/** * @file schema_compile_node.c * @author Radek Krejci * @author Michal Vasko * @brief Schema compilation of common nodes. * * Copyright (c) 2015 - 2023 CESNET, z.s.p.o. * * This source code is licensed under BSD 3-Clause License (the "License"). * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://opensource.org/licenses/BSD-3-Clause */ #define _GNU_SOURCE /* asprintf, strdup */ #include "schema_compile_node.h" #include #include #include #include #include #include #include #include "compat.h" #include "dict.h" #include "log.h" #include "ly_common.h" #include "plugins.h" #include "plugins_internal.h" #include "plugins_types.h" #include "schema_compile.h" #include "schema_compile_amend.h" #include "schema_features.h" #include "set.h" #include "tree.h" #include "tree_data.h" #include "tree_edit.h" #include "tree_schema.h" #include "tree_schema_internal.h" #include "xpath.h" /** * @brief Item for storing typedef chain item. */ struct lys_type_item { const struct lysp_tpdf *tpdf; struct lysp_node *node; }; /** * @brief Add a node with a when to unres. * * @param[in] ctx Compile context. * @param[in] when Specific compiled when to check. * @param[in] node Compiled node with when(s). * @return LY_ERR value. */ static LY_ERR lysc_unres_when_add(struct lysc_ctx *ctx, struct lysc_when *when, struct lysc_node *node) { LY_ERR rc = LY_SUCCESS; struct lysc_unres_when *w = NULL; /* do not check when(s) in a grouping or in disabled data (high risk of false-positives) */ if (ctx->compile_opts & (LYS_COMPILE_GROUPING | LYS_COMPILE_DISABLED)) { goto cleanup; } /* add new unres when */ w = calloc(1, sizeof *w); LY_CHECK_ERR_GOTO(!w, LOGMEM(ctx->ctx); rc = LY_EMEM, cleanup); w->node = node; w->when = when; /* add into the unres set */ LY_CHECK_ERR_GOTO(ly_set_add(&ctx->unres->whens, w, 1, NULL), LOGMEM(ctx->ctx); rc = LY_EMEM, cleanup); w = NULL; cleanup: free(w); return rc; } /** * @brief Add a node with must(s) to unres. * * @param[in] ctx Compile context. * @param[in] node Compiled node with must(s). * @param[in] pnode Parsed ndoe with must(s). * @return LY_ERR value. */ static LY_ERR lysc_unres_must_add(struct lysc_ctx *ctx, struct lysc_node *node, struct lysp_node *pnode) { struct lysc_unres_must *m = NULL; LY_ARRAY_COUNT_TYPE u; struct lysc_must *musts; struct lysp_restr *pmusts; LY_ERR ret; /* do not check must(s) in a grouping or in disabled data (high risk of false-positives) */ if (ctx->compile_opts & (LYS_COMPILE_GROUPING | LYS_COMPILE_DISABLED)) { return LY_SUCCESS; } musts = lysc_node_musts(node); pmusts = lysp_node_musts(pnode); assert(LY_ARRAY_COUNT(musts) == LY_ARRAY_COUNT(pmusts)); if (!musts) { /* no must */ return LY_SUCCESS; } /* add new unres must */ m = calloc(1, sizeof *m); LY_CHECK_ERR_GOTO(!m, ret = LY_EMEM, error); m->node = node; /* add must local modules */ LY_ARRAY_CREATE_GOTO(ctx->ctx, m->local_mods, LY_ARRAY_COUNT(pmusts), ret, error); LY_ARRAY_FOR(pmusts, u) { m->local_mods[u] = pmusts[u].arg.mod; LY_ARRAY_INCREMENT(m->local_mods); } /* store ext */ m->ext = ctx->ext; LY_CHECK_ERR_GOTO(ly_set_add(&ctx->unres->musts, m, 1, NULL), ret = LY_EMEM, error); return LY_SUCCESS; error: if (m) { LY_ARRAY_FREE(m->local_mods); free(m); } LOGMEM(ctx->ctx); return ret; } static LY_ERR lysc_unres_leafref_add(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, const struct lysp_module *local_mod) { struct lysc_unres_leafref *l = NULL; struct ly_set *leafrefs_set; LY_ARRAY_COUNT_TYPE u; int is_lref = 0; if (ctx->compile_opts & LYS_COMPILE_GROUPING) { /* do not check leafrefs in groupings */ return LY_SUCCESS; } /* use special set for disabled leafrefs */ leafrefs_set = ctx->compile_opts & LYS_COMPILE_DISABLED ? &ctx->unres->disabled_leafrefs : &ctx->unres->leafrefs; if (leaf->type->basetype == LY_TYPE_LEAFREF) { /* leafref */ is_lref = 1; } else if (leaf->type->basetype == LY_TYPE_UNION) { /* union with leafrefs */ LY_ARRAY_FOR(((struct lysc_type_union *)leaf->type)->types, u) { if (((struct lysc_type_union *)leaf->type)->types[u]->basetype == LY_TYPE_LEAFREF) { is_lref = 1; break; } } } if (is_lref) { /* add new unresolved leafref node */ l = calloc(1, sizeof *l); LY_CHECK_ERR_RET(!l, LOGMEM(ctx->ctx), LY_EMEM); l->node = &leaf->node; l->local_mod = local_mod; l->ext = ctx->ext; LY_CHECK_ERR_RET(ly_set_add(leafrefs_set, l, 1, NULL), free(l); LOGMEM(ctx->ctx), LY_EMEM); } return LY_SUCCESS; } /** * @brief Add/replace a leaf default value in unres. * Can also be used for a single leaf-list default value. * * @param[in] ctx Compile context. * @param[in] leaf Leaf with the default value. * @param[in] dflt Default value to use. * @return LY_ERR value. */ static LY_ERR lysc_unres_leaf_dflt_add(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, struct lysp_qname *dflt) { struct lysc_unres_dflt *r = NULL; uint32_t i; if (ctx->compile_opts & (LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING)) { return LY_SUCCESS; } for (i = 0; i < ctx->unres->dflts.count; ++i) { if (((struct lysc_unres_dflt *)ctx->unres->dflts.objs[i])->leaf == leaf) { /* just replace the default */ r = ctx->unres->dflts.objs[i]; lysp_qname_free(ctx->ctx, r->dflt); free(r->dflt); break; } } if (!r) { /* add new unres item */ r = calloc(1, sizeof *r); LY_CHECK_ERR_RET(!r, LOGMEM(ctx->ctx), LY_EMEM); r->leaf = leaf; LY_CHECK_RET(ly_set_add(&ctx->unres->dflts, r, 1, NULL)); } r->dflt = malloc(sizeof *r->dflt); LY_CHECK_GOTO(!r->dflt, error); LY_CHECK_GOTO(lysp_qname_dup(ctx->ctx, dflt, r->dflt), error); return LY_SUCCESS; error: free(r->dflt); LOGMEM(ctx->ctx); return LY_EMEM; } /** * @brief Add/replace a leaf-list default value(s) in unres. * * @param[in] ctx Compile context. * @param[in] llist Leaf-list with the default value. * @param[in] dflts Sized array of the default values. * @return LY_ERR value. */ static LY_ERR lysc_unres_llist_dflts_add(struct lysc_ctx *ctx, struct lysc_node_leaflist *llist, struct lysp_qname *dflts) { struct lysc_unres_dflt *r = NULL; uint32_t i; if (ctx->compile_opts & (LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING)) { return LY_SUCCESS; } for (i = 0; i < ctx->unres->dflts.count; ++i) { if (((struct lysc_unres_dflt *)ctx->unres->dflts.objs[i])->llist == llist) { /* just replace the defaults */ r = ctx->unres->dflts.objs[i]; lysp_qname_free(ctx->ctx, r->dflt); free(r->dflt); r->dflt = NULL; FREE_ARRAY(ctx->ctx, r->dflts, lysp_qname_free); r->dflts = NULL; break; } } if (!r) { r = calloc(1, sizeof *r); LY_CHECK_ERR_RET(!r, LOGMEM(ctx->ctx), LY_EMEM); r->llist = llist; LY_CHECK_RET(ly_set_add(&ctx->unres->dflts, r, 1, NULL)); } DUP_ARRAY(ctx->ctx, dflts, r->dflts, lysp_qname_dup); return LY_SUCCESS; } /** * @brief Add a bits/enumeration type to unres. * * @param[in] ctx Compile context. * @param[in] leaf Leaf of type bits/enumeration whose disabled items to free. * @return LY_ERR value. */ static LY_ERR lysc_unres_bitenum_add(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf) { if (ctx->compile_opts & (LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING)) { /* skip groupings and redundant for disabled nodes */ return LY_SUCCESS; } LY_CHECK_RET(ly_set_add(&ctx->unres->disabled_bitenums, leaf, 1, NULL)); return LY_SUCCESS; } /** * @brief Duplicate the compiled pattern structure. * * Instead of duplicating memory, the reference counter in the @p orig is increased. * * @param[in] orig The pattern structure to duplicate. * @return The duplicated structure to use. */ static struct lysc_pattern * lysc_pattern_dup(struct lysc_pattern *orig) { ++orig->refcount; return