual_pos = 0, .bit_marks1 = 0 \ } /** * @brief Package which only groups wrapper and indent in node. */ struct trt_pck_indent { struct trt_wrapper wrapper; /**< Coded " | | " sequence. */ struct trt_indent_in_node in_node; /**< Indent in node. */ }; /** * @brief Initialize struct trt_pck_indent by parameters. */ #define TRP_INIT_PCK_INDENT(WRAPPER, INDENT_IN_NODE) \ (struct trt_pck_indent){ \ .wrapper = WRAPPER, .in_node = INDENT_IN_NODE \ } /********************************************************************** * flags *********************************************************************/ #define TRD_FLAGS_TYPE_EMPTY "--" #define TRD_FLAGS_TYPE_RW "rw" #define TRD_FLAGS_TYPE_RO "ro" #define TRD_FLAGS_TYPE_RPC_INPUT_PARAMS "-w" #define TRD_FLAGS_TYPE_USES_OF_GROUPING "-u" #define TRD_FLAGS_TYPE_RPC "-x" #define TRD_FLAGS_TYPE_NOTIF "-n" #define TRD_FLAGS_TYPE_MOUNT_POINT "mp" /********************************************************************** * node_name and opts *********************************************************************/ #define TRD_NODE_NAME_PREFIX_CHOICE "(" #define TRD_NODE_NAME_PREFIX_CASE ":(" #define TRD_NODE_NAME_TRIPLE_DOT "..." /** * @brief Type of the node. * * Used mainly to complete the correct \ next to or * around the \. */ typedef enum { TRD_NODE_ELSE = 0, /**< For some node which does not require special treatment. \ */ TRD_NODE_CASE, /**< For case node. :(\) */ TRD_NODE_CHOICE, /**< For choice node. (\) */ TRD_NODE_TRIPLE_DOT /**< For collapsed sibling nodes and their children. Special case which doesn't belong here very well. */ } trt_node_type; #define TRD_NODE_OPTIONAL "?" /**< For an optional leaf, anydata, or anyxml. \? */ #define TRD_NODE_CONTAINER "!" /**< For a presence container. \! */ #define TRD_NODE_LISTLEAFLIST "*" /**< For a leaf-list or list. \* */ /** * @brief Type of node and his name. * * @see TRP_EMPTY_NODE_NAME, TRP_NODE_NAME_IS_EMPTY, * trp_print_node_name, trp_mark_is_used, trp_print_opts_keys */ struct trt_node_name { trt_node_type type; /**< Type of the node relevant for printing. */ ly_bool keys; /**< Set to 1 if [\] are to be printed. Valid for some types only. */ const char *module_prefix; /**< If the node is augmented into the tree from another module, so this is the prefix of that module. */ const char *str; /**< Name of the node. */ const char *add_opts; /**< Additional opts symbol from plugin. */ const char *opts; /**< The \ symbol. */ }; /** * @brief Create struct trt_node_name as empty. */ #define TRP_EMPTY_NODE_NAME \ (struct trt_node_name) { \ .type = TRD_NODE_ELSE, .keys = 0, .module_prefix = NULL, .str = NULL, .opts = NULL, .add_opts = NULL \ } /** * @brief Check if struct trt_node_name is empty. */ #define TRP_NODE_NAME_IS_EMPTY(NODE_NAME) \ !NODE_NAME.str /********************************************************************** * type *********************************************************************/ /** * @brief Type of the \ */ typedef enum { TRD_TYPE_NAME = 0, /**< Type is just a name that does not require special treatment. */ TRD_TYPE_TARGET, /**< Should have a form "-> TARGET", where TARGET is the leafref path. */ TRD_TYPE_LEAFREF, /**< This type is set automatically by the 'trp' algorithm. So set type as ::TRD_TYPE_TARGET. */ TRD_TYPE_EMPTY /**< Type is not used at all. */ } trt_type_type; /** * @brief \ in the \. * * @see TRP_EMPTY_TRT_TYPE, TRP_TRT_TYPE_IS_EMPTY, trp_print_type */ struct trt_type { trt_type_type type; /**< Type of the \. */ const char *str; /**< Path or name of the type. */ }; /** * @brief Create empty struct trt_type. */ #define TRP_EMPTY_TRT_TYPE \ (struct trt_type) {.type = TRD_TYPE_EMPTY, .str = NULL} /** * @brief Check if struct trt_type is empty. */ #define TRP_TRT_TYPE_IS_EMPTY(TYPE_OF_TYPE) \ TYPE_OF_TYPE.type == TRD_TYPE_EMPTY /** * @brief Initialize struct trt_type by parameters. */ #define TRP_INIT_TRT_TYPE(TYPE_OF_TYPE, STRING) \ (struct trt_type) {.type = TYPE_OF_TYPE, .str = STRING} /** * @brief If-feature type. */ typedef enum { TRD_IFF_NON_PRESENT = 0, /**< iffeatures are not present. */ TRD_IFF_PRESENT, /**< iffeatures are present and will be printed by trt_fp_print.print_features_names callback */ TRD_IFF_OVERR /**< iffeatures are override by plugin */ } trt_iffeatures_type; /** * @brief \. */ struct trt_iffeatures { trt_iffeatures_type type; /**< Type of iffeature. */ char *str; /**< iffeatures string ready to print. Set if TRD_IFF_OVERR is set. */ }; /** * @brief Create empty iffeatures. */ #define TRP_EMPTY_TRT_IFFEATURES \ (struct trt_iffeatures) {.type = TRD_IFF_NON_PRESENT} /** * @brief Check if iffeatures is empty. * * @param[in] IFF_TYPE value from trt_iffeatures.type. * @return 1 if is empty. */ #define TRP_EMPTY_TRT_IFFEATURES_IS_EMPTY(IFF_TYPE) \ (IFF_TYPE == TRD_IFF_NON_PRESENT) /********************************************************************** * node *********************************************************************/ /** * @brief \ data for printing. * * It contains RFC's: * \--\ \\ \ \. * Item \ is moved to part struct trt_node_name. * For printing [\] and if-features is required special * functions which prints them. * * @see TRP_EMPTY_NODE, trp_node_is_empty, trp_node_body_is_empty, * trp_print_node_up_to_name, trp_print_divided_node_up_to_name, * trp_print_node */ struct trt_node { const char *status; /**< \. */ const char *flags; /**< \. */ struct trt_node_name name; /**< \ with \ mark or [\]. */ struct trt_type type; /**< \ contains the name of the type or type for leafref. */ struct trt_iffeatures iffeatures; /**< \. */ ly_bool last_one; /**< Information about whether the node is the last. */ }; /** * @brief Create struct trt_node as empty. */ #define TRP_EMPTY_NODE \ (struct trt_node) { \ .status = NULL, \ .flags = NULL, \ .name = TRP_EMPTY_NODE_NAME, \ .type = TRP_EMPTY_TRT_TYPE, \ .iffeatures = TRP_EMPTY_TRT_IFFEATURES, \ .last_one = 1 \ } /** * @brief Package which only groups indent and node. */ struct trt_pair_indent_node { struct trt_indent_in_node indent; struct trt_node node; }; /** * @brief Initialize struct trt_pair_indent_node by parameters. */ #define TRP_INIT_PAIR_INDENT_NODE(INDENT_IN_NODE, NODE) \ (struct trt_pair_indent_node) { \ .indent = INDENT_IN_NODE, .node = NODE \ } /********************************************************************** * statement *********************************************************************/ #define TRD_KEYWORD_MODULE "module" #define TRD_KEYWORD_SUBMODULE "submodule" #define TRD_KEYWORD_AUGMENT "augment" #define TRD_KEYWORD_RPC "rpcs" #define TRD_KEYWORD_NOTIF "notifications" #define TRD_KEYWORD_GROUPING "grouping" /** * @brief Main sign of the tree nodes. * * @see TRP_EMPTY_KEYWORD_STMT, TRP_KEYWORD_STMT_IS_EMPTY * trt_print_keyword_stmt_begin, trt_print_keyword_stmt_str, * trt_print_keyword_stmt_end, trp_print_keyword_stmt */ struct trt_keyword_stmt { const char *section_name; /**< String containing section name. */ const char *argument; /**< Name or path located begind section name. */ ly_bool has_node; /**< Flag if section has any nodes. */ }; /** * @brief Create struct trt_keyword_stmt as empty. */ #define TRP_EMPTY_KEYWORD_STMT \ (struct trt_keyword_stmt) {.section_name = NULL, .argument = NULL, .has_node = 0} /********************************************************************** * Modify getters *********************************************************************/ struct trt_parent_cache; /** * @brief Functions that change the state of the tree_ctx structure. * * The 'trop' or 'troc' functions are set here, which provide data * for the 'trp' printing functions and are also called from the * 'trb' browsing functions when walking through a tree. These callback * functions need to be checked or reformulated if changes to the * libyang library affect the printing tree. For all, if the value * cannot be returned, its empty version obtained by relevant TRP_EMPTY * macro is returned. */ struct trt_fp_modify_ctx { ly_bool (*parent)(struct trt_tree_ctx *); /**< Jump to parent node. Return true if parent exists. */ struct trt_node (*first_sibling)(struct trt_parent_cache, struct trt_tree_ctx *); /**< Jump on the first of the siblings. */ struct trt_node (*next_sibling)(struct trt_parent_cache, struct trt_tree_ctx *); /**< Jump to next sibling of the current node. */ struct trt_node (*next_child)(struct trt_parent_cache, struct trt_tree_ctx *); /**< Jump to the child of the current node. */ }; /** * @brief Create modify functions for compiled tree. */ #define TRP_TRT_FP_MODIFY_COMPILED \ (struct trt_fp_modify_ctx) { \ .parent = troc_modi_parent, \ .first_sibling = troc_modi_first_sibling, \ .next_sibling = troc_modi_next_sibling, \ .next_child = troc_modi_next_child, \ } /** * @brief Create modify functions for parsed tree. */ #define TRP_TRT_FP_MODIFY_PARSED \ (struct trt_fp_modify_ctx) { \ .parent = trop_modi_parent, \ .first_sibling = trop_modi_first_sibling, \ .next_sibling = trop_modi_next_sibling, \ .next_child = trop_modi_next_child, \ } /********************************************************************** * Read getters *********************************************************************/ /** * @brief Functions that do not change the state of the tree_structure. * * For details see trt_fp_modify_ctx. */ struct trt_fp_read { struct trt_keyword_stmt (*module_name)(const struct trt_tree_ctx *); /**< Get name of the module. */ struct trt_node (*node)(struct trt_parent_cache, struct trt_tree_ctx *); /**< Get current node. */ ly_bool (*if_sibling_exists)(const struct trt_tree_ctx *); /**< Check if node's sibling exists. */ ly_bool (*if_parent_exists)(const struct trt_tree_ctx *); /**< Check if node's parent exists. */ }; /** * @brief Create read functions for compiled tree. */ #define TRP_TRT_FP_READ_COMPILED \ (struct trt_fp_read) { \ .module_name = tro_read_module_name, \ .node = troc_read_node, \ .if_sibling_exists = troc_read_if_sibling_exists, \ .if_parent_exists = tro_read_if_sibling_exists \ } /** * @brief Create read functions for parsed tree. */ #define TRP_TRT_FP_READ_PARSED \ (struct trt_fp_read) { \ .module_name = tro_read_module_name, \ .node = trop_read_node, \ .if_sibling_exists = trop_read_if_sibling_exists, \ .if_parent_exists = tro_read_if_sibling_exists \ } /********************************************************************** * All getters *********************************************************************/ /** * @brief A set of all necessary functions that must be provided * for the printer. */ struct trt_fp_all { struct trt_fp_modify_ctx modify; /**< Function pointers which modify state of trt_tree_ctx. */ struct trt_fp_read read; /**< Function pointers which only reads state of trt_tree_ctx. */ struct trt_fp_print print; /**< Functions pointers for printing special items in node. */ }; /********************************************************************** * Printer context *********************************************************************/ /** * @brief Main structure for @ref TRP_trp part. */ struct trt_printer_ctx { struct ly_out *out; /**< Handler to printing. */ struct trt_fp_all fp; /**< @ref TRP_tro functions callbacks. */ size_t max_line_length; /**< The maximum number of characters that can be printed on one line, including the last. */ }; /********************************************************************** * Tro functions *********************************************************************/ /** * @brief The name of the section to which the node belongs. */ typedef enum { TRD_SECT_MODULE = 0, /**< The node belongs to the "module: :" label. */ TRD_SECT_AUGMENT, /**< The node belongs to some "augment :" label. */ TRD_SECT_RPCS, /**< The node belongs to the "rpcs:" label. */ TRD_SECT_NOTIF, /**< The node belongs to the "notifications:" label. */ TRD_SECT_GROUPING, /**< The node belongs to some "grouping :" label. */ TRD_SECT_PLUG_DATA /**< The node belongs to some plugin section. */ } trt_actual_section; /** * @brief Types of nodes that have some effect on their children. */ typedef enum { TRD_ANCESTOR_ELSE = 0, /**< Everything not listed. */ TRD_ANCESTOR_RPC_INPUT, /**< ::LYS_INPUT */ TRD_ANCESTOR_RPC_OUTPUT, /**< ::LYS_OUTPUT */ TRD_ANCESTOR_NOTIF /**< ::LYS_NOTIF */ } trt_ancestor_type; /** * @brief Saved information when browsing the tree downwards. * * This structure helps prevent frequent retrieval of information * from the tree. Functions @ref TRP_trb are designed to preserve * this structures during their recursive calls. This functions do not * interfere in any way with this data. This structure * is used by @ref TRP_trop functions which, thanks to this * structure, can return a node with the correct data. The word * \b parent is in the structure name, because this data refers to * the last parent and at the same time the states of its * ancestors data. Only the function jumping on the child * (next_child(...)) creates this structure, because the pointer * to the current node moves down the tree. It's like passing * the genetic code to children. Some data must be inherited and * there are two approaches to this problem. Either it will always * be determined which inheritance states belong to the current node * (which can lead to regular travel to the root node) or * the inheritance states will be stored during the recursive calls. * So the problem was solved by the second option. Why does * the structure contain this data? Because it walks through * the lysp tree. For walks through the lysc tree is trt_parent_cache * useless. * * @see TRO_EMPTY_PARENT_CACHE, tro_parent_cache_for_child */ struct trt_parent_cache { trt_ancestor_type ancestor; /**< Some types of nodes have a special effect on their children. */ uint16_t lys_status; /**< Inherited status CURR, DEPRC, OBSLT. */ uint16_t lys_config; /**< Inherited config W or R. */ const struct lysp_node_list *last_list; /**< The last ::LYS_LIST passed. */ }; /** * @brief Return trt_parent_cache filled with default values. */ #define TRP_EMPTY_PARENT_CACHE \ (struct trt_parent_cache) { \ .ancestor = TRD_ANCESTOR_ELSE, .lys_status = LYS_STATUS_CURR, \ .lys_config = LYS_CONFIG_W, .last_list = NULL \ } /** * @brief Node override from plugin. */ struct lyplg_ext_sprinter_tree_node_override { const char *flags; /**< Override for \. */ const char *add_opts; /**< Additional symbols for \. */ }; /** * @brief Context for plugin extension. */ struct trt_plugin_ctx { struct lyspr_tree_ctx *ctx; /**< Pointer to main context. */ struct lyspr_tree_schema *schema; /**< Current schema to print. */ ly_bool filtered; /**< Flag if current node is filtered. */ struct lyplg_ext_sprinter_tree_node_override node_overr; /**< Current node override. */ ly_bool last_schema; /**< Flag if schema is last. */ ly_bool last_error; /**< Last error from plugin. */ }; /** * @brief Main structure for