orig; } /** * @brief Duplicate the array of compiled patterns. * * The sized array itself is duplicated, but the pattern structures are just shadowed by increasing their reference counter. * * @param[in] ctx Libyang context for logging. * @param[in] orig The patterns sized array to duplicate. * @return New sized array as a copy of @p orig. * @return NULL in case of memory allocation error. */ static struct lysc_pattern ** lysc_patterns_dup(struct ly_ctx *ctx, struct lysc_pattern **orig) { struct lysc_pattern **dup = NULL; LY_ARRAY_COUNT_TYPE u; assert(orig); LY_ARRAY_CREATE_RET(ctx, dup, LY_ARRAY_COUNT(orig), NULL); LY_ARRAY_FOR(orig, u) { dup[u] = lysc_pattern_dup(orig[u]); LY_ARRAY_INCREMENT(dup); } return dup; } /** * @brief Duplicate compiled range structure. * * @param[in] ctx Compile context. * @param[in] orig The range structure to be duplicated. * @param[in] tpdf_chain Chain of the used typedefs, traversed backwards. * @param[in] tpdf_chain_last Index of the last (backwards) typedef in @p tpdf_chain to use. * @return New compiled range structure as a copy of @p orig. * @return NULL in case of memory allocation error. */ static struct lysc_range * lysc_range_dup(struct lysc_ctx *ctx, const struct lysc_range *orig, struct ly_set *tpdf_chain, uint32_t tpdf_chain_last) { struct lysc_range *dup; LY_ERR ret; struct lys_type_item *tpdf_item; uint32_t i; assert(orig); dup = calloc(1, sizeof *dup); LY_CHECK_ERR_RET(!dup, LOGMEM(ctx->ctx), NULL); if (orig->parts) { LY_ARRAY_CREATE_GOTO(ctx->ctx, dup->parts, LY_ARRAY_COUNT(orig->parts), ret, cleanup); (*((LY_ARRAY_COUNT_TYPE *)(dup->parts) - 1)) = LY_ARRAY_COUNT(orig->parts); memcpy(dup->parts, orig->parts, LY_ARRAY_COUNT(dup->parts) * sizeof *dup->parts); } DUP_STRING_GOTO(ctx->ctx, orig->eapptag, dup->eapptag, ret, cleanup); DUP_STRING_GOTO(ctx->ctx, orig->emsg, dup->emsg, ret, cleanup); /* collect all range extensions */ if (tpdf_chain->count > tpdf_chain_last) { i = tpdf_chain->count; do { --i; tpdf_item = tpdf_chain->objs[i]; if (!tpdf_item->tpdf->type.range) { continue; } COMPILE_EXTS_GOTO(ctx, tpdf_item->tpdf->type.range->exts, dup->exts, dup, ret, cleanup); } while (i > tpdf_chain_last); } return dup; cleanup: free(dup); (void) ret; /* set but not used due to the return type */ return NULL; } /** * @brief Print status into a string. * * @param[in] flags Flags with the status to print. * @return String status. */ static const char * lys_status2str(uint16_t flags) { flags &= LYS_STATUS_MASK; switch (flags) { case 0: case LYS_STATUS_CURR: return "current"; case LYS_STATUS_DEPRC: return "deprecated"; case LYS_STATUS_OBSLT: return "obsolete"; default: LOGINT(NULL); return NULL; } } /** * @brief Compile status information of the given statement. * * To simplify getting status of the node, the flags are set following inheritance rules, so all the nodes * has the status correctly set during the compilation. * * @param[in] ctx Compile context * @param[in] parsed_flags Parsed statement flags. * @param[in] inherited_flags Parsed inherited flags from a schema-only statement (augment, uses, ext instance, ...). * @param[in] parent_flags Compiled parent node flags. * @param[in] parent_name Name of the parent node, for logging. * @param[in] stmt_name Statement name, for logging. * @param[in,out] stmt_flags Statement flags with the correct status set. * @return LY_ERR value. */ static LY_ERR lys_compile_status(struct lysc_ctx *ctx, uint16_t parsed_flags, uint16_t inherited_flags, uint16_t parent_flags, const char *parent_name, const char *stmt_name, uint16_t *stmt_flags) { /* normalize to status-only */ parsed_flags &= LYS_STATUS_MASK; inherited_flags &= LYS_STATUS_MASK; parent_flags &= LYS_STATUS_MASK; /* check for conflicts */ if (parent_flags && parsed_flags && (parent_flags > parsed_flags)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Status \"%s\" of \"%s\" is in conflict with \"%s\" status of parent \"%s\".", lys_status2str(parsed_flags), stmt_name, lys_status2str(parent_flags), parent_name); return LY_EVALID; } else if (inherited_flags && parsed_flags && (inherited_flags > parsed_flags)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Inherited schema-only status \"%s\" is in conflict with \"%s\" status of \"%s\".", lys_status2str(inherited_flags), lys_status2str(parsed_flags), stmt_name); return LY_EVALID; } else if (parent_flags && inherited_flags && (parent_flags > inherited_flags)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Status \"%s\" of parent \"%s\" is in conflict with inherited schema-only status \"%s\".", lys_status2str(parent_flags), parent_name, lys_status2str(inherited_flags)); return LY_EVALID; } /* clear */ (*stmt_flags) &= ~LYS_STATUS_MASK; if (parsed_flags) { /* explicit status */ (*stmt_flags) |= parsed_flags; } else if (inherited_flags) { /* inherited status from a schema-only statement */ (*stmt_flags) |= inherited_flags; } else if (parent_flags) { /* inherited status from a parent node */ (*stmt_flags) |= parent_flags; } else { /* default status */ (*stmt_flags) |= LYS_STATUS_CURR; } return LY_SUCCESS; } /** * @brief Compile information from the when statement * * @param[in] ctx Compile context. * @param[in] when_p Parsed when structure. * @param[in] inherited_flags Inherited flags from a schema-only statement. * @param[in] parent Parent node, if any. * @param[in] ctx_node Context node for the when statement. * @param[out] when Pointer where to store pointer to the created compiled when structure. * @return LY_ERR value. */ static LY_ERR lys_compile_when_(struct lysc_ctx *ctx, const struct lysp_when *when_p, uint16_t inherited_flags, const struct lysc_node *parent, const struct lysc_node *ctx_node, struct lysc_when **when) { LY_ERR ret = LY_SUCCESS; LY_VALUE_FORMAT format; *when = calloc(1, sizeof **when); LY_CHECK_ERR_RET(!(*when), LOGMEM(ctx->ctx), LY_EMEM); (*when)->refcount = 1; LY_CHECK_RET(lyxp_expr_parse(ctx->ctx, when_p->cond, 0, 1, &(*when)->cond)); LY_CHECK_RET(lyplg_type_prefix_data_new(ctx->ctx, when_p->cond, strlen(when_p->cond), LY_VALUE_SCHEMA, ctx->pmod, &format, (void **)&(*when)->prefixes)); (*when)->context = (struct lysc_node *)ctx_node; DUP_STRING_GOTO(ctx->ctx, when_p->dsc, (*when)->dsc, ret, done); DUP_STRING_GOTO(ctx->ctx, when_p->ref, (*when)->ref, ret, done); COMPILE_EXTS_GOTO(ctx, when_p->exts, (*when)->exts, (*when), ret, done); LY_CHECK_RET(lys_compile_status(ctx, 0, inherited_flags, parent ? parent->flags : 0, parent ? parent->name : NULL, "when", &(*when)->flags)); done: return ret; } LY_ERR lys_compile_when(struct lysc_ctx *ctx, const struct lysp_when *when_p, uint16_t inherited_flags, const struct lysc_node *parent, const struct lysc_node *ctx_node, struct lysc_node *node, struct lysc_when **when_c) { LY_ERR rc = LY_SUCCESS; struct lysc_when **new_when, ***node_when, *ptr; assert(when_p && (node || when_c)); if (node) { /* get the when array */ node_when = lysc_node_when_p(node); /* create new when pointer */ LY_ARRAY_NEW_GOTO(ctx->ctx, *node_when, new_when, rc, cleanup); } else { /* individual when */ new_when = &ptr; *new_when = calloc(1, sizeof **new_when); LY_CHECK_ERR_GOTO(!*new_when, LOGMEM(ctx->ctx); rc = LY_EMEM, cleanup); } if (!when_c || !