browsing the libyang tree */ struct trt_tree_ctx { ly_bool lysc_tree; /**< The lysc nodes are used for browsing through the tree. It is assumed that once set, it does not change. If it is true then trt_tree_ctx.pn and trt_tree_ctx.tpn are not used. If it is false then trt_tree_ctx.cn is not used. */ trt_actual_section section; /**< To which section pn points. */ const struct lysp_module *pmod; /**< Parsed YANG schema tree. */ const struct lysc_module *cmod; /**< Compiled YANG schema tree. */ const struct lysp_node *pn; /**< Actual pointer to parsed node. */ const struct lysp_node *tpn; /**< Pointer to actual top-node. */ const struct lysc_node *cn; /**< Actual pointer to compiled node. */ LY_ERR last_error; /**< Error value during printing. */ struct trt_plugin_ctx plugin_ctx; /**< Context for plugin. */ }; /** * @brief Create empty node override. */ #define TRP_TREE_CTX_EMPTY_NODE_OVERR \ (struct lyplg_ext_sprinter_tree_node_override) { \ .flags = NULL, \ .add_opts = NULL, \ } /** * @brief Check if lysp node is available from * the current compiled node. * * Use only if trt_tree_ctx.lysc_tree is set to true. */ #define TRP_TREE_CTX_LYSP_NODE_PRESENT(CN) \ (CN->priv) /** * @brief Get lysp_node from trt_tree_ctx.cn. * * Use only if :TRP_TREE_CTX_LYSP_NODE_PRESENT returns true * for that node. */ #define TRP_TREE_CTX_GET_LYSP_NODE(CN) \ ((const struct lysp_node *)CN->priv) /** Getter function for ::trop_node_charptr(). */ typedef const char *(*trt_get_charptr_func)(const struct lysp_node *pn); /** * @brief Simple getter functions for lysp and lysc nodes. * * This structure is useful if we have a general algorithm * (tro function) that can be used for both lysc and lysp nodes. * Thanks to this structure, we prevent code redundancy. * We don't have to write basically the same algorithm twice * for lysp and lysc trees. */ struct tro_getters { uint16_t (*nodetype)(const void *); /**< Get nodetype. */ const void *(*next)(const void *); /**< Get sibling. */ const void *(*parent)(const void *); /**< Get parent. */ const void *(*child)(const void *); /**< Get child. */ const void *(*actions)(const void *); /**< Get actions. */ const void *(*action_input)(const void *); /**< Get input action from action node. */ const void *(*action_output)(const void *); /**< Get output action from action node. */ const void *(*notifs)(const void *); /**< Get notifs. */ }; /********************************************************************** * Definition of the general Trg functions *********************************************************************/ /** * @brief Print a substring but limited to the maximum length. * @param[in] str is pointer to source. * @param[in] len is number of characters to be printed. * @param[in,out] out is output handler. * @return str parameter shifted by len. */ static const char * trg_print_substr(const char *str, size_t len, struct ly_out *out) { for (size_t i = 0; i < len; i++) { ly_print_(out, "%c", str[0]); str++; } return str; } /** * @brief Pointer is not NULL and does not point to an empty string. * @param[in] str is pointer to string to be checked. * @return 1 if str pointing to non empty string otherwise 0. */ static ly_bool trg_charptr_has_data(const char *str) { return (str) && (str[0] != '\0'); } /** * @brief Check if @p word in @p src is present where words are * delimited by @p delim. * @param[in] src is source where words are separated by @p delim. * @param[in] word to be searched. * @param[in] delim is delimiter between @p words in @p src. * @return 1 if src contains @p word otherwise 0. */ static ly_bool trg_word_is_present(const char *src, const char *word, char delim) { const char *hit; if ((!src) || (src[0] == '\0') || (!word)) { return 0; } hit = strstr(src, word); if (hit) { /* word was founded at the begin of src * OR it match somewhere after delim */ if ((hit == src) || (hit[-1] == delim)) { /* end of word was founded at the end of src * OR end of word was match somewhere before delim */ char delim_or_end = (hit + strlen(word))[0]; if ((delim_or_end == '\0') || (delim_or_end == delim)) { return 1; } } /* after -> hit is just substr and it's not the whole word */ /* jump to the next word */ for ( ; (src[0] != '\0') && (src[0] != delim); src++) {} /* skip delim */ src = src[0] == '\0' ? src : src + 1; /* continue with searching */ return trg_word_is_present(src, word, delim); } else { return 0; } } /********************************************************************** * Definition of printer functions *********************************************************************/ /** * @brief Write callback for ::ly_out_new_clb(). * * @param[in] user_data is type of struct ly_out_clb_arg. * @param[in] buf contains input characters * @param[in] count is number of characters in buf. * @return Number of printed bytes. * @return Negative value in case of error. */ static ssize_t trp_ly_out_clb_func(void *user_data, const void *buf, size_t count) { LY_ERR erc = LY_SUCCESS; struct ly_out_clb_arg *data = (struct ly_out_clb_arg *)user_data; switch (data->mode) { case TRD_PRINT: erc = ly_write_(data->out, buf, count); break; case TRD_CHAR_COUNT: data->counter = data->counter + count; break; default: break; } if (erc != LY_SUCCESS) { data->last_error = erc; return -1; } else { return count; } } /** * @brief Check that indent in node can be considered as equivalent. * @param[in] first is the first indent in node. * @param[in] second is the second indent in node. * @return 1 if indents are equivalent otherwise 0. */ static ly_bool trp_indent_in_node_are_eq(struct trt_indent_in_node first, struct trt_indent_in_node second) { const ly_bool a = first.type == second.type; const ly_bool b = first.btw_name_opts == second.btw_name_opts; const ly_bool c = first.btw_opts_type == second.btw_opts_type; const ly_bool d = first.btw_type_iffeatures == second.btw_type_iffeatures; return a && b && c && d; } /** * @brief Setting space character because node is last sibling. * @param[in] wr is wrapper over which the shift operation * is to be performed. * @return New shifted wrapper. */ static struct trt_wrapper trp_wrapper_set_shift(struct trt_wrapper wr) { assert(wr.actual_pos < 64); /* +-- * +-- */ wr.actual_pos++; return wr; } /** * @brief Setting '|' symbol because node is divided or * it is not last sibling. * @param[in] wr is source of wrapper. * @return New wrapper which is marked at actual position and shifted. */ static struct trt_wrapper trp_wrapper_set_mark(struct trt_wrapper wr) { assert(wr.actual_pos < 64); wr.bit_marks1 |= 1U << wr.actual_pos; return trp_wrapper_set_shift(wr); } /** * @brief Setting ' ' symbol if node is last sibling otherwise set '|'. * @param[in] wr is actual wrapper. * @param[in] last_one is flag. Value 1 saying if the node is the last * and has no more siblings. * @return New wrapper for the actual node. */ static struct trt_wrapper trp_wrapper_if_last_sibling(struct trt_wrapper wr, ly_bool last_one) { return last_one ? trp_wrapper_set_shift(wr) : trp_wrapper_set_mark(wr); } /** * @brief Test if the wrappers are equivalent. * @param[in] first is the first wrapper. * @param[in] second is the second wrapper. * @return 1 if the wrappers are equivalent otherwise 0. */ static ly_bool trp_wrapper_eq(struct trt_wrapper first, struct trt_wrapper second) { const ly_bool a = first.type == second.type; const ly_bool b = first.bit_marks1 == second.bit_marks1; const ly_bool c = first.actual_pos == second.actual_pos; return a && b && c; } /** * @brief Print " | " sequence on line. * @param[in] wr is wrapper to be printed. * @param[in,out] out is output handler. */ static void trp_print_wrapper(struct trt_wrapper wr, struct ly_out *out) { uint32_t lb; if (wr.type == TRD_WRAPPER_TOP) { lb = TRD_INDENT_LINE_BEGIN; } else if (wr.type == TRD_WRAPPER_BODY) { lb = TRD_INDENT_LINE_BEGIN * 2; } else { lb = TRD_INDENT_LINE_BEGIN; } ly_print_(out, "%*c", lb, ' '); if (trp_wrapper_eq(wr, TRP_INIT_WRAPPER_TOP)) { return; } for (uint32_t i = 0; i < wr.actual_pos; i++) { /** Test if the bit on the index is set. */ if ((wr.bit_marks1 >> i) & 1U) { ly_print_(out, "|"); } else { ly_print_(out, " "); } if (i != wr.actual_pos) { ly_print_(out, "%*c", TRD_INDENT_BTW_SIBLINGS, ' '); } } } /** * @brief Check if struct trt_node is empty. * @param[in] node is item to test. * @return 1 if node is considered empty otherwise 0. */ static ly_bool trp_node_is_empty(const struct trt_node *node) { const ly_bool a = TRP_EMPTY_TRT_IFFEATURES_IS_EMPTY(node->iffeatures.type); const ly_bool b = TRP_TRT_TYPE_IS_EMPTY(node->type); const ly_bool c = TRP_NODE_NAME_IS_EMPTY(node->name); const ly_bool d = node->flags == NULL; const ly_bool e = node->status == NULL; return a && b && c && d && e; } /** * @brief Check if [\], \ and * \ are empty/not_set. * @param[in] node is item to test. * @return 1 if node has no \ \ or \ * otherwise 0. */ static ly_bool trp_node_body_is_empty(const struct trt_node *node) { const ly_bool a = TRP_EMPTY_TRT_IFFEATURES_IS_EMPTY(node->iffeatures.type); const ly_bool b = TRP_TRT_TYPE_IS_EMPTY(node->type); const ly_bool c = !node->name.keys; return a && b && c; } /** * @brief Print entire struct trt_node_name structure. * @param[in] node_name is item to print. * @param[in,out] out is output handler. */ static void trp_print_node_name(struct trt_node_name node_name, struct ly_out *out) { const char *mod_prefix; const char *colon; const char trd_node_name_suffix_choice[] = ")"; const char trd_node_name_suffix_case[] = ")"; if (TRP_NODE_NAME_IS_EMPTY(node_name)) { return; } if (node_name.module_prefix) { mod_prefix = node_name.module_prefix; colon = ":"; } else { mod_prefix = ""; colon = ""; } switch (node_name.type) { case TRD_NODE_ELSE: ly_print_(out, "%s%s%s", mod_prefix, colon, node_name.str); break; case TRD_NODE_CASE: ly_print_(out, "%s%s%s%s%s", TRD_NODE_NAME_PREFIX_CASE, mod_prefix, colon, node_name.str, trd_node_name_suffix_case); break; case TRD_NODE_CHOICE: ly_print_(out, "%s%s%s%s%s", TRD_NODE_NAME_PREFIX_CHOICE, mod_prefix, colon, node_name.str, trd_node_name_suffix_choice); break; case TRD_NODE_TRIPLE_DOT: ly_print_(out, "%s", TRD_NODE_NAME_TRIPLE_DOT); break; default: break; } if (node_name.add_opts) { ly_print_(out, "%s", node_name.add_opts); } if (node_name.opts) { ly_print_(out, "%s", node_name.opts); } } /** * @brief Check if mark (?, !, *, /, @) is implicitly contained in * struct trt_node_name. * @param[in] node_name is structure containing the 'mark'. * @return 1 if contain otherwise 0. */ static ly_bool trp_mark_is_used(struct trt_node_name node_name) { if (TRP_NODE_NAME_IS_EMPTY(node_name)) { return 0; } else if (node_name.keys) { return 0; } switch (node_name.type) { case TRD_NODE_ELSE: case TRD_NODE_CASE: return 0; default: if (node_name.add_opts || node_name.opts) { return 1; } else { return 0; } } } /** * @brief Print opts keys. * @param[in] node_name contains type of the node with his name. * @param[in] btw_name_opts is number of spaces between name and [keys]. * @param[in] cf is basically a pointer to the function that prints * the keys. * @param[in,out] out is output handler. */ static void trp_print_opts_keys(struct trt_node_name node_name, int16_t btw_name_opts, struct trt_cf_print cf, struct ly_out *out) { if (!node_name.keys) { return; } /* ___*/ if (btw_name_opts > 0) { ly_print_(out, "%*c", btw_name_opts, ' '); } ly_print_(out, "["); cf.pf(cf.ctx, out); ly_print_(out, "]"); } /** * @brief Print entire struct trt_type structure. * @param[in] type is item to print. * @param[in,out] out is output handler. */ static void trp_print_type(struct trt_type type, struct ly_out *out) { if (TRP_TRT_TYPE_IS_EMPTY(type)) { return; } switch (type.type) { case TRD_TYPE_NAME: ly_print_(out, "%s", type.str); break; case TRD_TYPE_TARGET: ly_print_(out, "-> %s", type.str); break; case TRD_TYPE_LEAFREF: ly_print_(out, "leafref"); default: break; } } /** * @brief Print all iffeatures of node * * @param[in] iff is iffeatures to print. * @param[in] cf is basically a pointer to the function that prints the list of features. * @param[in,out] out is output handler. */ static void trp_print_iffeatures(struct trt_iffeatures iff, struct trt_cf_print cf, struct ly_out *out) { if (iff.type == TRD_IFF_PRESENT) { ly_print_(out, "{"); cf.pf(cf.ctx, out); ly_print_(out, "}?"); } else if (iff.type == TRD_IFF_OVERR) { ly_print_(out, "%s", iff.str); } } /** * @brief Print just \--\ \ with opts mark. * @param[in] node contains items to print. * @param[in] out is output handler. */ static void trp_print_node_up_to_name(const struct trt_node *node, struct ly_out *out) { if (node->name.type == TRD_NODE_TRIPLE_DOT) { trp_print_node_name(node->name, out); return; } /* -- */ ly_print_(out, "%s", node->status); ly_print_(out, "--"); /* If the node is a case node, there is no space before the * also case node has no flags. */ if (node->flags && (node->name.type != TRD_NODE_CASE)) { ly_print_(out, "%s", node->flags); ly_print_(out, " "); } /* */ trp_print_node_name(node->name, out); } /** * @brief Print alignment (spaces) instead of * \--\ \ for divided node. * @param[in] node contains items to print. * @param[in] out is output handler. */ static void trp_print_divided_node_up_to_name(const struct trt_node *node, struct ly_out *out) { uint32_t space = strlen(node->flags); if (node->name.type == TRD_NODE_CASE) { /* :( */ space += strlen(TRD_NODE_NAME_PREFIX_CASE); } else if (node->name.type == TRD_NODE_CHOICE) { /* ( */ space += strlen(TRD_NODE_NAME_PREFIX_CHOICE); } else { /* _ */ space += strlen(" "); } /* * __ */ space += TRD_INDENT_LONG_LINE_BREAK; ly_print_(out, "%*c", space, ' '); } /** * @brief Print struct trt_node structure. * @param[in] node is item to print. * @param[in] pck package of functions for * printing [\] and \. * @param[in] indent is the indent in node. * @param[in,out] out is output handler. */ static void trp_print_node(const struct trt_node *node, struct trt_pck_print pck, struct trt_indent_in_node indent, struct ly_out *out) { ly_bool triple_dot; ly_bool divided; struct trt_cf_print cf_print_keys; struct trt_cf_print cf_print_iffeatures; if (trp_node_is_empty(node)) { return; } /* -- */ triple_dot = node->name.type == TRD_NODE_TRIPLE_DOT; divided = indent.type == TRD_INDENT_IN_NODE_DIVIDED; if (triple_dot) { trp_print_node_name(node->name, out); return; } else if (!divided) { trp_print_node_up_to_name(node, out); } else { trp_print_divided_node_up_to_name(node, out); } /* */ /* ___*/ cf_print_keys.ctx = pck.tree_ctx; cf_print_keys.pf = pck.fps.print_keys; trp_print_opts_keys(node->name, indent.btw_name_opts, cf_print_keys, out); /* __ */ if (indent.btw_opts_type > 0) { ly_print_(out, "%*c", indent.btw_opts_type, ' '); } /* */ trp_print_type(node->type, out); /* __ */ if (indent.btw_type_iffeatures > 0) { ly_print_(out, "%*c", indent.btw_type_iffeatures, ' '); } /* */ cf_print_iffeatures.ctx = pck.tree_ctx; cf_print_iffeatures.pf = pck.fps.print_features_names; trp_print_iffeatures(node->iffeatures, cf_print_iffeatures, out); } /** * @brief Print keyword based on trt_keyword_stmt.type. * @param[in] ks is keyword statement to print. * @param[in,out] out is output handler */ static void trt_print_keyword_stmt_begin(struct trt_keyword_stmt ks, struct ly_out *out) { if (!strcmp(ks.section_name, TRD_KEYWORD_MODULE) || !strcmp(ks.section_name, TRD_KEYWORD_SUBMODULE)) { ly_print_(out, "%s: ", ks.section_name); return; } ly_print_(out, "%*c", TRD_INDENT_LINE_BEGIN, ' '); if (ks.argument) { ly_print_(out, "%s ", ks.section_name); } else { ly_print_(out, "%s", ks.section_name); } } /** * @brief Print trt_keyword_stmt.str which is string of name or path. * @param[in] ks is keyword statement structure. * @param[in] mll is max line length. * @param[in,out] out is output handler. */ static void trt_print_keyword_stmt_str(struct trt_keyword_stmt ks, size_t mll, struct ly_out *out) { uint32_t ind_initial; uint32_t ind_divided; /* flag if path must be splitted to more lines */ ly_bool linebreak_was_set; /* flag if at least one subpath was printed */ ly_bool subpath_printed; /* the sum of the sizes of the substrings on the current line */ uint32_t how_far; /* pointer to start of the subpath */ const char *sub_ptr; /* size of subpath from sub_ptr */ size_t sub_len; if ((!ks.argument) || (ks.argument[0] == '\0')) { return; } /* module name cannot be splitted */ if (!strcmp(ks.section_name, TRD_KEYWORD_MODULE) || !strcmp(ks.section_name, TRD_KEYWORD_SUBMODULE)) { ly_print_(out, "%s", ks.argument); return; } /* after -> for trd_keyword_stmt_body do */ /* set begin indentation */ ind_initial = TRD_INDENT_LINE_BEGIN + strlen(ks.section_name) + 1; ind_divided = ind_initial + TRD_INDENT_LONG_LINE_BREAK; linebreak_was_set = 0; subpath_printed = 0; how_far = 0; sub_ptr = ks.argument; sub_len = 0; while (sub_ptr[0] != '\0') { uint32_t ind; /* skip slash */ const char *tmp = sub_ptr[0] == '/' ? sub_ptr + 1 : sub_ptr; /* get position of the end of substr */ tmp = strchr(tmp, '/'); /* set correct size if this is a last substring */ sub_len = !tmp ? strlen(sub_ptr) : (size_t)(tmp - sub_ptr); /* actualize sum of the substring's sizes on the current line */ how_far += sub_len; /* correction due to colon character if it this is last substring */ how_far = *(sub_ptr + sub_len) == '\0' ? how_far + 1 : how_far; /* choose indentation which depends on * whether the string is printed on multiple lines or not */ ind = linebreak_was_set ? ind_divided : ind_initial; if (ind + how_far <= mll) { /* printing before max line length */ sub_ptr = trg_print_substr(sub_ptr, sub_len, out); subpath_printed = 1; } else { /* printing on new line */ if (subpath_printed == 0) { /* first subpath is too long * but print it at first line anyway */ sub_ptr = trg_print_substr(sub_ptr, sub_len, out); subpath_printed = 1; continue; } ly_print_(out, "\n"); ly_print_(out, "%*c", ind_divided, ' '); linebreak_was_set = 1; sub_ptr = trg_print_substr(sub_ptr, sub_len, out); how_far = sub_len; subpath_printed = 1; } } } /** * @brief Print separator based on trt_keyword_stmt.type * @param[in] ks is keyword statement structure. * @param[in,out] out is output handler. */ static void trt_print_keyword_stmt_end(struct trt_keyword_stmt ks, struct ly_out *out) { if (!strcmp(ks.section_name, TRD_KEYWORD_MODULE) || !strcmp(ks.section_name, TRD_KEYWORD_SUBMODULE)) { return; } else if (ks.has_node) { ly_print_(out, ":"); } } /** * @brief Print entire struct trt_keyword_stmt structure. * @param[in] ks is item to print. * @param[in] mll is max line length. * @param[in,out] out is output handler. */ static void trp_print_keyword_stmt(struct trt_keyword_stmt ks, size_t mll, struct ly_out *out) { assert(ks.section_name); trt_print_keyword_stmt_begin(ks, out); trt_print_keyword_stmt_str(ks, mll, out); trt_print_keyword_stmt_end(ks, out); } /********************************************************************** * Main trp functions *********************************************************************/ /** * @brief Printing one line including wrapper and node * which can be incomplete (divided). * @param[in] node is \ representation. * @param[in] pck contains special printing functions callback. * @param[in] indent contains wrapper and indent in node numbers. * @param[in,out] out is output handler. */ static void trp_print_line(const struct trt_node *node, struct trt_pck_print pck, struct trt_pck_indent indent, struct ly_out *out) { trp_print_wrapper(indent.wrapper, out); trp_print_node(node, pck, indent.in_node, out); } /** * @brief Printing one line including wrapper and * \--\ \\. * @param[in] node is \ representation. * @param[in] wr is wrapper for printing indentation before node. * @param[in] out is output handler. */ static void trp_print_line_up_to_node_name(const struct trt_node *node, struct trt_wrapper wr, struct ly_out *out) { trp_print_wrapper(wr, out); trp_print_node_up_to_name(node, out); } /** * @brief Check if leafref target must be change to string 'leafref' * because his target string is too long. * @param[in] node containing leafref target. * @param[in] wr is wrapper for printing indentation before node. * @param[in] mll is max line length. * @param[in] out is output handler. * @return true if leafref must be changed to string 'leafref'. */ static ly_bool trp_leafref_target_is_too_long(const struct trt_node *node, struct trt_wrapper wr, size_t mll, struct ly_out *out) { size_t type_len; struct ly_out_clb_arg *data; if (node->type.type != TRD_TYPE_TARGET) { return 0; } /* set ly_out to counting characters */ data = out->method.clb.arg; data->counter = 0; data->mode = TRD_CHAR_COUNT; /* count number of printed bytes */ trp_print_wrapper(wr, out); ly_print_(out, "%*c", TRD_INDENT_BTW_SIBLINGS, ' '); trp_print_divided_node_up_to_name(node, out); data->mode = TRD_PRINT; type_len = strlen(node->type.str); return data->counter + type_len > mll; } /** * @brief Get default indent in node based on node values. * @param[in] node is \ representation. * @return Default indent in node assuming that the node * will not be divided. */ static struct trt_indent_in_node trp_default_indent_in_node(const struct trt_node *node) { struct trt_indent_in_node ret; uint32_t opts_len = 0; ret.type = TRD_INDENT_IN_NODE_NORMAL; /* btw_name_opts */ ret.btw_name_opts = node->name.keys ? TRD_INDENT_BEFORE_KEYS : 0; /* btw_opts_type */ if (!(TRP_TRT_TYPE_IS_EMPTY(node->type))) { if (trp_mark_is_used(node->name)) { opts_len += node->name.add_opts ? strlen(node->name.add_opts) : 0; opts_len += node->name.opts ? strlen(node->name.opts) : 0; ret.btw_opts_type = TRD_INDENT_BEFORE_TYPE > opts_len ? 1 : TRD_INDENT_BEFORE_TYPE - opts_len; } else { ret.btw_opts_type = TRD_INDENT_BEFORE_TYPE; } } else { ret.btw_opts_type = 0; } /* btw_type_iffeatures */ ret.btw_type_iffeatures = node->iffeatures.type == TRD_IFF_PRESENT ? TRD_INDENT_BEFORE_IFFEATURES : 0; return ret; } /** * @brief Setting linebreaks in trt_indent_in_node. * * The order where the linebreak tag can be placed is from the end. * * @param[in] indent containing alignment lengths * or already linebreak marks. * @return indent with a newly placed linebreak tag. * @return .type set to TRD_INDENT_IN_NODE_FAILED if it is not possible * to place a more linebreaks. */ static struct trt_indent_in_node trp_indent_in_node_place_break(struct trt_indent_in_node indent) { /* somewhere must be set a line break in node */ struct trt_indent_in_node ret = indent; /* gradually break the node from the end */ if ((indent.btw_type_iffeatures != TRD_LINEBREAK) && (indent.btw_type_iffeatures != 0)) { ret.btw_type_iffeatures = TRD_LINEBREAK; } else if ((indent.btw_opts_type != TRD_LINEBREAK) && (indent.btw_opts_type != 0)) { ret.btw_opts_type = TRD_LINEBREAK; } else if ((indent.btw_name_opts != TRD_LINEBREAK) && (indent.btw_name_opts != 0)) { /* set line break between name and opts */ ret.btw_name_opts = TRD_LINEBREAK; } else { /* it is not possible to place a more line breaks, * unfortunately the max_line_length constraint is violated */ ret.type = TRD_INDENT_IN_NODE_FAILED; } return ret; } /** * @brief Set the first half of the node based on the linebreak mark. * * Items in the second half of the node will be empty. * * @param[in,out] innod contains information in which part of the \ * the first half ends. Set first half of the node, indent is unchanged. */ static void trp_first_half_node(struct trt_pair_indent_node *innod) { if (innod->indent.btw_name_opts == TRD_LINEBREAK) { innod->node.type = TRP_EMPTY_TRT_TYPE; innod->node.iffeatures = TRP_EMPTY_TRT_IFFEATURES; } else if (innod->indent.btw_opts_type == TRD_LINEBREAK) { innod->node.type = TRP_EMPTY_TRT_TYPE; innod->node.iffeatures = TRP_EMPTY_TRT_IFFEATURES; } else if (innod->indent.btw_type_iffeatures == TRD_LINEBREAK) { innod->node.iffeatures = TRP_EMPTY_TRT_IFFEATURES; } } /** * @brief Set the second half of the node based on the linebreak mark. * * Items in the first half of the node will be empty. * Indentations belonging to the first node will be reset to zero. * * @param[in,out] innod contains information in which part of the \ * the second half starts. Set second half of the node, indent is newly set. */ static void trp_second_half_node(struct trt_pair_indent_node *innod) { if (innod->indent.btw_name_opts < 0) { /* Logically, the information up to token should * be deleted, but the the trp_print_node function needs it to * create the correct indent. */ innod->indent.btw_name_opts = 0; innod->indent.btw_opts_type = TRP_TRT_TYPE_IS_EMPTY(innod->node.type) ? 0 : TRD_INDENT_BEFORE_TYPE; innod->indent.btw_type_iffeatures = innod->node.iffeatures.type == TRD_IFF_NON_PRESENT ? 0 : TRD_INDENT_BEFORE_IFFEATURES; } else if (innod->indent.btw_opts_type == TRD_LINEBREAK) { innod->indent.btw_name_opts = 0; innod->indent.btw_opts_type = 0; innod->indent.btw_type_iffeatures = innod->node.iffeatures.type == TRD_IFF_NON_PRESENT ? 0 : TRD_INDENT_BEFORE_IFFEATURES; } else if (innod->indent.btw_type_iffeatures == TRD_LINEBREAK) { innod->node.type = TRP_EMPTY_TRT_TYPE; innod->indent.btw_name_opts = 0; innod->indent.btw_opts_type = 0; innod->indent.btw_type_iffeatures = 0; } } /** * @brief Get the correct alignment for the node. * * This function is recursively called itself. It's like a backend * function for a function ::trp_try_normal_indent_in_node(). * * @param[in] pck contains speciall callback functions for printing. * @param[in] wrapper contains information about '|' context. * @param[in] mll is max line length. * @param[in,out] cnt counting number of characters to print. * @param[in,out] out is output handler. * @param[in,out] innod pair of node and indentation numbers of that node. */ static void trp_try_normal_indent_in_node_(struct trt_pck_print pck, struct trt_wrapper wrapper, size_t mll, size_t *cnt, struct ly_out *out, struct trt_pair_indent_node *innod) { trp_print_line(&innod->node, pck, TRP_INIT_PCK_INDENT(wrapper, innod->indent), out); if (*cnt <= mll) { /* success */ return; } else { innod->indent = trp_indent_in_node_place_break(innod->indent); if (innod->indent.type != TRD_INDENT_IN_NODE_FAILED) { /* erase information in node due to line break */ trp_first_half_node(innod); /* check if line fits, recursive call */ *cnt = 0; trp_try_normal_indent_in_node_(pck, wrapper, mll, cnt, out, innod); /* make sure that the result will be with the status divided * or eventually with status failed */ innod->indent.type = innod->indent.type == TRD_INDENT_IN_NODE_FAILED ? TRD_INDENT_IN_NODE_FAILED : TRD_INDENT_IN_NODE_DIVIDED; } return; } } /** * @brief Get the correct alignment for the node. * * @param[in] node is \ representation. * @param[in] pck contains speciall callback functions for printing. * @param[in] indent contains wrapper and indent in node numbers. * @param[in] mll is max line length. * @param[in,out] out is output handler. * @param[out] innod If the node does not fit in the line, some indent variable has negative value as a line break sign * and therefore ::TRD_INDENT_IN_NODE_DIVIDED is set. * If the node fits into the line, all indent variables values has non-negative number and therefore * ::TRD_INDENT_IN_NODE_NORMAL is set. * If the node does not fit into the line, all indent variables has negative or zero values, function failed * and therefore ::TRD_INDENT_IN_NODE_FAILED is set. */ static void trp_try_normal_indent_in_node(const struct trt_node *node, struct trt_pck_print pck, struct trt_pck_indent indent, size_t mll, struct ly_out *out, struct trt_pair_indent_node *innod) { struct ly_out_clb_arg *data; *innod = TRP_INIT_PAIR_INDENT_NODE(indent.in_node, *node); /* set ly_out to counting characters */ data = out->method.clb.arg; data->counter = 0; data->mode = TRD_CHAR_COUNT; trp_try_normal_indent_in_node_(pck, indent.wrapper, mll, &data->counter, out, innod); data->mode = TRD_PRINT; } /** * @brief Auxiliary function for ::trp_print_entire_node() * that prints split nodes. * @param[in] node is node representation. * @param[in] ppck contains speciall callback functions for printing. * @param[in] ipck contains wrapper and indent in node numbers. * @param[in] mll is max line length. * @param[in,out] out is output handler. */ static void trp_print_divided_node(const struct trt_node *node, struct trt_pck_print ppck, struct trt_pck_indent ipck, size_t mll, struct ly_out *out) { ly_bool entire_node_was_printed; struct trt_pair_indent_node innod; trp_try_normal_indent_in_node(node, ppck, ipck, mll, out, &innod); if (innod.indent.type == TRD_INDENT_IN_NODE_FAILED) { /* nothing can be done, continue as usual */ innod.indent.type = TRD_INDENT_IN_NODE_DIVIDED; } trp_print_line(&innod.node, ppck, TRP_INIT_PCK_INDENT(ipck.wrapper, innod.indent), out); entire_node_was_printed = trp_indent_in_node_are_eq(ipck.in_node, innod.indent); if (!entire_node_was_printed) { ly_print_(out, "\n"); /* continue with second half node */ innod.node = *node; trp_second_half_node(&innod); /* continue with printing node */ trp_print_divided_node(&innod.node, ppck, TRP_INIT_PCK_INDENT(ipck.wrapper, innod.indent), mll, out); } else { return; } } /** * @brief Printing of the wrapper and the whole node, * which can be divided into several lines. * @param[in] node_p is node representation. * @param[in] ppck contains speciall callback functions for printing. * @param[in] ipck contains wrapper and indent in node numbers. * @param[in] mll is max line length. * @param[in,out] out is output handler. */ static void trp_print_entire_node(const struct trt_node *node_p, struct trt_pck_print ppck, struct trt_pck_indent ipck, size_t mll, struct ly_out *out) { struct trt_pair_indent_node innod; struct trt_pck_indent tmp; struct trt_node node; node = *node_p; if (trp_leafref_target_is_too_long(&node, ipck.wrapper, mll, out)) { node.type.type = TRD_TYPE_LEAFREF; } /* check if normal indent is possible */ trp_try_normal_indent_in_node(&node, ppck, ipck, mll, out, &innod); if (innod.indent.type == TRD_INDENT_IN_NODE_NORMAL) { /* node fits to one line */ trp_print_line(&node, ppck, ipck, out); } else if (innod.indent.type == TRD_INDENT_IN_NODE_DIVIDED) { /* node will be divided */ /* print first half */ tmp = TRP_INIT_PCK_INDENT(ipck.wrapper, innod.indent); /* pretend that this is normal node */ tmp.in_node.type = TRD_INDENT_IN_NODE_NORMAL; trp_print_line(&innod.node, ppck, tmp, out); ly_print_(out, "\n"); /* continue with second half on new line */ innod.node = node; trp_second_half_node(&innod); tmp = TRP_INIT_PCK_INDENT(trp_wrapper_if_last_sibling(ipck.wrapper, node.last_one), innod.indent); trp_print_divided_node(&innod.node, ppck, tmp, mll, out); } else if (innod.indent.type == TRD_INDENT_IN_NODE_FAILED) { /* node name is too long */ trp_print_line_up_to_node_name(&node, ipck.wrapper, out); if (trp_node_body_is_empty(&node)) { return; } else { ly_print_(out, "\n"); innod.node = node; trp_second_half_node(&innod); innod.indent.type = TRD_INDENT_IN_NODE_DIVIDED; tmp = TRP_INIT_PCK_INDENT(trp_wrapper_if_last_sibling(ipck.wrapper, node.last_one), innod.indent); trp_print_divided_node(&innod.node, ppck, tmp, mll, out); } } } /** * @brief Check if parent-stmt is valid for printing extensinon. * * @param[in] lysc_tree flag if ext is from compiled tree. * @param[in] ext Extension to check. * @return 1 if extension is valid. */ static ly_bool trp_ext_parent_is_valid(ly_bool lysc_tree, void *ext) { enum ly_stmt parent_stmt; if (lysc_tree) { parent_stmt = ((struct lysc_ext_instance *)ext)->parent_stmt; } else { parent_stmt = ((struct lysp_ext_instance *)ext)->parent_stmt; } if ((parent_stmt & LY_STMT_OP_MASK) || (parent_stmt & LY_STMT_DATA_NODE_MASK) || (parent_stmt & LY_STMT_SUBMODULE) || parent_stmt & LY_STMT_MODULE) { return 1; } else { return 0; } } /** * @brief Check if printer_tree can use node extension. * * @param[in] lysc_tree Flag if @p node is compiled. * @param[in] node to check. Its type is lysc_node or lysp_node. * @return Pointer to extension instance which printer_tree can used. */ static void * trp_ext_is_present(ly_bool lysc_tree, const void *node) { const struct lysp_node *pn; const struct lysc_node *cn; LY_ARRAY_COUNT_TYPE i; void *ret = NULL; if (!node) { return NULL; } if (lysc_tree) { cn = (const struct lysc_node *)node; LY_ARRAY_FOR(cn->exts, i) { if (!(cn->exts && cn->exts->def->plugin && cn->exts->def->plugin->printer_ctree)) { continue; } if (!trp_ext_parent_is_valid(1, &cn->exts[i])) { continue; } ret = &cn->exts[i]; break; } } else { pn = (const struct lysp_node *)node; LY_ARRAY_FOR(pn->exts, i) { if (!(pn->exts && pn->exts->record && pn->exts->record->plugin.printer_ptree)) { continue; } if (!trp_ext_parent_is_valid(0, &pn->exts[i])) { continue; } ret = &pn->exts[i]; break; } } return ret; } /** * @brief Check if printer_tree can use node extension. * * @param[in] tc Context with current node. * @return 1 if some extension for printer_tree is valid. */ static ly_bool trp_ext_is_present_in_node(struct trt_tree_ctx *tc) { if (tc->lysc_tree && trp_ext_is_present(tc->lysc_tree, tc->cn)) { return 1; } else if (trp_ext_is_present(tc->lysc_tree, tc->pn)) { return 1; } return 0; } /** * @brief Release allocated memory and set pointers to NULL. * * @param[in,out] overr is override structure to release. * @param[out] filtered is flag to reset. */ static void trp_ext_free_node_override(struct lyplg_ext_sprinter_tree_node_override *overr, ly_bool *filtered) { *filtered = 0; overr->flags = NULL; overr->add_opts = NULL; } /** * @brief Release private plugin data. * * @param[in,out] plug_ctx is plugin context. */ static void trp_ext_free_plugin_ctx(struct lyspr_tree_ctx *plug_ctx) { LY_ARRAY_FREE(plug_ctx->schemas); if (plug_ctx->free_plugin_priv) { plug_ctx->free_plugin_priv(plug_ctx->plugin_priv); } } /********************************************************************** * trop and troc getters *********************************************************************/ /** * @brief Get nodetype. * @param[in] node is any lysp_node. */ static uint16_t trop_nodetype(const void *node) { return ((const struct lysp_node *)node)->nodetype; } /** * @brief Get sibling. * @param[in] node is any lysp_node. */ static const void * trop_next(const void *node) { return ((const struct lysp_node *)node)->next; } /** * @brief Get parent. * @param[in] node is any lysp_node. */ static const void * trop_parent(const void *node) { return ((const struct lysp_node *)node)->parent; } /** * @brief Try to get child. * @param[in] node is any lysp_node. */ static const void * trop_child(const void *node) { return lysp_node_child(node); } /** * @brief Try to get action. * @param[in] node is any lysp_node. */ static const void * trop_actions(const void *node) { return lysp_node_actions(node); } /** * @brief Try to get action. * @param[in] node must be of type lysp_node_action. */ static const void * trop_action_input(const void *node) { return &((const struct lysp_node_action *)node)->input; } /** * @brief Try to get action. * @param[in] node must be of type lysp_node_action. */ static const void * trop_action_output(const void *node) { return &((const struct lysp_node_action *)node)->output; } /** * @brief Try to get action. * @param[in] node is any lysp_node. */ static const void * trop_notifs(const void *node) { return lysp_node_notifs(node); } /** * @brief Fill struct tro_getters with @ref TRP_trop getters * which are adapted to lysp nodes. */ static struct tro_getters trop_init_getters(void) { return (struct tro_getters) { .nodetype = trop_nodetype, .next = trop_next, .parent = trop_parent, .child = trop_child, .actions = trop_actions, .action_input = trop_action_input, .action_output = trop_action_output, .notifs = trop_notifs }; } /** * @brief Get nodetype. * @param[in] node is any lysc_node. */ static uint16_t troc_nodetype(const void *node) { return ((const struct lysc_node *)node)->nodetype; } /** * @brief Get sibling. * @param[in] node is any lysc_node. */ static const void * troc_next(const void *node) { return ((const struct lysc_node *)node)->next; } /** * @brief Get parent. * @param[in] node is any lysc_node. */ static const void * troc_parent(const void *node) { return ((const struct lysc_node *)node)->parent; } /** * @brief Try to get child. * @param[in] node is any lysc_node. */ static const void * troc_child(const void *node) { return lysc_node_child(node); } /** * @brief Try to get action. * @param[in] node is any lysc_node. */ static const void * troc_actions(const void *node) { return lysc_node_actions(node); } /** * @brief Try to get action. * @param[in] node must be of type lysc_node_action. */ static const void * troc_action_input(const void *node) { return &((const struct lysc_node_action *)node)->input; } /** * @brief Try to get action. * @param[in] node must be of type lysc_node_action. */ static const void * troc_action_output(const void *node) { return &((const struct lysc_node_action *)node)->output; } /** * @brief Try to get action. * @param[in] node is any lysc_node. */ static const void * troc_notifs(const void *node) { return lysc_node_notifs(node); } /** * @brief Fill struct tro_getters with @ref TRP_troc getters * which are adapted to lysc nodes. */ static struct tro_getters troc_init_getters(void) { return (struct tro_getters) { .nodetype = troc_nodetype, .next = troc_next, .parent = troc_parent, .child = troc_child, .actions = troc_actions, .action_input = troc_action_input, .action_output = troc_action_output, .notifs = troc_notifs }; } /********************************************************************** * tro functions *********************************************************************/ /** * @brief Call override function for @p node. * * @param[in] lysc_tree if @p node is compiled. * @param[in] node to create override. * @param[in] erase_node_overr if override structure must be reseted. * @param[in,out] plc current plugin context. * @return pointer to override structure or NULL. Override structure in @p plc is updated too. */ static struct lyplg_ext_sprinter_tree_node_override * tro_set_node_overr(ly_bool lysc_tree, const void *node, ly_bool erase_node_overr, struct trt_plugin_ctx *plc) { LY_ERR rc = LY_SUCCESS; struct lyplg_ext_sprinter_tree_node_override *no; struct lyspr_tree_ctx *plug_ctx; struct lysc_ext_instance *ce; struct lysp_ext_instance *pe; if (erase_node_overr) { trp_ext_free_node_override(&plc->node_overr, &plc->filtered); } no = &plc->node_overr; if (!plc->ctx && lysc_tree && (ce = trp_ext_is_present(lysc_tree, node))) { rc = ce->def->plugin->printer_ctree(ce, NULL, &no->flags, &no->add_opts); } else if (!plc->ctx && (pe = trp_ext_is_present(lysc_tree, node))) { rc = pe->record->plugin.printer_ptree(pe, NULL, &no->flags, &no->add_opts); } else if (plc->ctx) { if (plc->schema && plc->schema->compiled && plc->schema->cn_overr) { rc = plc->schema->cn_overr(node, plc->ctx->plugin_priv, &plc->filtered, &no->flags, &no->add_opts); } else if (plc->schema && plc->schema->pn_overr) { rc = plc->schema->pn_overr(node, plc->ctx->plugin_priv, &plc->filtered, &no->flags, &no->add_opts); } else { no = NULL; } if (trp_ext_is_present(lysc_tree, node)) { plug_ctx = plc->ctx; plc->ctx = NULL; tro_set_node_overr(lysc_tree, node, 0, plc); plc->ctx = plug_ctx; } } else { no = NULL; } if (rc) { plc->last_error = rc; no = NULL; } return no; } /** * @brief Get next sibling of the current node. * * This is a general algorithm that is able to * work with lysp_node or lysc_node. * * @param[in] node points to lysp_node or lysc_node. * @param[in] tc current tree context. * @return next sibling node. */ static const void * tro_next_sibling(const void *node, const struct trt_tree_ctx *tc) { struct tro_getters get; struct trt_plugin_ctx plugin_ctx; const void *tmp, *parent, *sibl; assert(node); get = tc->lysc_tree ? troc_init_getters() : trop_init_getters(); if (get.nodetype(node) & (LYS_RPC | LYS_ACTION)) { if ((tmp = get.next(node))) { /* next action exists */ sibl = tmp; } else if ((parent = get.parent(node))) { /* maybe if notif exists as sibling */ sibl = get.notifs(parent); } else { sibl = NULL; } } else if (get.nodetype(node) & LYS_INPUT) { if ((parent = get.parent(node))) { /* if output action has data */ if (get.child(get.action_output(parent))) { /* then next sibling is output action */ sibl = get.action_output(parent); } else { /* input action cannot have siblings other * than output action. */ sibl = NULL; } } else { /* there is no way how to get output action */ sibl = NULL; } } else if (get.nodetype(node) & LYS_OUTPUT) { /* output action cannot have siblings */ sibl = NULL; } else if (get.nodetype(node) & LYS_NOTIF) { /* must have as a sibling only notif */ sibl = get.next(node); } else { /* for rest of nodes */ if ((tmp = get.next(node))) { /* some sibling exists */ sibl = tmp; } else if ((parent = get.parent(node))) { /* Action and notif are siblings too. * They can be reached through parent. */ if ((tmp = get.actions(parent))) { /* next sibling is action */ sibl = tmp; } else if ((tmp = get.notifs(parent))) { /* next sibling is notif */ sibl = tmp; } else { /* sibling not exists */ sibl = NULL; } } else { /* sibling not exists */ sibl = NULL; } } plugin_ctx = tc->plugin_ctx; if (sibl && tro_set_node_overr(tc->lysc_tree, sibl, 1, &plugin_ctx) && plugin_ctx.filtered) { return tro_next_sibling(sibl, tc); } return sibl; } /** * @brief Get child of the current node. * * This is a general algorithm that is able to * work with lysp_node or lysc_node. * * @param[in] node points to lysp_node or lysc_node. * @param[in] tc current tree context. * @return child node. */ static const void * tro_next_child(const void *node, const struct trt_tree_ctx *tc) { struct tro_getters get; struct trt_plugin_ctx plugin_ctx; const void *tmp, *child; assert(node); get = tc->lysc_tree ? troc_init_getters() : trop_init_getters(); if (get.nodetype(node) & (LYS_ACTION | LYS_RPC)) { if (get.child(get.action_input(node))) { /* go to LYS_INPUT */ child = get.action_input(node); } else if (get.child(get.action_output(node))) { /* go to LYS_OUTPUT */ child = get.action_output(node); } else { /* input action and output action have no data */ child = NULL; } } else { if ((tmp = get.child(node))) { child = tmp; } else { /* current node can't have children or has no children */ /* but maybe has some actions or notifs */ if ((tmp = get.actions(node))) { child = tmp; } else if ((tmp = get.notifs(node))) { child = tmp; } else { child = NULL; } } } plugin_ctx = tc->plugin_ctx; if (child && tro_set_node_overr(tc->lysc_tree, child, 1, &plugin_ctx) && plugin_ctx.filtered) { return tro_next_sibling(child, tc); } return child; } /** * @brief Get new trt_parent_cache if we apply the transfer * to the child node in the tree. * @param[in] ca is parent cache for current node. * @param[in] tc contains current tree node. * @return Cache for the current node. */ static struct trt_parent_cache tro_parent_cache_for_child(struct trt_parent_cache ca, const struct trt_tree_ctx *tc) { struct trt_parent_cache ret = TRP_EMPTY_PARENT_CACHE; if (!tc->lysc_tree) { const struct lysp_node *pn = tc->pn; ret.ancestor = pn->nodetype & (LYS_INPUT) ? TRD_ANCESTOR_RPC_INPUT : pn->nodetype & (LYS_OUTPUT) ? TRD_ANCESTOR_RPC_OUTPUT : pn->nodetype & (LYS_NOTIF) ? TRD_ANCESTOR_NOTIF : ca.ancestor; ret.lys_status = pn->flags & (LYS_STATUS_CURR | LYS_STATUS_DEPRC | LYS_STATUS_OBSLT) ? pn->flags : ca.lys_status; ret.lys_config = ca.ancestor == TRD_ANCESTOR_RPC_INPUT ? 