(*when_c)) { /* compile when */ LY_CHECK_GOTO(rc = lys_compile_when_(ctx, when_p, inherited_flags, parent, ctx_node, new_when), cleanup); /* remember the compiled when for sharing */ if (when_c) { *when_c = *new_when; } } else { /* use the previously compiled when */ ++(*when_c)->refcount; *new_when = *when_c; } if (node) { /* add when to unres if there is a node for evaluation (not for extension instances) */ LY_CHECK_GOTO(rc = lysc_unres_when_add(ctx, *new_when, node), cleanup); } cleanup: return rc; } LY_ERR lys_compile_must(struct lysc_ctx *ctx, const struct lysp_restr *must_p, struct lysc_must *must) { LY_ERR ret = LY_SUCCESS; LY_VALUE_FORMAT format; LY_CHECK_RET(lyxp_expr_parse(ctx->ctx, must_p->arg.str, 0, 1, &must->cond)); LY_CHECK_RET(lyplg_type_prefix_data_new(ctx->ctx, must_p->arg.str, strlen(must_p->arg.str), LY_VALUE_SCHEMA, must_p->arg.mod, &format, (void **)&must->prefixes)); DUP_STRING_GOTO(ctx->ctx, must_p->eapptag, must->eapptag, ret, done); DUP_STRING_GOTO(ctx->ctx, must_p->emsg, must->emsg, ret, done); DUP_STRING_GOTO(ctx->ctx, must_p->dsc, must->dsc, ret, done); DUP_STRING_GOTO(ctx->ctx, must_p->ref, must->ref, ret, done); COMPILE_EXTS_GOTO(ctx, must_p->exts, must->exts, must, ret, done); done: return ret; } /** * @brief Validate and normalize numeric value from a range definition. * @param[in] ctx Compile context. * @param[in] basetype Base YANG built-in type of the node connected with the range restriction. Actually only LY_TYPE_DEC64 is important to * allow processing of the fractions. The fraction point is extracted from the value which is then normalize according to given frdigits into * valcopy to allow easy parsing and storing of the value. libyang stores decimal number without the decimal point which is always recovered from * the known fraction-digits value. So, with fraction-digits 2, number 3.14 is stored as 314 and number 1 is stored as 100. * @param[in] frdigits The fraction-digits of the type in case of LY_TYPE_DEC64. * @param[in] value String value of the range boundary. * @param[out] len Number of the processed bytes from the value. Processing stops on the first character which is not part of the number boundary. * @param[out] valcopy NULL-terminated string with the numeric value to parse and store. * @return LY_ERR value - LY_SUCCESS, LY_EMEM, LY_EVALID (no number) or LY_EINVAL (decimal64 not matching fraction-digits value). */ static LY_ERR range_part_check_value_syntax(struct lysc_ctx *ctx, LY_DATA_TYPE basetype, uint8_t frdigits, const char *value, size_t *len, char **valcopy) { size_t fraction = 0, size; *len = 0; assert(value); /* parse value */ if (!isdigit(value[*len]) && (value[*len] != '-') && (value[*len] != '+')) { return LY_EVALID; } if ((value[*len] == '-') || (value[*len] == '+')) { ++(*len); } while (isdigit(value[*len])) { ++(*len); } if ((basetype != LY_TYPE_DEC64) || (value[*len] != '.') || !isdigit(value[*len + 1])) { if (basetype == LY_TYPE_DEC64) { goto decimal; } else { *valcopy = strndup(value, *len); return LY_SUCCESS; } } fraction = *len; ++(*len); while (isdigit(value[*len])) { ++(*len); } if (basetype == LY_TYPE_DEC64) { decimal: assert(frdigits); if (fraction && (*len - 1 - fraction > frdigits)) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Range boundary \"%.*s\" of decimal64 type exceeds defined number (%u) of fraction digits.", (int)(*len), value, frdigits); return LY_EINVAL; } if (fraction) { size = (*len) + (frdigits - ((*len) - 1 - fraction)); } else { size = (*len) + frdigits + 1; } *valcopy = malloc(size * sizeof **valcopy); LY_CHECK_ERR_RET(!(*valcopy), LOGMEM(ctx->ctx), LY_EMEM); (*valcopy)[size - 1] = '\0'; if (fraction) { memcpy(&(*valcopy)[0], &value[0], fraction); memcpy(&(*valcopy)[fraction], &value[fraction + 1], (*len) - 1 - (fraction)); memset(&(*valcopy)[(*len) - 1], '0', frdigits - ((*len) - 1 - fraction)); } else { memcpy(&(*valcopy)[0], &value[0], *len); memset(&(*valcopy)[*len], '0', frdigits); } } return LY_SUCCESS; } /** * @brief Check that values in range are in ascendant order. * @param[in] unsigned_value Flag to note that we are working with unsigned values. * @param[in] max Flag to distinguish if checking min or max value. min value must be strictly higher than previous, * max can be also equal. * @param[in] value Current value to check. * @param[in] prev_value The last seen value. * @return LY_SUCCESS or LY_EEXIST for invalid order. */ static LY_ERR range_part_check_ascendancy(ly_bool unsigned_value, ly_bool max, int64_t value, int64_t prev_value) { if (unsigned_value) { if ((max && ((uint64_t)prev_value > (uint64_t)value)) || (!max && ((uint64_t)prev_value >= (uint64_t)value))) { return LY_EEXIST; } } else { if ((max && (prev_value > value)) || (!max && (prev_value >= value))) { return LY_EEXIST; } } return LY_SUCCESS; } /** * @brief Set min/max value of the range part. * @param[in] ctx Compile context. * @param[in] part Range part structure to fill. * @param[in] max Flag to distinguish if storing min or max value. * @param[in] prev The last seen value to check that all values in range are specified in ascendant order. * @param[in] basetype Type of the value to get know implicit min/max values and other checking rules. * @param[in] first Flag for the first value of the range to avoid ascendancy order. * @param[in] length_restr Flag to distinguish between range and length restrictions. Only for logging. * @param[in] frdigits The fraction-digits value in case of LY_TYPE_DEC64 basetype. * @param[in] base_range Range from the type from which the current type is derived (if not built-in) to get type's min and max values. * @param[in,out] value Numeric range value to be stored, if not provided the type's min/max value is set. * @return LY_ERR value - LY_SUCCESS, LY_EDENIED (value brokes type's boundaries), LY_EVALID (not a number), * LY_EEXIST (value is smaller than the previous one), LY_EINVAL (decimal64 value does not corresponds with the * frdigits value), LY_EMEM. */ static LY_ERR range_part_minmax(struct lysc_ctx *ctx, struct lysc_range_part *part, ly_bool max, int64_t prev, LY_DATA_TYPE basetype, ly_bool first, ly_bool length_restr, uint8_t frdigits, struct lysc_range *base_range, const char **value) { LY_ERR ret = LY_SUCCESS; char *valcopy = NULL; size_t len = 0; if (value) { ret = range_part_check_value_syntax(ctx, basetype, frdigits, *value, &len, &valcopy); LY_CHECK_GOTO(ret, finalize); } if (!valcopy && base_range) { if (max) { part->max_64 = base_range->parts[LY_ARRAY_COUNT(base_range->parts) - 1].max_64; } else { part->min_64 = base_range->parts[0].min_64; } if (!first) { ret = range_part_check_ascendancy(basetype <= LY_TYPE_STRING ? 1 : 0, max, max ? part->max_64 : part->min_64, prev); } goto finalize; } switch (basetype) { case LY_TYPE_INT8: /* range */ if (valcopy) { ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-128), INT64_C(127), LY_BASE_DEC, max ? &part->max_64 : &part->min_64); } else if (max) { part->max_64 = INT64_C(127); } else { part->min_64 = INT64_C(-128); } if (!ret && !first) { ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev); } break; case LY_TYPE_INT16: /* range */ if (valcopy) { ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-32768), INT64_C(32767), LY_BASE_DEC, max ? &part->max_64 : &part->min_64); } else if (max) { part->max_64 = INT64_C(32767); } else { part->min_64 = INT64_C(-32768); } if (!ret && !first) { ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev); } break; case LY_TYPE_INT32: /* range */ if (valcopy) { ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-2147483648), INT64_C(2147483647), LY_BASE_DEC, max ? &part->max_64 : &part->min_64); } else if (max) { part->max_64 = INT64_C(2147483647); } else { part->min_64 = INT64_C(-2147483648); } if (!ret && !first) { ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev); } break; case LY_TYPE_INT64: /* range */ case LY_TYPE_DEC64: /* range */ if (valcopy) { ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-9223372036854775807) - INT64_C(1), INT64_C(9223372036854775807), LY_BASE_DEC, max ? &part->max_64 : &part->min_64); } else if (max) { part->max_64 = INT64_C(9223372036854775807); } else { part->min_64 = INT64_C(-9223372036854775807) - INT64_C(1); } if (!ret && !first) { ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev); } break; case LY_TYPE_UINT8: /* range */ if (valcopy) { ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(255), LY_BASE_DEC, max ? &part->max_u64 : &part->min_u64); } else if (max) { part->max_u64 = UINT64_C(255); } else { part->min_u64 = UINT64_C(0); } if (!ret && !first) { ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev); } break; case LY_TYPE_UINT16: /* range */ if (valcopy) { ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(65535), LY_BASE_DEC, max ? &part->max_u64 : &part->min_u64); } else if (max) { part->max_u64 = UINT64_C(65535); } else { part->min_u64 = UINT64_C(0); } if (!ret && !first) { ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev); } break; case LY_TYPE_UINT32: /* range */ if (valcopy) { ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(4294967295), LY_BASE_DEC, max ? &part->max_u64 : &part->min_u64); } else if (max) { part->max_u64 = UINT64_C(4294967295); } else { part->min_u64 = UINT64_C(0); } if (!ret && !first) { ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev); } break; case LY_TYPE_UINT64: /* range */ case LY_TYPE_STRING: /* length */ case LY_TYPE_BINARY: /* length */ if (valcopy) { ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(18446744073709551615), LY_BASE_DEC, max ? &part->max_u64 : &part->min_u64); } else if (max) { part->max_u64 = UINT64_C(18446744073709551615); } else { part->min_u64 = UINT64_C(0); } if (!ret && !first) { ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev); } break; default: LOGINT(ctx->ctx); ret = LY_EINT; } finalize: if (ret == LY_EDENIED) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - value \"%s\" does not fit the type limitations.", length_restr ? "length" : "range", valcopy ? valcopy : *value); } else if (ret == LY_EVALID) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - invalid value \"%s\".", length_restr ? "length" : "range", valcopy ? valcopy : *value); } else if (ret == LY_EEXIST) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - values are not in ascending order (%s).", length_restr ? "length" : "range", (valcopy && basetype != LY_TYPE_DEC64) ? valcopy : value ? *value : max ? "max" : "min"); } else if (!ret && value) { *value = *value + len; } free(valcopy); return ret; } LY_ERR lys_compile_type_range(struct lysc_ctx *ctx, const struct lysp_restr *range_p, LY_DATA_TYPE basetype, ly_bool length_restr, uint8_t frdigits, struct lysc_range *base_range, struct lysc_range **range) { LY_ERR ret = LY_SUCCESS; const char *expr; struct lysc_range_part *parts = NULL, *part; ly_bool range_expected = 0, uns; LY_ARRAY_COUNT_TYPE parts_done = 0, u, v; assert(range); assert(range_p); expr = range_p->arg.str; while (1) { if (isspace(*expr)) { ++expr; } else if (*expr == '\0') { if (range_expected) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected end of the expression after \"..\" (%s).", length_restr ? "length" : "range", range_p->arg.str); ret = LY_EVALID; goto cleanup; } else if (!parts || (parts_done == LY_ARRAY_COUNT(parts))) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected end of the expression (%s).", length_restr ? "length" : "range", range_p->arg.str); ret = LY_EVALID; goto cleanup; } parts_done++; break; } else if (!strncmp(expr, "min", ly_strlen_const("min"))) { if (parts) { /* min cannot be used elsewhere than in the first part */ LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data before min keyword (%.*s).", length_restr ? "length" : "range", (int)(expr - range_p->arg.str), range_p->arg.str); ret = LY_EVALID; goto cleanup; } expr += ly_strlen_const("min"); LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup); LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 0, 0, basetype, 1, length_restr, frdigits, base_range, NULL), cleanup); part->max_64 = part->min_64; } else if (*expr == '|') { if (!parts || range_expected) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected beginning of the expression (%s).", length_restr ? "length" : "range", expr); ret = LY_EVALID; goto cleanup; } expr++; parts_done++; /* process next part of the expression */ } else if (!strncmp(expr, "..", 2)) { expr += 2; while (isspace(*expr)) { expr++; } if (!parts || (LY_ARRAY_COUNT(parts) == parts_done)) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected \"..\" without a lower bound.", length_restr ? "length" : "range"); ret = LY_EVALID; goto cleanup; } /* continue expecting the upper boundary */ range_expected = 1; } else if (isdigit(*expr) || (*expr == '-') || (*expr == '+')) { /* number */ if (range_expected) { part = &parts[LY_ARRAY_COUNT(parts) - 1]; LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, NULL, &expr), cleanup); range_expected = 0; } else { LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup); LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 0, parts_done ? parts[LY_ARRAY_COUNT(parts) - 2].max_64 : 0, basetype, parts_done ? 0 : 1, length_restr, frdigits, NULL, &expr), cleanup); part->max_64 = part->min_64; } /* continue with possible another expression part */ } else if (!strncmp(expr, "max", ly_strlen_const("max"))) { expr += ly_strlen_const("max"); while (isspace(*expr)) { expr++; } if (*expr != '\0') { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data after max keyword (%s).", length_restr ? "length" : "range", expr); ret = LY_EVALID; goto cleanup; } if (range_expected) { part = &parts[LY_ARRAY_COUNT(parts) - 1]; LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, base_range, NULL), cleanup); range_expected = 0; } else { LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup); LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 1, parts_done ? parts[LY_ARRAY_COUNT(parts) - 2].max_64 : 0, basetype, parts_done ? 0 : 1, length_restr, frdigits, base_range, NULL), cleanup); part->min_64 = part->max_64; } } else { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data (%s).", length_restr ? "length" : "range", expr); ret = LY_EVALID; goto cleanup; } } /* check with the previous range/length restriction */ if (base_range) { switch (basetype) { case LY_TYPE_BINARY: case LY_TYPE_UINT8: case LY_TYPE_UINT16: case LY_TYPE_UINT32: case LY_TYPE_UINT64: case LY_TYPE_STRING: uns = 1; break; case LY_TYPE_DEC64: case LY_TYPE_INT8: case LY_TYPE_INT16: case LY_TYPE_INT32: case LY_TYPE_INT64: uns = 0; break; default: LOGINT(ctx->ctx); ret = LY_EINT; goto cleanup; } for (u = v = 0; u < parts_done && v < LY_ARRAY_COUNT(base_range->parts); ++u) { if ((uns && (parts[u].min_u64 < base_range->parts[v].min_u64)) || (!uns && (parts[u].min_64 < base_range->parts[v].min_64))) { goto baseerror; } /* current lower bound is not lower than the base */ if (base_range->parts[v].min_64 == base_range->parts[v].max_64) { /* base has single value */ if (base_range->parts[v].min_64 == parts[u].min_64) { /* both lower bounds are the same */ if (parts[u].min_64 != parts[u].max_64) { /* current continues with a range */ goto baseerror; } else { /* equal single values, move both forward */ ++v; continue; } } else { /* base is single value lower than current range, so the * value from base range