0 : /* because will be -w */ ca.ancestor == TRD_ANCESTOR_RPC_OUTPUT ? LYS_CONFIG_R : pn->flags & (LYS_CONFIG_R | LYS_CONFIG_W) ? pn->flags : ca.lys_config; ret.last_list = pn->nodetype & (LYS_LIST) ? (struct lysp_node_list *)pn : ca.last_list; } return ret; } /** * @brief Transformation of the Schema nodes flags to * Tree diagram \. * @param[in] flags is node's flags obtained from the tree. */ static char * tro_flags2status(uint16_t flags) { return flags & LYS_STATUS_OBSLT ? "o" : flags & LYS_STATUS_DEPRC ? "x" : "+"; } /** * @brief Transformation of the Schema nodes flags to Tree diagram * \ but more specifically 'ro' or 'rw'. * @param[in] flags is node's flags obtained from the tree. */ static char * tro_flags2config(uint16_t flags) { return flags & LYS_CONFIG_R ? TRD_FLAGS_TYPE_RO : flags & LYS_CONFIG_W ? TRD_FLAGS_TYPE_RW : TRD_FLAGS_TYPE_EMPTY; } /** * @brief Print current node's iffeatures. * @param[in] tc is tree context. * @param[in,out] out is output handler. */ static void tro_print_features_names(const struct trt_tree_ctx *tc, struct ly_out *out) { const struct lysp_qname *iffs; if (tc->lysc_tree) { assert(TRP_TREE_CTX_LYSP_NODE_PRESENT(tc->cn)); iffs = TRP_TREE_CTX_GET_LYSP_NODE(tc->cn)->iffeatures; } else { iffs = tc->pn->iffeatures; } LY_ARRAY_COUNT_TYPE i; LY_ARRAY_FOR(iffs, i) { if (i == 0) { ly_print_(out, "%s", iffs[i].str); } else { ly_print_(out, ",%s", iffs[i].str); } } } /** * @brief Print current list's keys. * * Well, actually printing keys in the lysp_tree is trivial, * because char* points to all keys. However, special functions have * been reserved for this, because in principle the list of elements * can have more implementations. * * @param[in] tc is tree context. * @param[in,out] out is output handler. */ static void tro_print_keys(const struct trt_tree_ctx *tc, struct ly_out *out) { const struct lysp_node_list *list; if (tc->lysc_tree) { assert(TRP_TREE_CTX_LYSP_NODE_PRESENT(tc->cn)); list = (const struct lysp_node_list *)TRP_TREE_CTX_GET_LYSP_NODE(tc->cn); } else { list = (const struct lysp_node_list *)tc->pn; } assert(list->nodetype & LYS_LIST); if (trg_charptr_has_data(list->key)) { ly_print_(out, "%s", list->key); } } /** * @brief Get address of the current node. * @param[in] tc contains current node. * @return Address of lysc_node or lysp_node, or NULL. */ static const void * tro_tree_ctx_get_node(const struct trt_tree_ctx *tc) { return tc->lysc_tree ? (const void *)tc->cn : (const void *)tc->pn; } /** * @brief Get address of current node's child. * @param[in,out] tc contains current node. */ static const void * tro_tree_ctx_get_child(const struct trt_tree_ctx *tc) { if (!tro_tree_ctx_get_node(tc)) { return NULL; } if (tc->lysc_tree) { return lysc_node_child(tc->cn); } else { return lysp_node_child(tc->pn); } } /** * @brief Get rpcs section if exists. * @param[in,out] tc is tree context. * @return Section representation if it exists. The @p tc is modified * and his pointer points to the first node in rpcs section. * @return Empty section representation otherwise. */ static struct trt_keyword_stmt tro_modi_get_rpcs(struct trt_tree_ctx *tc) { assert(tc); const void *actions; struct trt_keyword_stmt ret = {0}; if (tc->lysc_tree) { actions = tc->cmod->rpcs; if (actions) { tc->cn = actions; } } else { actions = tc->pmod->rpcs; if (actions) { tc->pn = actions; tc->tpn = tc->pn; } } if (actions) { tc->section = TRD_SECT_RPCS; ret.section_name = TRD_KEYWORD_RPC; ret.has_node = tro_tree_ctx_get_node(tc) ? 1 : 0; } return ret; } /** * @brief Get notification section if exists * @param[in,out] tc is tree context. * @return Section representation if it exists. * The @p tc is modified and his pointer points to the * first node in notification section. * @return Empty section representation otherwise. */ static struct trt_keyword_stmt tro_modi_get_notifications(struct trt_tree_ctx *tc) { assert(tc); const void *notifs; struct trt_keyword_stmt ret = {0}; if (tc->lysc_tree) { notifs = tc->cmod->notifs; if (notifs) { tc->cn = notifs; } } else { notifs = tc->pmod->notifs; if (notifs) { tc->pn = notifs; tc->tpn = tc->pn; } } if (notifs) { tc->section = TRD_SECT_NOTIF; ret.section_name = TRD_KEYWORD_NOTIF; ret.has_node = tro_tree_ctx_get_node(tc) ? 1 : 0; } return ret; } static struct trt_keyword_stmt tro_get_ext_section(struct trt_tree_ctx *tc, void *ext, struct lyspr_tree_ctx *plug_ctx) { struct trt_keyword_stmt ret = {0}; struct lysc_ext_instance *ce = NULL; struct lysp_ext_instance *pe = NULL; if (tc->lysc_tree) { ce = ext; ret.section_name = ce->def->name; ret.argument = ce->argument; ret.has_node = plug_ctx->schemas->ctree ? 1 : 0; } else { pe = ext; ret.section_name = pe->def->name; ret.argument = pe->argument; ret.has_node = plug_ctx->schemas->ptree ? 1 : 0; } return ret; } /** * @brief Get name of the module. * @param[in] tc is context of the tree. */ static struct trt_keyword_stmt tro_read_module_name(const struct trt_tree_ctx *tc) { assert(tc); struct trt_keyword_stmt ret; ret.section_name = !tc->lysc_tree && tc->pmod->is_submod ? TRD_KEYWORD_SUBMODULE : TRD_KEYWORD_MODULE; ret.argument = !tc->lysc_tree ? LYSP_MODULE_NAME(tc->pmod) : tc->cmod->mod->name; ret.has_node = tro_tree_ctx_get_node(tc) ? 1 : 0; return ret; } static ly_bool tro_read_if_sibling_exists(const struct trt_tree_ctx *tc) { const void *parent; if (tc->lysc_tree) { parent = troc_parent(tc->cn); } else { parent = trop_parent(tc->pn); } return parent ? 1 : 0; } /** * @brief Create implicit "case" node as parent of @p node. * @param[in] node child of implicit case node. * @param[out] case_node created case node. */ static void tro_create_implicit_case_node(const struct trt_node *node, struct trt_node *case_node) { case_node->status = node->status; case_node->flags = TRD_FLAGS_TYPE_EMPTY; case_node->name.type = TRD_NODE_CASE; case_node->name.keys = node->name.keys; case_node->name.module_prefix = node->name.module_prefix; case_node->name.str = node->name.str; case_node->name.opts = node->name.opts; case_node->name.add_opts = node->name.add_opts; case_node->type = TRP_EMPTY_TRT_TYPE; case_node->iffeatures = TRP_EMPTY_TRT_IFFEATURES; case_node->last_one = node->last_one; } /********************************************************************** * Definition of trop reading functions *********************************************************************/ /** * @brief Check if list statement has keys. * @param[in] pn is pointer to the list. * @return 1 if has keys, otherwise 0. */ static ly_bool trop_list_has_keys(const struct lysp_node *pn) { return trg_charptr_has_data(((const struct lysp_node_list *)pn)->key); } /** * @brief Check if it contains at least one feature. * @param[in] pn is current node. * @return 1 if has if-features, otherwise 0. */ static ly_bool trop_node_has_iffeature(const struct lysp_node *pn) { LY_ARRAY_COUNT_TYPE u; const struct lysp_qname *iffs; ly_bool ret = 0; iffs = pn->iffeatures; LY_ARRAY_FOR(iffs, u) { ret = 1; break; } return ret; } /** * @brief Find out if leaf is also the key in last list. * @param[in] pn is pointer to leaf. * @param[in] ca_last_list is pointer to last visited list. * Obtained from trt_parent_cache. * @return 1 if leaf is also the key, otherwise 0. */ static ly_bool trop_leaf_is_key(const struct lysp_node *pn, const struct lysp_node_list *ca_last_list) { const struct lysp_node_leaf *leaf = (const struct lysp_node_leaf *)pn; const struct lysp_node_list *list = ca_last_list; if (!list) { return 0; } return trg_charptr_has_data(list->key) ? trg_word_is_present(list->key, leaf->name, ' ') : 0; } /** * @brief Check if container's type is presence. * @param[in] pn is pointer to container. * @return 1 if container has presence statement, otherwise 0. */ static ly_bool trop_container_has_presence(const struct lysp_node *pn) { return trg_charptr_has_data(((struct lysp_node_container *)pn)->presence); } /** * @brief Get leaflist's path without lysp_node type control. * @param[in] pn is pointer to the leaflist. */ static const char * trop_leaflist_refpath(const struct lysp_node *pn) { const struct lysp_node_leaflist *list = (const struct lysp_node_leaflist *)pn; return list->type.path ? list->type.path->expr : NULL; } /** * @brief Get leaflist's type name without lysp_node type control. * @param[in] pn is pointer to the leaflist. */ static const char * trop_leaflist_type_name(const struct lysp_node *pn) { const struct lysp_node_leaflist *list = (const struct lysp_node_leaflist *)pn; return list->type.name; } /** * @brief Get leaf's path without lysp_node type control. * @param[in] pn is pointer to the leaf node. */ static const char * trop_leaf_refpath(const struct lysp_node *pn) { const struct lysp_node_leaf *leaf = (const struct lysp_node_leaf *)pn; return leaf->type.path ? leaf->type.path->expr : NULL; } /** * @brief Get leaf's type name without lysp_node type control. * @param[in] pn is pointer to the leaf's type name. */ static const char * trop_leaf_type_name(const struct lysp_node *pn) { const struct lysp_node_leaf *leaf = (const struct lysp_node_leaf *)pn; return leaf->type.name; } /** * @brief Get pointer to data using node type specification * and getter function. * * @param[in] flags is node type specification. * If it is the correct node, the getter function is called. * @param[in] f is getter function which provides the desired * char pointer from the structure. * @param[in] pn pointer to node. * @return NULL if node has wrong type or getter function return * pointer to NULL. * @return Pointer to desired char pointer obtained from the node. */ static const char * trop_node_charptr(uint16_t flags, trt_get_charptr_func f, const struct lysp_node *pn) { if (pn->nodetype & flags) { const char *ret = f(pn); return trg_charptr_has_data(ret) ? ret : NULL; } else { return NULL; } } /** * @brief Resolve \ of the current node. * @param[in] nodetype is node's type obtained from the tree. * @param[in] flags is node's flags obtained from the tree. * @param[in] ca_lys_status is inherited status obtained from trt_parent_cache. * @return The status type. */ static char * trop_resolve_status(uint16_t nodetype, uint16_t flags, uint16_t ca_lys_status) { if (nodetype & (LYS_INPUT | LYS_OUTPUT)) { /* LYS_INPUT and LYS_OUTPUT is special case */ return tro_flags2status(ca_lys_status); /* if ancestor's status is deprc or obslt * and also node's status is not set */ } else if ((ca_lys_status & (LYS_STATUS_DEPRC | LYS_STATUS_OBSLT)) && !(flags & (LYS_STATUS_CURR | LYS_STATUS_DEPRC | LYS_STATUS_OBSLT))) { /* get ancestor's status */ return tro_flags2status(ca_lys_status); } else { /* else get node's status */ return tro_flags2status(flags); } } /** * @brief Resolve \ of the current node. * @param[in] nodetype is node's type obtained from the tree. * @param[in] flags is node's flags obtained from the tree. * @param[in] ca_ancestor is ancestor type obtained from trt_parent_cache. * @param[in] ca_lys_config is inherited config item obtained from trt_parent_cache. * @param[in] no Override structure for flags. * @return The flags type. */ static const char * trop_resolve_flags(uint16_t nodetype, uint16_t flags, trt_ancestor_type ca_ancestor, uint16_t ca_lys_config, struct lyplg_ext_sprinter_tree_node_override *no) { if (no && no->flags) { return no->flags; } else if ((nodetype & LYS_INPUT) || (ca_ancestor == TRD_ANCESTOR_RPC_INPUT)) { return TRD_FLAGS_TYPE_RPC_INPUT_PARAMS; } else if ((nodetype & LYS_OUTPUT) || (ca_ancestor == TRD_ANCESTOR_RPC_OUTPUT)) { return TRD_FLAGS_TYPE_RO; } else if (ca_ancestor == TRD_ANCESTOR_NOTIF) { return TRD_FLAGS_TYPE_RO; } else if (nodetype & LYS_NOTIF) { return TRD_FLAGS_TYPE_NOTIF; } else if (nodetype & LYS_USES) { return TRD_FLAGS_TYPE_USES_OF_GROUPING; } else if (nodetype & (LYS_RPC | LYS_ACTION)) { return TRD_FLAGS_TYPE_RPC; } else if (!(flags & (LYS_CONFIG_R | LYS_CONFIG_W))) { /* config is not set. Look at ancestor's config */ return tro_flags2config(ca_lys_config); } else { return tro_flags2config(flags); } } /** * @brief Resolve node type of the current node. * @param[in] pn is pointer to the current node in the tree. * @param[in] ca_last_list is pointer to the last visited list. Obtained from the trt_parent_cache. * @param[out] type Resolved type of node. * @param[out] opts Resolved opts of node. */ static void trop_resolve_node_opts(const struct lysp_node *pn, const struct lysp_node_list *ca_last_list, trt_node_type *type, const char **opts) { if (pn->nodetype & (LYS_INPUT | LYS_OUTPUT)) { *type = TRD_NODE_ELSE; } else if (pn->nodetype & LYS_CASE) { *type = TRD_NODE_CASE; } else if ((pn->nodetype & LYS_CHOICE) && !(pn->flags & LYS_MAND_TRUE)) { *type = TRD_NODE_CHOICE; *opts = TRD_NODE_OPTIONAL; } else if (pn->nodetype & LYS_CHOICE) { *type = TRD_NODE_CHOICE; } else if ((pn->nodetype & LYS_CONTAINER) && (trop_container_has_presence(pn))) { *opts = TRD_NODE_CONTAINER; } else if (pn->nodetype & (LYS_LIST | LYS_LEAFLIST)) { *opts = TRD_NODE_LISTLEAFLIST; } else if ((pn->nodetype & (LYS_ANYDATA | LYS_ANYXML)) && !(pn->flags & LYS_MAND_TRUE)) { *opts = TRD_NODE_OPTIONAL; } else if ((pn->nodetype & LYS_LEAF) && !(pn->flags & LYS_MAND_TRUE) && (!trop_leaf_is_key(pn, ca_last_list))) { *opts = TRD_NODE_OPTIONAL; } else { *type = TRD_NODE_ELSE; } } /** * @brief Resolve \ of the current node. * @param[in] pn is current node. * @return Resolved type. */ static struct trt_type trop_resolve_type(const struct lysp_node *pn) { const char *tmp = NULL; if (!pn) { return TRP_EMPTY_TRT_TYPE; } else if ((tmp = trop_node_charptr(LYS_LEAFLIST, trop_leaflist_refpath, pn))) { return TRP_INIT_TRT_TYPE(TRD_TYPE_TARGET, tmp); } else if ((tmp = trop_node_charptr(LYS_LEAFLIST, trop_leaflist_type_name, pn))) { return TRP_INIT_TRT_TYPE(TRD_TYPE_NAME, tmp); } else if ((tmp = trop_node_charptr(LYS_LEAF, trop_leaf_refpath, pn))) { return TRP_INIT_TRT_TYPE(TRD_TYPE_TARGET, tmp); } else if ((tmp = trop_node_charptr(LYS_LEAF, trop_leaf_type_name, pn))) { return TRP_INIT_TRT_TYPE(TRD_TYPE_NAME, tmp); } else if (pn->nodetype == LYS_ANYDATA) { return TRP_INIT_TRT_TYPE(TRD_TYPE_NAME, "anydata"); } else if (pn->nodetype & LYS_ANYXML) { return TRP_INIT_TRT_TYPE(TRD_TYPE_NAME, "anyxml"); } else { return TRP_EMPTY_TRT_TYPE; } } /** * @brief Resolve iffeatures. * * @param[in] pn is current parsed node. * @return Resolved iffeatures. */ static struct trt_iffeatures trop_resolve_iffeatures(const struct lysp_node *pn) { struct trt_iffeatures iff; if (pn && trop_node_has_iffeature(pn)) { iff.type = TRD_IFF_PRESENT; iff.str = NULL; } else { iff.type = TRD_IFF_NON_PRESENT; iff.str = NULL; } return iff; } /** * @brief Transformation of current lysp_node to struct trt_node. * @param[in] ca contains stored important data * when browsing the tree downwards. * @param[in] tc is context of the tree. */ static struct trt_node trop_read_node(struct trt_parent_cache ca, struct trt_tree_ctx *tc) { const struct lysp_node *pn; struct trt_node ret; struct lyplg_ext_sprinter_tree_node_override *no; assert(tc && tc->pn && tc->pn->nodetype != LYS_UNKNOWN); no = tro_set_node_overr(tc->lysc_tree, tc->pn, 1, &tc->plugin_ctx); pn = tc->pn; ret = TRP_EMPTY_NODE; /* */ ret.status = trop_resolve_status(pn->nodetype, pn->flags, ca.lys_status); /* */ ret.flags = trop_resolve_flags(pn->nodetype, pn->flags, ca.ancestor, ca.lys_config, no); /* set type of the node */ trop_resolve_node_opts(pn, ca.last_list, &ret.name.type, &ret.name.opts); ret.name.add_opts = no && no->add_opts ? no->add_opts : NULL; ret.name.keys = (tc->pn->nodetype & LYS_LIST) && trop_list_has_keys(tc->pn); /* The parsed tree is not compiled, so no node can be augmented * from another module. This means that nodes from the parsed tree * will never have the prefix. */ ret.name.module_prefix = NULL; /* set node's name */ ret.name.str = pn->name; /* */ ret.type = trop_resolve_type(pn); /* */ ret.iffeatures = trop_resolve_iffeatures(pn); ret.last_one = !tro_next_sibling(pn, tc); return ret; } /** * @brief Find out if the current node has siblings. * @param[in] tc is context of the tree. * @return 1 if sibling exists otherwise 0. */ static ly_bool trop_read_if_sibling_exists(const struct trt_tree_ctx *tc) { return tro_next_sibling(tc->pn, tc) != NULL; } /********************************************************************** * Modify trop getters *********************************************************************/ /** * @brief Change current node pointer to its parent * but only if parent exists. * @param[in,out] tc is tree context. * Contains pointer to the current node. * @return 1 if the node had parents and the change was successful. * @return 0 if the node did not have parents. * The pointer to the current node did not change. */ static ly_bool trop_modi_parent(struct trt_tree_ctx *tc) { assert(tc && tc->pn); /* If no parent exists, stay in actual node. */ if ((tc->pn != tc->tpn) && (tc->pn->parent)) { tc->pn = tc->pn->parent; return 1; } else { return 0; } } /** * @brief Change the current node pointer to its child * but only if exists. * @param[in] ca contains inherited data from ancestors. * @param[in,out] tc is context of the tree. * Contains pointer to the current node. * @return Non-empty \ representation of the current * node's child. The @p tc is modified. * @return Empty \ representation if child don't exists. * The @p tc is not modified. */ static struct trt_node trop_modi_next_child(struct trt_parent_cache ca, struct trt_tree_ctx *tc) { const struct lysp_node *tmp; assert(tc && tc->pn); if ((tmp = tro_next_child(tc->pn, tc))) { tc->pn = tmp; return trop_read_node(ca, tc); } else { return TRP_EMPTY_NODE; } } /** * @brief Change the pointer to the current node to its next sibling * only if exists. * @param[in] ca contains inherited data from ancestors. * @param[in,out] tc is tree context. * Contains pointer to the current node. * @return Non-empty \ representation if sibling exists. * The @p tc is modified. * @return Empty \ representation otherwise. * The @p tc is not modified. */ static struct trt_node trop_modi_next_sibling(struct trt_parent_cache ca, struct trt_tree_ctx *tc) { const struct lysp_node *pn; assert(tc && tc->pn); pn = tro_next_sibling(tc->pn, tc); if (pn) { if ((tc->tpn == tc->pn) && (tc->section != TRD_SECT_PLUG_DATA)) { tc->tpn = pn; } tc->pn = pn; return trop_read_node(ca, tc); } else { return TRP_EMPTY_NODE; } } /** * @brief Change the current node pointer to the first child of node's * parent. If current node is already first sibling/child then nothing * will change. * @param[in] ca Settings of parent. * @param[in,out] tc is tree context. * @return node for printing. */ static struct trt_node trop_modi_first_sibling(struct trt_parent_cache ca, struct trt_tree_ctx *tc) { struct trt_node node; assert(tc && tc->pn); if (trop_modi_parent(tc)) { node = trop_modi_next_child(ca, tc); } else if (tc->plugin_ctx.schema) { tc->pn = tc->plugin_ctx.schema->ptree; tc->tpn = tc->pn; node = trop_read_node(ca, tc); } else { /* current node is top-node */ switch (tc->section) { case TRD_SECT_MODULE: tc->pn = tc->pmod->data; tc->tpn = tc->pn; break; case TRD_SECT_AUGMENT: tc->pn = (const struct lysp_node *)tc->pmod->augments; tc->tpn = tc->pn; break; case TRD_SECT_RPCS: tc->pn = (const struct lysp_node *)tc->pmod->rpcs; tc->tpn = tc->pn; break; case TRD_SECT_NOTIF: tc->pn = (const struct lysp_node *)tc->pmod->notifs; tc->tpn = tc->pn; break; case TRD_SECT_GROUPING: tc->pn = (const struct lysp_node *)tc->pmod->groupings; tc->tpn = tc->pn; break; case TRD_SECT_PLUG_DATA: /* Nothing to do. */ break; default: assert(0); } node = trop_read_node(ca, tc); } if (tc->plugin_ctx.filtered) { node = trop_modi_next_sibling(ca, tc); } return node; } /** * @brief Get next (or first) augment section if exists. * @param[in,out] tc is tree context. It is modified and his current * node is set to the lysp_node_augment. * @return Section's representation if (next augment) section exists. * @return Empty section structure otherwise. */ static struct trt_keyword_stmt trop_modi_next_augment(struct trt_tree_ctx *tc) { assert(tc); const struct lysp_node_augment *augs; struct trt_keyword_stmt ret = {0}; /* if next_augment func was called for the first time */ if (tc->section != TRD_SECT_AUGMENT) { tc->section = TRD_SECT_AUGMENT; augs = tc->pmod->augments; } else { /* get augment sibling from top-node pointer */ augs = (const struct lysp_node_augment *)tc->tpn->next; } if (augs) { tc->pn = &augs->node; tc->tpn = tc->pn; ret.section_name = TRD_KEYWORD_AUGMENT; ret.argument = augs->nodeid; ret.has_node = tro_tree_ctx_get_node(tc) ? 1 : 0; } return ret; } /** * @brief Get next (or first) grouping section if exists * @param[in,out] tc is tree context. It is modified and his current * node is set to the lysp_node_grp. * @return The next (or first) section representation if it exists. * @return Empty section representation otherwise. */ static struct trt_keyword_stmt trop_modi_next_grouping(struct trt_tree_ctx *tc) { assert(tc); const struct lysp_node_grp *grps; struct trt_keyword_stmt ret = {0}; if (tc->section != TRD_SECT_GROUPING) { tc->section = TRD_SECT_GROUPING; grps = tc->pmod->groupings; } else { grps = (const struct lysp_node_grp *)tc->tpn->next; } if (grps) { tc->pn = &grps->node; tc->tpn = tc->pn; ret.section_name = TRD_KEYWORD_GROUPING; ret.argument = grps->name; ret.has_node = tro_tree_ctx_get_child(tc) ? 1 : 0; } return ret; } /********************************************************************** * Definition of troc reading functions *********************************************************************/ /** * @copydoc trop_read_if_sibling_exists */ static ly_bool troc_read_if_sibling_exists(const struct trt_tree_ctx *tc) { return tro_next_sibling(tc->cn, tc) != NULL; } /** * @brief Resolve \ of the current node. * * Use this function only if trt_tree_ctx.lysc_tree is true. * * @param[in] nodetype is current lysc_node.nodetype. * @param[in] flags is current lysc_node.flags. * @param[in] no Override structure for flags. * @return The flags type. */ static const char * troc_resolve_flags(uint16_t nodetype, uint16_t flags, struct lyplg_ext_sprinter_tree_node_override *no) { if (no && no->flags) { return no->flags; } else if ((nodetype & LYS_INPUT) || (flags & LYS_IS_INPUT)) { return TRD_FLAGS_TYPE_RPC_INPUT_PARAMS; } else if ((nodetype & LYS_OUTPUT) || (flags & LYS_IS_OUTPUT)) { return TRD_FLAGS_TYPE_RO; } else if (nodetype & LYS_IS_NOTIF) { return TRD_FLAGS_TYPE_RO; } else if (nodetype & LYS_NOTIF) { return TRD_FLAGS_TYPE_NOTIF; } else if (nodetype & LYS_USES) { return TRD_FLAGS_TYPE_USES_OF_GROUPING; } else if (nodetype & (LYS_RPC | LYS_ACTION)) { return TRD_FLAGS_TYPE_RPC; } else { return tro_flags2config(flags); } } /** * @brief Resolve node type of the current node. * * Use this function only if trt_tree_ctx.lysc_tree is true. * * @param[in] nodetype is current lysc_node.nodetype. * @param[in] flags is current lysc_node.flags. * @param[out] type Resolved type of node. * @param[out] opts Resolved opts. */ static void troc_resolve_node_opts(uint16_t nodetype, uint16_t flags, trt_node_type *type, const char **opts) { if (nodetype & (LYS_INPUT | LYS_OUTPUT)) { *type = TRD_NODE_ELSE; } else if (nodetype & LYS_CASE) { *type = TRD_NODE_CASE; } else if ((nodetype & LYS_CHOICE) && !(flags & LYS_MAND_TRUE)) { *type = TRD_NODE_CHOICE; *opts = TRD_NODE_OPTIONAL; } else if (nodetype & LYS_CHOICE) { *type = TRD_NODE_CHOICE; } else if ((nodetype & LYS_CONTAINER) && (flags & LYS_PRESENCE)) { *opts = TRD_NODE_CONTAINER; } else if (nodetype & (LYS_LIST | LYS_LEAFLIST)) { *opts = TRD_NODE_LISTLEAFLIST; } else if ((nodetype & (LYS_ANYDATA | LYS_ANYXML)) && !(flags & LYS_MAND_TRUE)) { *opts = TRD_NODE_OPTIONAL; } else if ((nodetype & LYS_LEAF) && !(flags & (LYS_MAND_TRUE | LYS_KEY))) { *opts = TRD_NODE_OPTIONAL; } else { *type = TRD_NODE_ELSE; } } /** * @brief Resolve prefix (\:\) of node that has been * placed from another module via an augment statement. * * @param[in] cn is current compiled node. * @param[in] current_compiled_module is module whose nodes are * currently being printed. * @return Prefix of foreign module or NULL. */ static const char * troc_resolve_node_prefix(const struct lysc_node *cn, const struct lysc_module *current_compiled_module) { const struct lys_module *node_module; const char *ret = NULL; node_module = cn->module; if (!node_module || !current_compiled_module) { return NULL; } else if (node_module->compiled != current_compiled_module) { ret = node_module->prefix; } return ret; } /** * @brief Transformation of current lysc_node to struct trt_node. * @param[in] ca is not used. * @param[in] tc is context of the tree. */ static struct trt_node troc_read_node(struct trt_parent_cache ca, struct trt_tree_ctx *tc) { (void) ca; const struct lysc_node *cn; struct trt_node ret; struct lyplg_ext_sprinter_tree_node_override *no; assert(tc && tc->cn); no = tro_set_node_overr(tc->lysc_tree, tc->cn, 1, &tc->plugin_ctx); cn = tc->cn; ret = TRP_EMPTY_NODE; /* */ ret.status = tro_flags2status(cn->flags); /* */ ret.flags = troc_resolve_flags(cn->nodetype, cn->flags, no); /* set type of the node */ troc_resolve_node_opts(cn->nodetype, cn->flags, &ret.name.type, &ret.name.opts); ret.name.add_opts = no && no->add_opts ? no->add_opts : NULL; ret.name.keys = (cn->nodetype & LYS_LIST) && !(cn->flags & LYS_KEYLESS); /* */ ret.name.module_prefix = troc_resolve_node_prefix(cn, tc->cmod); /* set node's name */ ret.name.str = cn->name; /* */ ret.type = trop_resolve_type(TRP_TREE_CTX_GET_LYSP_NODE(cn)); /* */ ret.iffeatures = trop_resolve_iffeatures(TRP_TREE_CTX_GET_LYSP_NODE(cn)); ret.last_one = !tro_next_sibling(cn, tc); return ret; } /********************************************************************** * Modify troc getters *********************************************************************/ /** * @copydoc ::trop_modi_parent() */ static ly_bool troc_modi_parent(struct trt_tree_ctx *tc) { assert(tc && tc->cn); /* If no parent exists, stay in actual node. */ if (tc->cn->parent) { tc->cn = tc->cn->parent; return 1; } else { return 0; } } /** * @copydoc ::trop_modi_next_sibling() */ static struct trt_node troc_modi_next_sibling(struct trt_parent_cache ca, struct trt_tree_ctx *tc) { const struct lysc_node *cn; assert(tc && tc->cn); cn = tro_next_sibling(tc->cn, tc); /* if next sibling exists */ if (cn) { /* update trt_tree_ctx */ tc->cn = cn; return troc_read_node(ca, tc); } else { return TRP_EMPTY_NODE; } } /** * @copydoc trop_modi_next_child() */ static struct trt_node troc_modi_next_child(struct trt_parent_cache ca, struct trt_tree_ctx *tc) { const struct lysc_node *tmp; assert(tc && tc->cn); if ((tmp = tro_next_child(tc->cn, tc))) { tc->cn = tmp; return troc_read_node(ca, tc); } else { return TRP_EMPTY_NODE; } } /** * @copydoc ::trop_modi_first_sibling() */ static struct trt_node troc_modi_first_sibling(struct trt_parent_cache ca, struct trt_tree_ctx *tc) { struct trt_node node; assert(tc && tc->cn); if (troc_modi_parent(tc)) { node = troc_modi_next_child(ca, tc); } else if (tc->plugin_ctx.schema) { tc->cn = tc->plugin_ctx.schema->ctree; node = troc_read_node(ca, tc); } else { /* current node is top-node */ switch (tc->section) { case TRD_SECT_MODULE: tc->cn = tc->cn->module->compiled->data; break; case TRD_SECT_RPCS: tc->cn = (const struct lysc_node *)tc->cmod->rpcs; break; case TRD_SECT_NOTIF: tc->cn = (const struct lysc_node *)tc->cmod->notifs; break; case TRD_SECT_PLUG_DATA: /* nothing to do */ break; default: assert(0); } node = troc_read_node(ca, tc); } if (tc->plugin_ctx.filtered) { node = troc_modi_next_sibling(ca, tc); } return node; } /********************************************************************** * Definition of tree browsing functions *********************************************************************/ static uint32_t trb_gap_to_opts(const struct trt_node *node) { uint32_t len = 0; if (node->name.keys) { return 0; } if (node->flags) { len += strlen(node->flags); /* space between flags and name */ len += 1; } else { /* space between -- and name */ len += 1; } switch (node->name.type) { case TRD_NODE_CASE: /* ':' is already counted. Plus parentheses. */ len += 2; break; case TRD_NODE_CHOICE: /* Plus parentheses. */ len += 2; break; default: break; } if (node->name.module_prefix) { /* prefix_name and ':' */ len += strlen(node->name.module_prefix) + 1; } if (node->name.str) { len += strlen(node->name.str); } if (node->name.add_opts) { len += strlen(node->name.add_opts); } if (node->name.opts) { len += strlen(node->name.opts); } return len; } static uint32_t trb_gap_to_type(const struct trt_node *node) { uint32_t len, opts_len; if (node->name.keys) { return 0; } len = trb_gap_to_opts(node); /* Gap between opts and type. */ opts_len = 0; opts_len += node->name.add_opts ? strlen(node->name.add_opts) : 0; opts_len += node->name.opts ? strlen(node->name.opts) : 0; if (opts_len >= TRD_INDENT_BEFORE_TYPE) { /* At least one space should be there. */ len += 1; } else if (node->name.add_opts || node->name.opts) { len += TRD_INDENT_BEFORE_TYPE - opts_len; } else { len += TRD_INDENT_BEFORE_TYPE; } return len; } /** * @brief Calculate the trt_indent_in_node.btw_opts_type indent size * for a particular node. * @param[in] node for which we get btw_opts_type. * @param[in] max_gap_before_type is the maximum value of btw_opts_type * that it can have. * @return Indent between \ and \ for node. */ static int16_t trb_calc_btw_opts_type(const struct trt_node *node, int16_t max_gap_before_type) { uint32_t to_opts_len; to_opts_len = trb_gap_to_opts(node); if (to_opts_len == 0) { return 1; } else { return max_gap_before_type - to_opts_len; } } /** * @brief Print node. * * This function is wrapper for ::trp_print_entire_node(). * But difference is that take @p max_gap_before_type which will be * used to set the unified alignment. * * @param[in] node to print. * @param[in] max_gap_before_type is number of indent before \. * @param[in] wr is wrapper for printing indentation before node. * @param[in] pc contains mainly functions for printing. * @param[in] tc is tree context. */ static void trb_print_entire_node(const struct trt_node *node, uint32_t max_gap_before_type, struct trt_wrapper wr, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { struct trt_indent_in_node ind = trp_default_indent_in_node(node); if ((max_gap_before_type > 0) && (node->type.type != TRD_TYPE_EMPTY)) { /* print actual node with unified indent */ ind.btw_opts_type = trb_calc_btw_opts_type(node, max_gap_before_type); } /* after -> print actual node with default indent */ trp_print_entire_node(node, TRP_INIT_PCK_PRINT(tc, pc->fp.print), TRP_INIT_PCK_INDENT(wr, ind), pc->max_line_length, pc->out); } /** * @brief Check if parent of the current node is the last * of his siblings. * * To mantain stability use this function only if the current node is * the first of the siblings. * Side-effect -> current node is set to the first sibling * if node has a parent otherwise no side-effect. * * @param[in] fp contains all @ref TRP_tro callback functions. * @param[in,out] tc is tree context. * @return 1 if parent is last sibling otherwise 0. */ static ly_bool trb_node_is_last_sibling(const struct trt_fp_all *fp, struct trt_tree_ctx *tc) { if (fp->read.if_parent_exists(tc)) { return !fp->read.if_sibling_exists(tc); } else { return !fp->read.if_sibling_exists(tc) && tc->plugin_ctx.last_schema; } } /** * @brief For all siblings find maximal space from '--' to \. * * Side-effect -> Current node is set to the first sibling. * * @param[in] ca contains inherited data from ancestors. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is tree context. * @return max space. */ static uint32_t trb_max_gap_to_type(struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { struct trt_node node; int32_t maxlen, len; maxlen = 0; for (node = pc->fp.modify.first_sibling(ca, tc); !trp_node_is_empty(&node); node = pc->fp.modify.next_sibling(ca, tc)) { len = trb_gap_to_type(&node); maxlen = maxlen < len ? len : maxlen; } pc->fp.modify.first_sibling(ca, tc); return maxlen; } /** * @brief Find out if it is possible to unify * the alignment before \. * * The goal is for all node siblings to have the same alignment * for \ as if they were in a column. All siblings who cannot * adapt because they do not fit on the line at all are ignored. * Side-effect -> Current node is set to the first sibling. * * @param[in] ca contains inherited data from ancestors. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is tree context. * @return positive number indicating the maximum number of spaces * before \ if the length of the flags, node name and opts is 0. To calculate * the trt_indent_in_node.btw_opts_type indent size for a particular * node, use the ::trb_calc_btw_opts_type(). */ static uint32_t trb_try_unified_indent(struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { return trb_max_gap_to_type(ca, pc, tc); } /** * @brief Check if there is no case statement * under the choice statement. * * It can return true only if the Parsed schema tree * is used for browsing. * * @param[in] tc is tree context. * @return 1 if implicit case statement is present otherwise 0. */ static ly_bool trb_need_implicit_node_case(struct trt_tree_ctx *tc) { return !tc->lysc_tree && tc->pn->parent && (tc->pn->parent->nodetype & LYS_CHOICE) && (tc->pn->nodetype & (LYS_ANYDATA | LYS_CHOICE | LYS_CONTAINER | LYS_LEAF | LYS_LEAFLIST)); } static void trb_print_subtree_nodes(struct trt_node *node, uint32_t max_gap_before_type, struct trt_wrapper wr, struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc); /** * @brief Print implicit case node and his subtree. * * @param[in] node is child of implicit case. * @param[in] wr is wrapper for printing identation before node. * @param[in] pc contains mainly functions for printing. * @param[in] tc is tree context. Its settings should be the same as * before the function call. * @return new indentation wrapper for @p node. */ static struct trt_wrapper trb_print_implicit_node(const struct trt_node *node, struct trt_wrapper wr, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { struct trt_node case_node; struct trt_wrapper wr_case_child; tro_create_implicit_case_node(node, &case_node); ly_print_(pc->out, "\n"); trb_print_entire_node(&case_node, 0, wr, pc, tc); ly_print_(pc->out, "\n"); wr_case_child = pc->fp.read.if_sibling_exists(tc) ? trp_wrapper_set_mark(wr) : trp_wrapper_set_shift(wr); return wr_case_child; } /** * @brief Calculate the wrapper about how deep in the tree the node is. * @param[in] wr_in A wrapper to use as a starting point * @param[in] node from which to count. * @return wrapper for @p node. */ static struct trt_wrapper trb_count_depth(const struct trt_wrapper *wr_in, const struct lysc_node *node) { struct trt_wrapper wr = wr_in ? *wr_in : TRP_INIT_WRAPPER_TOP; const struct lysc_node *parent; if (!node) { return wr; } for (parent = node->parent; parent; parent = parent->parent) { wr = trp_wrapper_set_shift(wr); } return wr; } /** * @brief Print all parent nodes of @p node and the @p node itself. * * Side-effect -> trt_tree_ctx.cn will be set to @p node. * * @param[in] node on which the function is focused. * @param[in] wr_in for printing identation before node. * @param[in] pc is @ref TRP_trp settings. * @param[in,out] tc is context of tree printer. */ static void trb_print_parents(const struct lysc_node *node, struct trt_wrapper *wr_in, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { uint32_t max_gap_before_type; struct trt_wrapper wr; struct trt_node print_node; assert(pc && tc && tc->section == TRD_SECT_MODULE); /* stop recursion */ if (!node) { return; } trb_print_parents(node->parent, wr_in, pc, tc); /* setup for printing */ tc->cn = node; wr = trb_count_depth(wr_in, node); /* print node */ ly_print_(pc->out, "\n"); print_node = pc->fp.read.node(TRP_EMPTY_PARENT_CACHE, tc); /* siblings do not print, so the node is always considered the last */ print_node.last_one = 1; max_gap_before_type = trb_max_gap_to_type(TRP_EMPTY_PARENT_CACHE, pc, tc); tc->cn = node; trb_print_entire_node(&print_node, max_gap_before_type, wr, pc, tc); } /** * @brief Set current node on its child. * @param[in,out] tc contains current node. */ static void trb_tree_ctx_set_child(struct trt_tree_ctx *tc) { const void *node = tro_tree_ctx_get_child(tc); if (tc->lysc_tree) { tc->cn = node; } else { tc->pn = node; } } /** * @brief Move extension iterator to the next position. * * @param[in] lysc_tree flag if exts is from compiled tree. * @param[in] exts is current array of extensions. * @param[in,out] i is state of iterator. * @return Pointer to the first/next extension. */ static void * trb_ext_iter_next(ly_bool lysc_tree, void *exts, LY_ARRAY_COUNT_TYPE *i) { void *ext = NULL; struct lysc_ext_instance *ce; struct lysp_ext_instance *pe; if (!exts) { return NULL; } if (lysc_tree) { ce = exts; while (*i < LY_ARRAY_COUNT(ce)) { if (ce->def->plugin && trp_ext_parent_is_valid(1, &ce[*i])) { ext = &ce[*i]; break; } ++(*i); } } else { pe = exts; while (*i < LY_ARRAY_COUNT(pe)) { if (trp_ext_parent_is_valid(0, &pe[*i])) { ext = &pe[*i]; break; } ++(*i); } } ++(*i); return ext; } /** * @brief Iterate over extensions in module. * * @param[in] tc contains current node. * @param[in,out] i is state of iterator. * @return First/next extension or NULL. */ static void * trb_mod_ext_iter(const struct trt_tree_ctx *tc, LY_ARRAY_COUNT_TYPE *i) { if (tc->lysc_tree) { return trb_ext_iter_next(1, tc->cmod->exts, i); } else { return trb_ext_iter_next(0, tc->pmod->exts, i); } } /** * @brief Iterate over extensions in node. * * @param[in] tc contains current node. * @param[in,out] i is state of iterator. * @return First/next extension or NULL. */ static void * trb_ext_iter(const struct trt_tree_ctx *tc, LY_ARRAY_COUNT_TYPE *i) { if (tc->lysc_tree) { return trb_ext_iter_next(1, tc->cn->exts, i); } else { return trb_ext_iter_next(0, tc->pn->exts, i); } } /** * @brief Initialize plugin context. * * @param[in] compiled if @p ext is lysc structure. * @param[in] ext current processed extension. * @param[out] plug_ctx is plugin context which will be initialized. * @param[out] ignore plugin callback is NULL. * @return LY_ERR value. */ static LY_ERR tro_ext_printer_tree(ly_bool compiled, void *ext, const struct lyspr_tree_ctx *plug_ctx, ly_bool *ignore) { struct lysc_ext_instance *ext_comp; struct lysp_ext_instance *ext_pars; const struct lyplg_ext *plugin; const char *flags = NULL, *add_opts = NULL; if (compiled) { ext_comp = ext; plugin = ext_comp->def->plugin; if (!plugin->printer_ctree) { *ignore = 1; return LY_SUCCESS; } return plugin->printer_ctree(ext, plug_ctx, &flags, &add_opts); } else { ext_pars = ext; plugin = &ext_pars->record->plugin; if (!plugin->printer_ptree) { *ignore = 1; return LY_SUCCESS; } return plugin->printer_ptree(ext, plug_ctx, &flags, &add_opts); } return LY_SUCCESS; } /** * @brief Reset tree context by plugin context. * * @param[in] plug_ctx is plugin context. * @param[in] i which index in schemas should be used. * @param[in] pc are printing functions. * @param[out] tc tree context which will be updated. */ static void trm_reset_tree_ctx_by_plugin(struct lyspr_tree_ctx *plug_ctx, LY_ARRAY_COUNT_TYPE i, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { tc->plugin_ctx.ctx = plug_ctx; tc->pmod = NULL; tc->cmod = NULL; if (plug_ctx->schemas[i].compiled) { tc->lysc_tree = 1; tc->cn = plug_ctx->schemas[i].ctree; tc->plugin_ctx.schema = &plug_ctx->schemas[i]; pc->fp.modify = TRP_TRT_FP_MODIFY_COMPILED; pc->fp.read = TRP_TRT_FP_READ_COMPILED; } else { tc->lysc_tree = 0; tc->pn = plug_ctx->schemas[i].ptree; tc->tpn = tc->pn; tc->plugin_ctx.schema = &plug_ctx->schemas[i]; pc->fp.modify = TRP_TRT_FP_MODIFY_PARSED; pc->fp.read = TRP_TRT_FP_READ_PARSED; } } /** * @brief Print schemas from plugin context. * * @param[in] plug_ctx is plugin context. * @param[in] last_nodes if this schemas will be the last. * @param[in] max_gap_before_type is gap before type. * @param[in] wr is indentation wrapper. * @param[in] ca containing information from parent. * @param[in] pc functions for tree traversing. * @param[in] tc current tree context. */ static void trb_ext_print_schemas(struct lyspr_tree_ctx *plug_ctx, ly_bool last_nodes, uint32_t max_gap_before_type, struct trt_wrapper wr, struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { LY_ARRAY_COUNT_TYPE i; struct trt_printer_ctx pc_dupl; struct trt_tree_ctx tc_dupl; struct trt_node node; tc_dupl = *tc; pc_dupl = *pc; LY_ARRAY_FOR(plug_ctx->schemas, i) { trm_reset_tree_ctx_by_plugin(plug_ctx, i, pc, tc); tc->plugin_ctx.last_schema = last_nodes && ((i + 1) == LY_ARRAY_COUNT(plug_ctx->schemas)); node = TRP_EMPTY_NODE; trb_print_subtree_nodes(&node, max_gap_before_type, wr, ca, pc, tc); *tc = tc_dupl; } *pc = pc_dupl; } /** * @brief Count unified indentation across schemas from extension instance. * * @param[in] plug_ctx is plugin context. * @param[in] ca containing parent settings. * @param[out] max_gap_before_type is result of unified indent. * @param[in] pc functions for tree traversing. * @param[in] tc is tree context. */ static void trb_ext_try_unified_indent(struct lyspr_tree_ctx *plug_ctx, struct trt_parent_cache ca, uint32_t *max_gap_before_type, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { LY_ARRAY_COUNT_TYPE i; struct trt_printer_ctx pc_dupl; struct trt_tree_ctx tc_dupl; uint32_t max; tc_dupl = *tc; pc_dupl = *pc; LY_ARRAY_FOR(plug_ctx->schemas, i) { trm_reset_tree_ctx_by_plugin(plug_ctx, i, pc, tc); max = trb_try_unified_indent(ca, pc, tc); *max_gap_before_type = max > *max_gap_before_type ? max : *max_gap_before_type; *tc = tc_dupl; } *pc = pc_dupl; } /** * @brief For every extension instance print all schemas. * * @param[in] wr indentation wrapper for node. * @param[in] ca parent settings. * @param[in] pc function used for tree traversing. * @param[in] tc tree context. */ static void trb_ext_print_instances(struct trt_wrapper wr, struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { LY_ERR rc; LY_ARRAY_COUNT_TYPE i; uint64_t last_instance = UINT64_MAX; void *ext; ly_bool child_exists, ignore = 0; uint32_t max, max_gap_before_type = 0; ca = tro_parent_cache_for_child(ca, tc); /* if node is last sibling, then do not add '|' to wrapper */ wr = trb_node_is_last_sibling(&pc->fp, tc) ? trp_wrapper_set_shift(wr) : trp_wrapper_set_mark(wr); if (tc->lysc_tree) { child_exists = tro_next_child(tc->cn, tc) ? 1 : 0; } else { child_exists = tro_next_child(tc->pn, tc) ? 1 : 0; } i = 0; while ((ext = trb_ext_iter(tc, &i))) { struct lyspr_tree_ctx plug_ctx = {0}; rc = tro_ext_printer_tree(tc->lysc_tree, ext, &plug_ctx, &ignore); LY_CHECK_ERR_GOTO(rc, tc->last_error = rc, end); if (ignore) { ignore = 0; continue; } trb_ext_try_unified_indent(&plug_ctx, ca, &max_gap_before_type, pc, tc); if (plug_ctx.schemas) { last_instance = i; } trp_ext_free_plugin_ctx(&plug_ctx); } if (child_exists) { pc->fp.modify.next_child(ca, tc); max = trb_try_unified_indent(ca, pc, tc); max_gap_before_type = max > max_gap_before_type ? max : max_gap_before_type; pc->fp.modify.parent(tc); } i = 0; while ((ext = trb_ext_iter(tc, &i))) { struct lyspr_tree_ctx plug_ctx = {0}; rc = tro_ext_printer_tree(tc->lysc_tree, ext, &plug_ctx, &ignore); LY_CHECK_ERR_GOTO(rc, tc->last_error = rc, end); if (ignore) { ignore = 0; continue; } if (!child_exists && (last_instance == i)) { trb_ext_print_schemas(&plug_ctx, 1, max_gap_before_type, wr, ca, pc, tc); } else { trb_ext_print_schemas(&plug_ctx, 0, max_gap_before_type, wr, ca, pc, tc); } trp_ext_free_plugin_ctx(&plug_ctx); } end: return; } /** * @brief Print subtree of nodes. * * The current node is expected to be the root of the subtree. * Before root node is no linebreak printing. This must be addressed by * the caller. Root node will also be printed. Behind last printed node * is no linebreak. * * @param[in,out] node current processed node used as iterator. * @param[in] max_gap_before_type is result from * ::trb_try_unified_indent() function for root node. * Set parameter to 0 if distance does not matter. * @param[in] wr is wrapper saying how deep in the whole tree * is the root of the subtree. * @param[in] ca is parent_cache from root's parent. * If root is top-level node, insert ::TRP_EMPTY_PARENT_CACHE. * @param[in] pc is @ref TRP_trp settings. * @param[in,out] tc is context of tree printer. */ static void trb_print_subtree_nodes(struct trt_node *node, uint32_t max_gap_before_type, struct trt_wrapper wr, struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { if (!trp_node_is_empty(node)) { /* Print root node. */ trb_print_entire_node(node, max_gap_before_type, wr, pc, tc); if (trp_ext_is_present_in_node(tc)) { trb_ext_print_instances(wr, ca, pc, tc); } /* if node is last sibling, then do not add '|' to wrapper */ wr = trb_node_is_last_sibling(&pc->fp, tc) ? trp_wrapper_set_shift(wr) : trp_wrapper_set_mark(wr); /* go to the child */ ca = tro_parent_cache_for_child(ca, tc); *node = pc->fp.modify.next_child(ca, tc); if (trp_node_is_empty(node)) { return; } /* TODO comment browse through instances + filtered. try unified indentation for children */ max_gap_before_type = trb_try_unified_indent(ca, pc, tc); } else { /* Root node is ignored, continue with child. */ *node = pc->fp.modify.first_sibling(ca, tc); } do { if (!tc->plugin_ctx.filtered && !trb_need_implicit_node_case(tc)) { /* normal behavior */ ly_print_(pc->out, "\n"); trb_print_subtree_nodes(node, max_gap_before_type, wr, ca, pc, tc); } else if (!tc->plugin_ctx.filtered) { struct trt_wrapper wr_case_child; wr_case_child = trb_print_implicit_node(node, wr, pc, tc); trb_print_subtree_nodes(node, max_gap_before_type, wr_case_child, ca, pc, tc); } /* go to the actual node's sibling */ *node = pc->fp.modify.next_sibling(ca, tc); } while (!trp_node_is_empty(node)); /* get back from child node to root node */ pc->fp.modify.parent(tc); } /** * @brief Print all parents and their children. * * This function is suitable for printing top-level nodes that * do not have ancestors. Function call ::trb_print_subtree_nodes() * for all top-level siblings. Use this function after 'module' keyword * or 'augment' and so. The nodes may not be exactly top-level in the * tree, but the function considers them that way. * * @param[in] wr is wrapper saying how deeply the top-level nodes are * immersed in the tree. * @param[pc] pc contains mainly functions for printing. * @param[in,out] tc is tree context. */ static void trb_print_family_tree(struct trt_wrapper wr, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { struct trt_parent_cache ca; struct trt_node node; uint32_t max_gap_before_type; if (!tro_tree_ctx_get_node(tc)) { return; } ca = TRP_EMPTY_PARENT_CACHE; max_gap_before_type = trb_try_unified_indent(ca, pc, tc); if (!tc->lysc_tree) { if ((tc->section == TRD_SECT_GROUPING) && (tc->tpn == tc->pn->parent)) { ca.lys_config = 0x0; } } for (node = pc->fp.modify.first_sibling(ca, tc); !trp_node_is_empty(&node); node = pc->fp.modify.next_sibling(ca, tc)) { ly_print_(pc->out, "\n"); trb_print_subtree_nodes(&node, max_gap_before_type, wr, ca, pc, tc); } } /********************************************************************** * Definition of trm main functions *********************************************************************/ /** * @brief Settings if lysp_node are used for browsing through the tree. * * @param[in] module YANG schema tree structure representing * YANG module. * @param[in] out is output handler. * @param[in] max_line_length is the maximum line length limit * that should not be exceeded. * @param[in,out] pc will be adapted to lysp_tree. * @param[in,out] tc will be adapted to lysp_tree. */ static void trm_lysp_tree_ctx(const struct lys_module *module, struct ly_out *out, size_t max_line_length, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { *tc = (struct trt_tree_ctx) { .lysc_tree = 0, .section = TRD_SECT_MODULE, .pmod = module->parsed, .cmod = NULL, .pn = module->parsed ? module->parsed->data : NULL, .tpn = module->parsed ? module->parsed->data : NULL, .cn = NULL, .last_error = 0, .plugin_ctx = { .ctx = NULL, .schema = NULL, .filtered = 0, .node_overr = TRP_TREE_CTX_EMPTY_NODE_OVERR, .last_schema = 1, .last_error = 0 } }; pc->out = out; pc->fp.modify = TRP_TRT_FP_MODIFY_PARSED; pc->fp.read = TRP_TRT_FP_READ_PARSED; pc->fp.print = (struct trt_fp_print) { .print_features_names = tro_print_features_names, .print_keys = tro_print_keys }; pc->max_line_length = max_line_length; } /** * @brief Settings if lysc_node are used for browsing through the tree. * * Pointers to current nodes will be set to module data. * * @param[in] module YANG schema tree structure representing * YANG module. * @param[in] out is output handler. * @param[in] max_line_length is the maximum line length limit * that should not be exceeded. * @param[in,out] pc will be adapted to lysc_tree. * @param[in,out] tc will be adapted to lysc_tree. */ static void trm_lysc_tree_ctx(const struct lys_module *module, struct ly_out *out, size_t max_line_length, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { *tc = (struct trt_tree_ctx) { .lysc_tree = 1, .section = TRD_SECT_MODULE, .pmod = module->parsed, .cmod = module->compiled, .tpn = NULL, .pn = NULL, .cn = module->compiled->data, .last_error = 0, .plugin_ctx = { .ctx = NULL, .schema = NULL, .filtered = 0, .node_overr = TRP_TREE_CTX_EMPTY_NODE_OVERR, .last_schema = 1, .last_error = 0 } }; pc->out = out; pc->fp.modify = TRP_TRT_FP_MODIFY_COMPILED; pc->fp.read = TRP_TRT_FP_READ_COMPILED; pc->fp.print = (struct trt_fp_print) { .print_features_names = tro_print_features_names, .print_keys = tro_print_keys }; pc->max_line_length = max_line_length; } /** * @brief Reset settings to browsing through the lysc tree. * @param[in,out] pc resets to @ref TRP_troc functions. * @param[in,out] tc resets to lysc browsing. */ static void trm_reset_to_lysc_tree_ctx(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { LY_ERR erc; erc = tc->last_error; trp_ext_free_node_override(&tc->plugin_ctx.node_overr, &tc->plugin_ctx.filtered); trm_lysc_tree_ctx(tc->pmod->mod, pc->out, pc->max_line_length, pc, tc); tc->last_error = erc; } /** * @brief Reset settings to browsing through the lysp tree. * @param[in,out] pc resets to @ref TRP_trop functions. * @param[in,out] tc resets to lysp browsing. */ static void trm_reset_to_lysp_tree_ctx(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { LY_ERR erc; erc = tc->last_error; trp_ext_free_node_override(&tc->plugin_ctx.node_overr, &tc->plugin_ctx.filtered); trm_lysp_tree_ctx(tc->pmod->mod, pc->out, pc->max_line_length, pc, tc); tc->last_error = erc; } /** * @brief If augment's target node is located on the current module. * @param[in] pn is examined augment. * @param[in] pmod is current module. * @return 1 if nodeid refers to the local node, otherwise 0. */ static ly_bool trm_nodeid_target_is_local(const struct lysp_node_augment *pn, const struct lysp_module *pmod) { const char *id, *prefix, *name; size_t prefix_len, name_len; const struct lys_module *mod; ly_bool ret = 0; if (pn == NULL) { return ret; } id = pn->nodeid; if (!id) { return ret; } /* only absolute-schema-nodeid is taken into account */ assert(id[0] == '/'); ++id; ly_parse_nodeid(&id, &prefix, &prefix_len, &name, &name_len); if (prefix) { mod = ly_resolve_prefix(pmod->mod->ctx, prefix, prefix_len, LY_VALUE_SCHEMA, pmod); ret = mod ? (mod->parsed == pmod) : 0; } else { ret = 1; } return ret; } /** * @brief Printing section module, rpcs, notifications or yang-data. * * First node must be the first child of 'module', * 'rpcs', 'notifications' or 'yang-data'. * * @param[in] ks is section representation. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is the tree context. */ static void trm_print_section_as_family_tree(struct trt_keyword_stmt ks, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { assert(ks.section_name); trp_print_keyword_stmt(ks, pc->max_line_length, pc->out); if (!strcmp(ks.section_name, TRD_KEYWORD_MODULE) || !strcmp(ks.section_name, TRD_KEYWORD_SUBMODULE)) { trb_print_family_tree(TRP_INIT_WRAPPER_TOP, pc, tc); } else { trb_print_family_tree(TRP_INIT_WRAPPER_BODY, pc, tc); } } /** * @brief Printing section augment or grouping. * * First node is 'augment' or 'grouping' itself. * * @param[in] ks is section representation. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is the tree context. */ static void trm_print_section_as_subtree(struct trt_keyword_stmt ks, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { assert(ks.section_name); trp_print_keyword_stmt(ks, pc->max_line_length, pc->out); trb_tree_ctx_set_child(tc); trb_print_family_tree(TRP_INIT_WRAPPER_BODY, pc, tc); } /** * @brief Print 'module' keyword, its name and all nodes. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is the tree context. */ static void trm_print_module_section(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { trm_print_section_as_family_tree(pc->fp.read.module_name(tc), pc, tc); } /** * @brief For all augment sections: print 'augment' keyword, * its target node and all nodes. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is the tree context. */ static void trm_print_augmentations(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { ly_bool once; ly_bool origin_was_lysc_tree = 0; struct trt_keyword_stmt ks; if (tc->lysc_tree) { origin_was_lysc_tree = 1; trm_reset_to_lysp_tree_ctx(pc, tc); } once = 1; for (ks = trop_modi_next_augment(tc); ks.section_name; ks = trop_modi_next_augment(tc)) { if (origin_was_lysc_tree) { /* if lysc tree is used, then only augments targeting * another module are printed */ if (trm_nodeid_target_is_local((const struct lysp_node_augment *)tc->tpn, tc->pmod)) { continue; } } if (once) { ly_print_(pc->out, "\n"); ly_print_(pc->out, "\n"); once = 0; } else { ly_print_(pc->out, "\n"); } trm_print_section_as_subtree(ks, pc, tc); } if (origin_was_lysc_tree) { trm_reset_to_lysc_tree_ctx(pc, tc); } } /** * @brief For rpcs section: print 'rpcs' keyword and all its nodes. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is the tree context. */ static void trm_print_rpcs(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { struct trt_keyword_stmt rpc; rpc = tro_modi_get_rpcs(tc); if (rpc.section_name) { ly_print_(pc->out, "\n"); ly_print_(pc->out, "\n"); trm_print_section_as_family_tree(rpc, pc, tc); } } /** * @brief For notifications section: print 'notifications' keyword * and all its nodes. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is the tree context. */ static void trm_print_notifications(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { struct trt_keyword_stmt notifs; notifs = tro_modi_get_notifications(tc); if (notifs.section_name) { ly_print_(pc->out, "\n"); ly_print_(pc->out, "\n"); trm_print_section_as_family_tree(notifs, pc, tc); } } /** * @brief For all grouping sections: print 'grouping' keyword, its name * and all nodes. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is the tree context. */ static void trm_print_groupings(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { ly_bool once; struct trt_keyword_stmt ks; if (tc->lysc_tree) { return; } once = 1; for (ks = trop_modi_next_grouping(tc); ks.section_name; ks = trop_modi_next_grouping(tc)) { if (once) { ly_print_(pc->out, "\n"); ly_print_(pc->out, "\n"); once = 0; } else { ly_print_(pc->out, "\n"); } trm_print_section_as_subtree(ks, pc, tc); } } /** * @brief Print all sections defined in plugins. * * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is the tree context. */ static void trm_print_plugin_ext(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { LY_ERR rc; ly_bool once; LY_ARRAY_COUNT_TYPE i = 0, j; struct trt_keyword_stmt ks, prev_ks = {0}; struct trt_printer_ctx pc_dupl; struct trt_tree_ctx tc_dupl; struct trt_node node; ly_bool ignore = 0; uint32_t max_gap_before_type; void *ext; tc->section = TRD_SECT_PLUG_DATA; tc_dupl = *tc; pc_dupl = *pc; once = 1; while ((ext = trb_mod_ext_iter(tc, &i))) { struct lyspr_tree_ctx plug_ctx = {0}; rc = tro_ext_printer_tree(tc->lysc_tree, ext, &plug_ctx, &ignore); LY_CHECK_ERR_GOTO(rc, tc->last_error = rc, end); if (!plug_ctx.schemas || ignore) { ignore = 0; continue; } ks = tro_get_ext_section(tc, ext, &plug_ctx); if (once || (prev_ks.section_name && strcmp(prev_ks.section_name, ks.section_name))) { ly_print_(pc->out, "\n"); ly_print_(pc->out, "\n"); once = 0; } else { ly_print_(pc->out, "\n"); } trp_print_keyword_stmt(ks, pc->max_line_length, pc->out); max_gap_before_type = 0; trb_ext_try_unified_indent(&plug_ctx, TRP_EMPTY_PARENT_CACHE, &max_gap_before_type, pc, tc); LY_ARRAY_FOR(plug_ctx.schemas, j) { trm_reset_tree_ctx_by_plugin(&plug_ctx, j, pc, tc); node = TRP_EMPTY_NODE; trb_print_subtree_nodes(&node, max_gap_before_type, TRP_INIT_WRAPPER_BODY, TRP_EMPTY_PARENT_CACHE, pc, tc); } *tc = tc_dupl; trp_ext_free_plugin_ctx(&plug_ctx); prev_ks = ks; } end: *pc = pc_dupl; return; } /** * @brief Print sections module, augment, rpcs, notifications, * grouping, yang-data. * @param[in] pc contains mainly functions for printing. * @param[in,out] tc is the tree context. */ static void trm_print_sections(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc) { trm_print_module_section(pc, tc); trm_print_augmentations(pc, tc); trm_print_rpcs(pc, tc); trm_print_notifications(pc, tc); trm_print_groupings(pc, tc); trm_print_plugin_ext(pc, tc); ly_print_(pc->out, "\n"); } static LY_ERR tree_print_check_error(struct ly_out_clb_arg *out, struct trt_tree_ctx *tc) { if (out->last_error) { return out->last_error; } else if (tc->last_error) { return tc->last_error; } else { return LY_SUCCESS; } } /********************************************************************** * Definition of module interface *********************************************************************/ LY_ERR tree_print_module(struct ly_out *out, const struct lys_module *module, uint32_t UNUSED(options), size_t line_length) { struct trt_printer_ctx pc; struct trt_tree_ctx tc; struct ly_out *new_out; LY_ERR erc; struct ly_out_clb_arg clb_arg = TRP_INIT_LY_OUT_CLB_ARG(TRD_PRINT, out, 0, LY_SUCCESS); LY_CHECK_ARG_RET3(module->ctx, out, module, module->parsed, LY_EINVAL); if ((erc = ly_out_new_clb(&trp_ly_out_clb_func, &clb_arg, &new_out))) { return erc; } line_length = line_length == 0 ? SIZE_MAX : line_length; if ((module->ctx->flags & LY_CTX_SET_PRIV_PARSED) && module->compiled) { trm_lysc_tree_ctx(module, new_out, line_length, &pc, &tc); } else { trm_lysp_tree_ctx(module, new_out, line_length, &pc, &tc); } trm_print_sections(&pc, &tc); erc = tree_print_check_error(&clb_arg, &tc); ly_out_free(new_out, NULL, 1); return erc; } LY_ERR tree_print_compiled_node(struct ly_out *out, const struct lysc_node *node, uint32_t options, size_t line_length) { struct trt_printer_ctx pc; struct trt_tree_ctx tc; struct ly_out *new_out; struct trt_wrapper wr; LY_ERR erc; struct ly_out_clb_arg clb_arg = TRP_INIT_LY_OUT_CLB_ARG(TRD_PRINT, out, 0, LY_SUCCESS); assert(out && node); if (!(node->module->ctx->flags & LY_CTX_SET_PRIV_PARSED)) { return LY_EINVAL; } if ((erc = ly_out_new_clb(&trp_ly_out_clb_func, &clb_arg, &new_out))) { return erc; } line_length = line_length == 0 ? SIZE_MAX : line_length; trm_lysc_tree_ctx(node->module, new_out, line_length, &pc, &tc); trp_print_keyword_stmt(pc.fp.read.module_name(&tc), pc.max_line_length, pc.out); trb_print_parents(node, NULL, &pc, &tc); if (!(options & LYS_PRINT_NO_SUBSTMT)) { tc.cn = lysc_node_child(node); wr = trb_count_depth(NULL, tc.cn); trb_print_family_tree(wr, &pc, &tc); } ly_print_(out, "\n"); erc = tree_print_check_error(&clb_arg, &tc); ly_out_free(new_out, NULL, 1); return erc; } LY_ERR tree_print_parsed_submodule(struct ly_out *out, const struct lysp_submodule *submodp, uint32_t UNUSED(options), size_t line_length) { struct trt_printer_ctx pc; struct trt_tree_ctx tc; struct ly_out *new_out; LY_ERR erc; struct ly_out_clb_arg clb_arg = TRP_INIT_LY_OUT_CLB_ARG(TRD_PRINT, out, 0, LY_SUCCESS); assert(submodp); LY_CHECK_ARG_RET(submodp->mod->ctx, out, LY_EINVAL); if ((erc = ly_out_new_clb(&trp_ly_out_clb_func, &clb_arg, &new_out))) { return erc; } line_length = line_length == 0 ? SIZE_MAX : line_length; trm_lysp_tree_ctx(submodp->mod, new_out, line_length, &pc, &tc); tc.pmod = (struct lysp_module *)submodp; tc.tpn = submodp->data; tc.pn = tc.tpn; trm_print_sections(&pc, &tc); erc = tree_print_check_error(&clb_arg, &tc); ly_out_free(new_out, NULL, 1); return erc; }