is removed in the current, * move only base and repeat checking */ ++v; --u; continue; } } else { /* base is the range */ if (parts[u].min_64 == parts[u].max_64) { /* current is a single value */ if ((uns && (parts[u].max_u64 > base_range->parts[v].max_u64)) || (!uns && (parts[u].max_64 > base_range->parts[v].max_64))) { /* current is behind the base range, so base range is omitted, * move the base and keep the current for further check */ ++v; --u; } /* else it is within the base range, so move the current, but keep the base */ continue; } else { /* both are ranges - check the higher bound, the lower was already checked */ if ((uns && (parts[u].max_u64 > base_range->parts[v].max_u64)) || (!uns && (parts[u].max_64 > base_range->parts[v].max_64))) { /* higher bound is higher than the current higher bound */ if ((uns && (parts[u].min_u64 > base_range->parts[v].max_u64)) || (!uns && (parts[u].min_64 > base_range->parts[v].max_64))) { /* but the current lower bound is also higher, so the base range is omitted, * continue with the same current, but move the base */ --u; ++v; continue; } /* current range starts within the base range but end behind it */ goto baseerror; } else { /* current range is smaller than the base, * move current, but stay with the base */ continue; } } } } if (u != parts_done) { baseerror: LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - the derived restriction (%s) is not equally or more limiting.", length_restr ? "length" : "range", range_p->arg.str); ret = LY_EVALID; goto cleanup; } } if (!(*range)) { *range = calloc(1, sizeof **range); LY_CHECK_ERR_RET(!(*range), LOGMEM(ctx->ctx), LY_EMEM); } /* we rewrite the following values as the types chain is being processed */ if (range_p->eapptag) { lydict_remove(ctx->ctx, (*range)->eapptag); LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->eapptag, 0, &(*range)->eapptag), cleanup); } if (range_p->emsg) { lydict_remove(ctx->ctx, (*range)->emsg); LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->emsg, 0, &(*range)->emsg), cleanup); } if (range_p->dsc) { lydict_remove(ctx->ctx, (*range)->dsc); LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->dsc, 0, &(*range)->dsc), cleanup); } if (range_p->ref) { lydict_remove(ctx->ctx, (*range)->ref); LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->ref, 0, &(*range)->ref), cleanup); } /* extensions are taken only from the last range by the caller */ (*range)->parts = parts; parts = NULL; cleanup: LY_ARRAY_FREE(parts); return ret; } /** * @brief Transform characters block in an XML Schema pattern into Perl character ranges. * * @param[in] ctx libyang context. * @param[in] pattern Original pattern. * @param[in,out] regex Pattern to modify. * @return LY_ERR value. */ static LY_ERR lys_compile_pattern_chblocks_xmlschema2perl(const struct ly_ctx *ctx, const char *pattern, char **regex) { #define URANGE_LEN 19 char *ublock2urange[][2] = { {"BasicLatin", "[\\x{0000}-\\x{007F}]"}, {"Latin-1Supplement", "[\\x{0080}-\\x{00FF}]"}, {"LatinExtended-A", "[\\x{0100}-\\x{017F}]"}, {"LatinExtended-B", "[\\x{0180}-\\x{024F}]"}, {"IPAExtensions", "[\\x{0250}-\\x{02AF}]"}, {"SpacingModifierLetters", "[\\x{02B0}-\\x{02FF}]"}, {"CombiningDiacriticalMarks", "[\\x{0300}-\\x{036F}]"}, {"Greek", "[\\x{0370}-\\x{03FF}]"}, {"Cyrillic", "[\\x{0400}-\\x{04FF}]"}, {"Armenian", "[\\x{0530}-\\x{058F}]"}, {"Hebrew", "[\\x{0590}-\\x{05FF}]"}, {"Arabic", "[\\x{0600}-\\x{06FF}]"}, {"Syriac", "[\\x{0700}-\\x{074F}]"}, {"Thaana", "[\\x{0780}-\\x{07BF}]"}, {"Devanagari", "[\\x{0900}-\\x{097F}]"}, {"Bengali", "[\\x{0980}-\\x{09FF}]"}, {"Gurmukhi", "[\\x{0A00}-\\x{0A7F}]"}, {"Gujarati", "[\\x{0A80}-\\x{0AFF}]"}, {"Oriya", "[\\x{0B00}-\\x{0B7F}]"}, {"Tamil", "[\\x{0B80}-\\x{0BFF}]"}, {"Telugu", "[\\x{0C00}-\\x{0C7F}]"}, {"Kannada", "[\\x{0C80}-\\x{0CFF}]"}, {"Malayalam", "[\\x{0D00}-\\x{0D7F}]"}, {"Sinhala", "[\\x{0D80}-\\x{0DFF}]"}, {"Thai", "[\\x{0E00}-\\x{0E7F}]"}, {"Lao", "[\\x{0E80}-\\x{0EFF}]"}, {"Tibetan", "[\\x{0F00}-\\x{0FFF}]"}, {"Myanmar", "[\\x{1000}-\\x{109F}]"}, {"Georgian", "[\\x{10A0}-\\x{10FF}]"}, {"HangulJamo", "[\\x{1100}-\\x{11FF}]"}, {"Ethiopic", "[\\x{1200}-\\x{137F}]"}, {"Cherokee", "[\\x{13A0}-\\x{13FF}]"}, {"UnifiedCanadianAboriginalSyllabics", "[\\x{1400}-\\x{167F}]"}, {"Ogham", "[\\x{1680}-\\x{169F}]"}, {"Runic", "[\\x{16A0}-\\x{16FF}]"}, {"Khmer", "[\\x{1780}-\\x{17FF}]"}, {"Mongolian", "[\\x{1800}-\\x{18AF}]"}, {"LatinExtendedAdditional", "[\\x{1E00}-\\x{1EFF}]"}, {"GreekExtended", "[\\x{1F00}-\\x{1FFF}]"}, {"GeneralPunctuation", "[\\x{2000}-\\x{206F}]"}, {"SuperscriptsandSubscripts", "[\\x{2070}-\\x{209F}]"}, {"CurrencySymbols", "[\\x{20A0}-\\x{20CF}]"}, {"CombiningMarksforSymbols", "[\\x{20D0}-\\x{20FF}]"}, {"LetterlikeSymbols", "[\\x{2100}-\\x{214F}]"}, {"NumberForms", "[\\x{2150}-\\x{218F}]"}, {"Arrows", "[\\x{2190}-\\x{21FF}]"}, {"MathematicalOperators", "[\\x{2200}-\\x{22FF}]"}, {"MiscellaneousTechnical", "[\\x{2300}-\\x{23FF}]"}, {"ControlPictures", "[\\x{2400}-\\x{243F}]"}, {"OpticalCharacterRecognition", "[\\x{2440}-\\x{245F}]"}, {"EnclosedAlphanumerics", "[\\x{2460}-\\x{24FF}]"}, {"BoxDrawing", "[\\x{2500}-\\x{257F}]"}, {"BlockElements", "[\\x{2580}-\\x{259F}]"}, {"GeometricShapes", "[\\x{25A0}-\\x{25FF}]"}, {"MiscellaneousSymbols", "[\\x{2600}-\\x{26FF}]"}, {"Dingbats", "[\\x{2700}-\\x{27BF}]"}, {"BraillePatterns", "[\\x{2800}-\\x{28FF}]"}, {"CJKRadicalsSupplement", "[\\x{2E80}-\\x{2EFF}]"}, {"KangxiRadicals", "[\\x{2F00}-\\x{2FDF}]"}, {"IdeographicDescriptionCharacters", "[\\x{2FF0}-\\x{2FFF}]"}, {"CJKSymbolsandPunctuation", "[\\x{3000}-\\x{303F}]"}, {"Hiragana", "[\\x{3040}-\\x{309F}]"}, {"Katakana", "[\\x{30A0}-\\x{30FF}]"}, {"Bopomofo", "[\\x{3100}-\\x{312F}]"}, {"HangulCompatibilityJamo", "[\\x{3130}-\\x{318F}]"}, {"Kanbun", "[\\x{3190}-\\x{319F}]"}, {"BopomofoExtended", "[\\x{31A0}-\\x{31BF}]"}, {"EnclosedCJKLettersandMonths", "[\\x{3200}-\\x{32FF}]"}, {"CJKCompatibility", "[\\x{3300}-\\x{33FF}]"}, {"CJKUnifiedIdeographsExtensionA", "[\\x{3400}-\\x{4DB5}]"}, {"CJKUnifiedIdeographs", "[\\x{4E00}-\\x{9FFF}]"}, {"YiSyllables", "[\\x{A000}-\\x{A48F}]"}, {"YiRadicals", "[\\x{A490}-\\x{A4CF}]"}, {"HangulSyllables", "[\\x{AC00}-\\x{D7A3}]"}, {"PrivateUse", "[\\x{E000}-\\x{F8FF}]"}, {"CJKCompatibilityIdeographs", "[\\x{F900}-\\x{FAFF}]"}, {"AlphabeticPresentationForms", "[\\x{FB00}-\\x{FB4F}]"}, {"ArabicPresentationForms-A", "[\\x{FB50}-\\x{FDFF}]"}, {"CombiningHalfMarks", "[\\x{FE20}-\\x{FE2F}]"}, {"CJKCompatibilityForms", "[\\x{FE30}-\\x{FE4F}]"}, {"SmallFormVariants", "[\\x{FE50}-\\x{FE6F}]"}, {"ArabicPresentationForms-B", "[\\x{FE70}-\\x{FEFE}]"}, {"HalfwidthandFullwidthForms", "[\\x{FF00}-\\x{FFEF}]"}, {"Specials", "[\\x{FEFF}|\\x{FFF0}-\\x{FFFD}]"}, {NULL, NULL} }; size_t idx, idx2, start, end; char *perl_regex, *ptr; perl_regex = *regex; /* substitute Unicode Character Blocks with exact Character Ranges */ while ((ptr = strstr(perl_regex, "\\p{Is"))) { start = ptr - perl_regex; ptr = strchr(ptr, '}'); if (!ptr) { LOGVAL(ctx, LY_VCODE_INREGEXP, pattern, perl_regex + start + 2, "unterminated character property"); return LY_EVALID; } end = (ptr - perl_regex) + 1; /* need more space */ if (end - start < URANGE_LEN) { perl_regex = ly_realloc(perl_regex, strlen(perl_regex) + (URANGE_LEN - (end - start)) + 1); *regex = perl_regex; LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx), LY_EMEM); } /* find our range */ for (idx = 0; ublock2urange[idx][0]; ++idx) { if (!strncmp(perl_regex + start + ly_strlen_const("\\p{Is"), ublock2urange[idx][0], strlen(ublock2urange[idx][0]))) { break; } } if (!ublock2urange[idx][0]) { LOGVAL(ctx, LY_VCODE_INREGEXP, pattern, perl_regex + start + 5, "unknown block name"); return LY_EVALID; } /* make the space in the string and replace the block (but we cannot include brackets if it was already enclosed in them) */ for (idx2 = 0, idx = 0; idx2 < start; ++idx2) { if ((perl_regex[idx2] == '[') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) { ++idx; } if ((perl_regex[idx2] == ']') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) { --idx; } } if (idx) { /* skip brackets */ memmove(perl_regex + start + (URANGE_LEN - 2), perl_regex + end, strlen(perl_regex + end) + 1); memcpy(perl_regex + start, ublock2urange[idx][1] + 1, URANGE_LEN - 2); } else { memmove(perl_regex + start + URANGE_LEN, perl_regex + end, strlen(perl_regex + end) + 1); memcpy(perl_regex + start, ublock2urange[idx][1], URANGE_LEN); } } return LY_SUCCESS; } LY_ERR lys_compile_type_pattern_check(struct ly_ctx *ctx, const char *pattern, pcre2_code **code) { size_t idx, size, brack; char *perl_regex; int err_code, compile_opts; const char *orig_ptr; PCRE2_SIZE err_offset; pcre2_code *code_local; ly_bool escaped; LY_ERR r; /* adjust the expression to a Perl equivalent * http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#regexs */ /* allocate space for the transformed pattern */ size = strlen(pattern) + 1; compile_opts = PCRE2_UTF | PCRE2_UCP | PCRE2_ANCHORED | PCRE2_DOLLAR_ENDONLY | PCRE2_NO_AUTO_CAPTURE; #ifdef PCRE2_ENDANCHORED compile_opts |= PCRE2_ENDANCHORED; #else /* add space for trailing $ anchor */ size++; #endif perl_regex = malloc(size); LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx), LY_EMEM); perl_regex[0] = '\0'; /* we need to replace all "$" and "^" (that are not in "[]") with "\$" and "\^" */ brack = 0; idx = 0; escaped = 0; orig_ptr = pattern; while (orig_ptr[0]) { switch (orig_ptr[0]) { case '$': case '^': if (!brack) { /* make space for the extra character */ ++size; perl_regex = ly_realloc(perl_regex, size); LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx), LY_EMEM); /* print escape slash */ perl_regex[idx] = '\\'; ++idx; } break; case '\\': /* escape character found or backslash is escaped */ escaped = !escaped; /* copy backslash and continue with the next character */ perl_regex[idx] = orig_ptr[0]; ++idx; ++orig_ptr; continue; case '[': if (!escaped) { ++brack; } break; case ']': if (!brack && !escaped) { /* If ']' does not terminate a character class expression, then pcre2_compile() implicitly escapes the * ']' character. But this seems to be against the regular expressions rules declared in * "XML schema: Datatypes" and therefore an error is returned. So for example if pattern is '\[a]' then * pcre2 match characters '[a]' literally but in YANG such pattern is not allowed. */ LOGVAL(ctx, LY_VCODE_INREGEXP, pattern, orig_ptr, "character group doesn't begin with '['"); free(perl_regex); return LY_EVALID; } else if (!escaped) { --brack; } break; default: break; } /* copy char */ perl_regex[idx] = orig_ptr[0]; ++idx; ++orig_ptr; escaped = 0; } #ifndef PCRE2_ENDANCHORED /* anchor match to end of subject */ perl_regex[idx++] = '$'; #endif perl_regex[idx] = '\0'; /* transform character blocks */ if ((r = lys_compile_pattern_chblocks_xmlschema2perl(ctx, pattern, &perl_regex))) { free(perl_regex); return r; } /* must return 0, already checked during parsing */ code_local = pcre2_compile((PCRE2_SPTR)perl_regex, PCRE2_ZERO_TERMINATED, compile_opts, &err_code, &err_offset, NULL); if (!code_local) { PCRE2_UCHAR err_msg[LY_PCRE2_MSG_LIMIT] = {0}; pcre2_get_error_message(err_code, err_msg, LY_PCRE2_MSG_LIMIT); LOGVAL(ctx, LY_VCODE_INREGEXP, pattern, perl_regex + err_offset, err_msg); free(perl_regex); return LY_EVALID; } free(perl_regex); if (code) { *code = code_local; } else { free(code_local); } return LY_SUCCESS; #undef URANGE_LEN } LY_ERR lys_compile_type_patterns(struct lysc_ctx *ctx, const struct lysp_restr *patterns_p, struct lysc_pattern **base_patterns, struct lysc_pattern ***patterns) { struct lysc_pattern **pattern; LY_ARRAY_COUNT_TYPE u; LY_ERR ret = LY_SUCCESS; /* first, copy the patterns from the base type */ if (base_patterns) { *patterns = lysc_patterns_dup(ctx->ctx, base_patterns); LY_CHECK_ERR_RET(!(*patterns), LOGMEM(ctx->ctx), LY_EMEM); } LY_ARRAY_FOR(patterns_p, u) { LY_ARRAY_NEW_RET(ctx->ctx, (*patterns), pattern, LY_EMEM); *pattern = calloc(1, sizeof **pattern); ++(*pattern)->refcount; ret = lys_compile_type_pattern_check(ctx->ctx, &patterns_p[u].arg.str[1], &(*pattern)->code); LY_CHECK_RET(ret); if (patterns_p[u].arg.str[0] == LYSP_RESTR_PATTERN_NACK) { (*pattern)->inverted = 1; } DUP_STRING_GOTO(ctx->ctx, &patterns_p[u].arg.str[1], (*pattern)->expr, ret, done); DUP_STRING_GOTO(ctx->ctx, patterns_p[u].eapptag, (*pattern)->eapptag, ret, done); DUP_STRING_GOTO(ctx->ctx, patterns_p[u].emsg, (*pattern)->emsg, ret, done); DUP_STRING_GOTO(ctx->ctx, patterns_p[u].dsc, (*pattern)->dsc, ret, done); DUP_STRING_GOTO(ctx->ctx, patterns_p[u].ref, (*pattern)->ref, ret, done); COMPILE_EXTS_GOTO(ctx, patterns_p[u].exts, (*pattern)->exts, (*pattern), ret, done); } done: return ret; } /** * @brief map of the possible restrictions combination for the specific built-in type. */ static uint16_t type_substmt_map[LY_DATA_TYPE_COUNT] = { 0 /* LY_TYPE_UNKNOWN */, LYS_SET_LENGTH /* LY_TYPE_BINARY */, LYS_SET_RANGE /* LY_TYPE_UINT8 */, LYS_SET_RANGE /* LY_TYPE_UINT16 */, LYS_SET_RANGE /* LY_TYPE_UINT32 */, LYS_SET_RANGE /* LY_TYPE_UINT64 */, LYS_SET_LENGTH | LYS_SET_PATTERN /* LY_TYPE_STRING */, LYS_SET_BIT /* LY_TYPE_BITS */, 0 /* LY_TYPE_BOOL */, LYS_SET_FRDIGITS | LYS_SET_RANGE /* LY_TYPE_DEC64 */, 0 /* LY_TYPE_EMPTY */, LYS_SET_ENUM /* LY_TYPE_ENUM */, LYS_SET_BASE /* LY_TYPE_IDENT */, LYS_SET_REQINST /* LY_TYPE_INST */, LYS_SET_REQINST | LYS_SET_PATH /* LY_TYPE_LEAFREF */, LYS_SET_TYPE /* LY_TYPE_UNION */, LYS_SET_RANGE /* LY_TYPE_INT8 */, LYS_SET_RANGE /* LY_TYPE_INT16 */, LYS_SET_RANGE /* LY_TYPE_INT32 */, LYS_SET_RANGE /* LY_TYPE_INT64 */ }; /** * @brief stringification of the YANG built-in data types */ const char *ly_data_type2str[LY_DATA_TYPE_COUNT] = { LY_TYPE_UNKNOWN_STR, LY_TYPE_BINARY_STR, LY_TYPE_UINT8_STR, LY_TYPE_UINT16_STR, LY_TYPE_UINT32_STR, LY_TYPE_UINT64_STR, LY_TYPE_STRING_STR, LY_TYPE_BITS_STR, LY_TYPE_BOOL_STR, LY_TYPE_DEC64_STR, LY_TYPE_EMPTY_STR, LY_TYPE_ENUM_STR, LY_TYPE_IDENT_STR, LY_TYPE_INST_STR, LY_TYPE_LEAFREF_STR, LY_TYPE_UNION_STR, LY_TYPE_INT8_STR, LY_TYPE_INT16_STR, LY_TYPE_INT32_STR, LY_TYPE_INT64_STR }; LY_ERR lys_compile_type_enums(struct lysc_ctx *ctx, const struct lysp_type_enum *enums_p, LY_DATA_TYPE basetype, struct lysc_type_bitenum_item *base_enums, struct lysc_type_bitenum_item **bitenums) { LY_ERR ret = LY_SUCCESS; LY_ARRAY_COUNT_TYPE u, v, match = 0; int32_t highest_value = INT32_MIN, cur_val = INT32_MIN; uint32_t highest_position = 0, cur_pos = 0; struct lysc_type_bitenum_item *e, storage; ly_bool enabled; if (base_enums && (ctx->pmod->version < LYS_VERSION_1_1)) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "%s type can be subtyped only in YANG 1.1 modules.", basetype == LY_TYPE_ENUM ? "Enumeration" : "Bits"); return LY_EVALID; } LY_ARRAY_FOR(enums_p, u) { /* perform all checks */ if (base_enums) { /* check the enum/bit presence in the base type - the set of enums/bits in the derived type must be a subset */ LY_ARRAY_FOR(base_enums, v) { if (!strcmp(enums_p[u].name, base_enums[v].name)) { break; } } if (v == LY_ARRAY_COUNT(base_enums)) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s - derived type adds new item \"%s\".", basetype == LY_TYPE_ENUM ? "enumeration" : "bits", enums_p[u].name); return LY_EVALID; } match = v; } if (basetype == LY_TYPE_ENUM) { if (enums_p[u].flags & LYS_SET_VALUE) { /* value assigned by model */ cur_val = (int32_t)enums_p[u].value; /* check collision with other values */ LY_ARRAY_FOR(*bitenums, v) { if (cur_val == (*bitenums)[v].value) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid enumeration - value %" PRId32 " collide in items \"%s\" and \"%s\".", cur_val, enums_p[u].name, (*bitenums)[v].name); return LY_EVALID; } } } else if (base_enums) { /* inherit the assigned value */ cur_val = base_enums[match].value; } else { /* assign value automatically */ if (u == 0) { cur_val = 0; } else if (highest_value == INT32_MAX) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid enumeration - it is not possible to auto-assign enum value for " "\"%s\" since the highest value is already 2147483647.", enums_p[u].name); return LY_EVALID; } else { cur_val = highest_value + 1; } } /* save highest value for auto assing */ if (highest_value < cur_val) { highest_value = cur_val; } } else { /* LY_TYPE_BITS */ if (enums_p[u].flags & LYS_SET_VALUE) { /* value assigned by model */ cur_pos = (uint32_t)enums_p[u].value; /* check collision with other values */ LY_ARRAY_FOR(*bitenums, v) { if (cur_pos == (*bitenums)[v].position) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid bits - position %" PRIu32 " collide in items \"%s\" and \"%s\".", cur_pos, enums_p[u].name, (*bitenums)[v].name); return LY_EVALID; } } } else if (base_enums) { /* inherit the assigned value */ cur_pos = base_enums[match].position; } else { /* assign value automatically */ if (u == 0) { cur_pos = 0; } else if (highest_position == UINT32_MAX) { /* counter overflow */ LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid bits - it is not possible to auto-assign bit position for " "\"%s\" since the highest value is already 4294967295.", enums_p[u].name); return LY_EVALID; } else { cur_pos = highest_position + 1; } } /* save highest position for auto assing */ if (highest_position < cur_pos) { highest_position = cur_pos; } } /* the assigned values must not change from the derived type */ if (base_enums) { if (basetype == LY_TYPE_ENUM) { if (cur_val != base_enums[match].value) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid enumeration - value of the item \"%s\" has changed from %" PRId32 " to %" PRId32 " in the derived type.", enums_p[u].name, base_enums[match].value, cur_val); return LY_EVALID; } } else { if (cur_pos != base_enums[match].position) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid bits - position of the item \"%s\" has changed from %" PRIu32 " to %" PRIu32 " in the derived type.", enums_p[u].name, base_enums[match].position, cur_pos); return LY_EVALID; } } } /* add new enum/bit */ LY_ARRAY_NEW_RET(ctx->ctx, *bitenums, e, LY_EMEM); DUP_STRING_GOTO(ctx->ctx, enums_p[u].name, e->name, ret, done); DUP_STRING_GOTO(ctx->ctx, enums_p[u].dsc, e->dsc, ret, done); DUP_STRING_GOTO(ctx->ctx, enums_p[u].ref, e->ref, ret, done); e->flags = (enums_p[u].flags & LYS_FLAGS_COMPILED_MASK) | (basetype == LY_TYPE_ENUM ? LYS_IS_ENUM : 0); if (basetype == LY_TYPE_ENUM) { e->value = cur_val; } else { e->position = cur_pos; } COMPILE_EXTS_GOTO(ctx, enums_p[u].exts, e->exts, e, ret, done); /* evaluate if-ffeatures */ LY_CHECK_RET(lys_eval_iffeatures(ctx->ctx, enums_p[u].iffeatures, &enabled)); if (!enabled) { /* set only flag, later resolved and removed */ e->flags |= LYS_DISABLED; } if (basetype == LY_TYPE_BITS) { /* keep bits ordered by position */ for (v = u; v && (*bitenums)[v - 1].position > e->position; --v) {} if (v != u) { memcpy(&storage, e, sizeof *e); memmove(&(*bitenums)[v + 1], &(*bitenums)[v], (u - v) * sizeof **bitenums); memcpy(&(*bitenums)[v], &storage, sizeof storage); } } } done: return ret; } /** * @brief Compile union type. * * @param[in] ctx Compile context. * @param[in] ptypes Parsed union types. * @param[in] context_pnode Schema node where the type/typedef is placed to correctly find the base types. * @param[in] context_flags Flags of the context node or the referencing typedef to correctly check status of referencing and referenced objects. * @param[in] context_name Name of the context node or referencing typedef for logging. * @param[out] utypes_p Array of compiled union types. * @return LY_ERR value. */ static LY_ERR lys_compile_type_union(struct lysc_ctx *ctx, struct lysp_type *ptypes, struct lysp_node *context_pnode, uint16_t context_flags, const char *context_name, struct lysc_type ***utypes_p) { LY_ERR ret = LY_SUCCESS; struct lysc_type **utypes = *utypes_p; struct lysc_type_union *un_aux = NULL; LY_ARRAY_CREATE_GOTO(ctx->ctx, utypes, LY_ARRAY_COUNT(ptypes), ret, error); for (LY_ARRAY_COUNT_TYPE u = 0, additional = 0; u < LY_ARRAY_COUNT(ptypes); ++u) { ret = lys_compile_type(ctx, context_pnode, context_flags, context_name, &ptypes[u], &utypes[u + additional], NULL, NULL); LY_CHECK_GOTO(ret, error); LY_ATOMIC_INC_BARRIER(utypes[u + additional]->refcount); if (utypes[u + additional]->basetype == LY_TYPE_UNION) { /* add space for additional types from the union subtype */ un_aux = (struct lysc_type_union *)utypes[u + additional]; LY_ARRAY_CREATE_GOTO(ctx->ctx, utypes, LY_ARRAY_COUNT(ptypes) + additional + LY_ARRAY_COUNT(un_aux->types) - LY_ARRAY_COUNT(utypes), ret, error); /* copy subtypes of the subtype union */ for (LY_ARRAY_COUNT_TYPE v = 0; v < LY_ARRAY_COUNT(un_aux->types); ++v) { utypes[u + additional] = un_aux->types[v]; LY_ATOMIC_INC_BARRIER(un_aux->types[v]->refcount); ++additional; LY_ARRAY_INCREMENT(utypes); } /* compensate u increment in main loop */ --additional; /* free the replaced union subtype */ lysc_type_free(&ctx->free_ctx, (struct lysc_type *)un_aux); un_aux = NULL; } else { LY_ARRAY_INCREMENT(utypes); } } *utypes_p = utypes; return LY_SUCCESS; error: if (un_aux) { lysc_type_free(&ctx->free_ctx, (struct lysc_type *)un_aux); } *utypes_p = utypes; return ret; } /** * @brief Allocate a new specific type structure according to the basetype. * * @param[in] ctx Context to use. * @param[in] basetype Base type of the new type. * @param[in] tpdf_name Optional referenced typedef name, NULL for built-in types. * @param[out] type Specific type structure. * @return LY_ERR value. */ static LY_ERR lys_new_type(const struct ly_ctx *ctx, LY_DATA_TYPE basetype, const char *tpdf_name, struct lysc_type **type) { LY_ERR rc = LY_SUCCESS; struct lysc_type *t = NULL; *type = NULL; switch (basetype) { case LY_TYPE_BINARY: t = calloc(1, sizeof(struct lysc_type_bin)); break; case LY_TYPE_BITS: t = calloc(1, sizeof(struct lysc_type_bits)); break; case LY_TYPE_DEC64: t = calloc(1, sizeof(struct lysc_type_dec)); break; case LY_TYPE_STRING: t = calloc(1, sizeof(struct lysc_type_str)); break; case LY_TYPE_ENUM: t = calloc(1, sizeof(struct lysc_type_enum)); break; case LY_TYPE_INT8: case LY_TYPE_UINT8: case LY_TYPE_INT16: case LY_TYPE_UINT16: case LY_TYPE_INT32: case LY_TYPE_UINT32: case LY_TYPE_INT64: case LY_TYPE_UINT64: t = calloc(1, sizeof(struct lysc_type_num)); break; case LY_TYPE_IDENT: t = calloc(1, sizeof(struct lysc_type_identityref)); break; case LY_TYPE_LEAFREF: t = calloc(1, sizeof(struct lysc_type_leafref)); break; case LY_TYPE_INST: t = calloc(1, sizeof(struct lysc_type_instanceid)); break; case LY_TYPE_UNION: t = calloc(1, sizeof(struct lysc_type_union)); break; case LY_TYPE_BOOL: case LY_TYPE_EMPTY: t = calloc(1, sizeof(struct lysc_type)); break; case LY_TYPE_UNKNOWN: break; } LY_CHECK_ERR_GOTO(!t, LOGMEM(ctx); rc = LY_EMEM, cleanup); if (tpdf_name) { rc = lydict_insert(ctx, tpdf_name, 0, &t->name); LY_CHECK_GOTO(rc, cleanup); } cleanup: if (rc) { free(t); } else { *type = t; } return rc; } /** * @brief The core of the lys_compile_type() - compile information about the given type (from typedef or leaf/leaf-list). * * @param[in] ctx Compile context. * @param[in] context_pnode Schema node where the type/typedef is placed to correctly find the base types. * @param[in] context_flags Flags of the context node or the referencing typedef to correctly check status of * referencing and referenced objects. * @param[in] context_name Name of the context node or referencing typedef for logging. * @param[in] type_p Parsed type to compile. * @param[in] basetype Base YANG built-in type of the type to compile. * @param[in] tpdfname Name of the type's typedef, serves as a flag - if it is leaf/leaf-list's type, it is NULL. * @param[in] base Latest base (compiled) type from which the current type is being derived. * @param[in] plugin Type plugin to use. * @param[in] tpdf_chain Chain of the used typedefs, traversed backwards. * @param[in] tpdf_chain_last Index of the last (backwards) typedef in @p tpdf_chain to use. * @param[out] type Compiled type. * @return LY_ERR value. */ static LY_ERR lys_compile_type_(struct lysc_ctx *ctx, struct lysp_node *context_pnode, uint16_t context_flags, const char *context_name, const struct lysp_type *type_p, LY_DATA_TYPE basetype, const char *tpdfname, const struct lysc_type *base, struct lyplg_type *plugin, struct ly_set *tpdf_chain, uint32_t tpdf_chain_last, struct lysc_type **type) { LY_ERR rc = LY_SUCCESS; struct lysc_type_bin *bin; struct lysc_type_num *num; struct lysc_type_str *str; struct lysc_type_bits *bits; struct lysc_type_enum *enumeration; struct lysc_type_dec *dec; struct lysc_type_identityref *idref; struct lysc_type_leafref *lref; struct lysc_type_union *un; struct lys_type_item *tpdf_item; const struct lysp_type *base_type_p; uint32_t i; /* alloc and init */ rc = lys_new_type(ctx->ctx, basetype, tpdfname, type); LY_CHECK_GOTO(rc, cleanup); (*type)->basetype = basetype; (*type)->plugin = plugin; switch (basetype) { case LY_TYPE_BINARY: bin = (struct lysc_type_bin *)*type; /* RFC 7950 9.8.1, 9.4.4 - length, number of octets it contains */ if (type_p->length) { LY_CHECK_GOTO(rc = lys_compile_type_range(ctx, type_p->length, basetype, 1, 0, base ? ((struct lysc_type_bin *)base)->length : NULL, &bin->length), cleanup); if (!tpdfname) { COMPILE_EXTS_GOTO(ctx, type_p->length->exts, bin->length->exts, bin->length, rc, cleanup); } } break; case LY_TYPE_BITS: /* RFC 7950 9.7 - bits */ bits = (struct lysc_type_bits *)*type; if (type_p->bits) { /* compile bits from this type */ LY_CHECK_GOTO(rc = lys_compile_type_enums(ctx, type_p->bits, basetype, base ? (struct lysc_type_bitenum_item *)((struct lysc_type_bits *)base)->bits : NULL, (struct lysc_type_bitenum_item **)&bits->bits), cleanup); } else if (base) { /* recompile bits from the first superior type with bits */ assert(tpdf_chain->count > tpdf_chain_last); base_type_p = NULL; i = tpdf_chain->count; do { --i; tpdf_item = tpdf_chain->objs[i]; if (tpdf_item->tpdf->type.bits) { base_type_p = &tpdf_item->tpdf->type; break; } } while (i > tpdf_chain_last); assert(base_type_p); LY_CHECK_GOTO(rc = lys_compile_type_enums(ctx, base_type_p->bits, basetype, NULL, (struct lysc_type_bitenum_item **)&bits->bits), cleanup); } else { /* type derived from bits built-in type must contain at least one bit */ if (tpdfname) { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "bit", "bits type ", tpdfname); } else { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "bit", "bits type", ""); } rc = LY_EVALID; goto cleanup; } break; case LY_TYPE_DEC64: dec = (struct lysc_type_dec *)*type; /* RFC 7950 9.3.4 - fraction-digits */ if (!base) { if (!type_p->fraction_digits) { if (tpdfname) { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type ", tpdfname); } else { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type", ""); } rc = LY_EVALID; goto cleanup; } dec->fraction_digits = type_p->fraction_digits; } else { if (type_p->fraction_digits) { /* fraction digits is prohibited in types not directly derived from built-in decimal64 */ if (tpdfname) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid fraction-digits substatement for type \"%s\" not directly derived from decimal64 built-in type.", tpdfname); } else { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid fraction-digits substatement for type not directly derived from decimal64 built-in type."); } rc = LY_EVALID; goto cleanup; } dec->fraction_digits = ((struct lysc_type_dec *)base)->fraction_digits; } /* RFC 7950 9.2.4 - range */ if (type_p->range) { LY_CHECK_GOTO(rc = lys_compile_type_range(ctx, type_p->range, basetype, 0, dec->fraction_digits, base ? ((struct lysc_type_dec *)base)->range : NULL, &dec->range), cleanup); if (!tpdfname) { COMPILE_EXTS_GOTO(ctx, type_p->range->exts, dec->range->exts, dec->range, rc, cleanup); } } break; case LY_TYPE_STRING: str = (struct lysc_type_str *)*type; /* RFC 7950 9.4.4 - length */ if (type_p->length) { LY_CHECK_GOTO(rc = lys_compile_type_range(ctx, type_p->length, basetype, 1, 0, base ? ((struct lysc_type_str *)base)->length : NULL, &str->length), cleanup); if (!tpdfname) { COMPILE_EXTS_GOTO(ctx, type_p->length->exts, str->length->exts, str->length, rc, cleanup); } } else if (base && ((struct lysc_type_str *)base)->length) { str->length = lysc_range_dup(ctx, ((struct lysc_type_str *)base)->length, tpdf_chain, tpdf_chain_last); } /* RFC 7950 9.4.5 - pattern */ if (type_p->patterns) { LY_CHECK_GOTO(rc = lys_compile_type_patterns(ctx, type_p->patterns, base ? ((struct lysc_type_str *)base)->patterns : NULL, &str->patterns), cleanup); } else if (base && ((struct lysc_type_str *)base)->patterns) { str->patterns = lysc_patterns_dup(ctx->ctx, ((struct lysc_type_str *)base)->patterns); } break; case LY_TYPE_ENUM: enumeration = (struct lysc_type_enum *)*type; /* RFC 7950 9.6 - enum */ if (type_p->enums) { LY_CHECK_GOTO(rc = lys_compile_type_enums(ctx, type_p->enums, basetype, base ? ((struct lysc_type_enum *)base)->enums : NULL, &enumeration->enums), cleanup); } else if (base) { /* recompile enums from the first superior type with enums */ assert(tpdf_chain->count > tpdf_chain_last); base_type_p = NULL; i = tpdf_chain->count; do { --i; tpdf_item = tpdf_chain->objs[i]; if (tpdf_item->tpdf->type.enums) { base_type_p = &tpdf_item->tpdf->type; break; } } while (i > tpdf_chain_last); assert(base_type_p); LY_CHECK_GOTO(rc = lys_compile_type_enums(ctx, base_type_p->enums, basetype, NULL, &enumeration->enums), cleanup); } else { /* type derived from enumerations built-in type must contain at least one enum */ if (tpdfname) { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type ", tpdfname); } else { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type", ""); } rc = LY_EVALID; goto cleanup; } break; case LY_TYPE_INT8: case LY_TYPE_UINT8: case LY_TYPE_INT16: case LY_TYPE_UINT16: case LY_TYPE_INT32: case LY_TYPE_UINT32: case LY_TYPE_INT64: case LY_TYPE_UINT64: num = (struct lysc_type_num *)*type; /* RFC 6020 9.2.4 - range */ if (type_p->range) { LY_CHECK_GOTO(rc = lys_compile_type_range(ctx, type_p->range, basetype, 0, 0, base ? ((struct lysc_type_num *)base)->range : NULL, &num->range), cleanup); if (!tpdfname) { COMPILE_EXTS_GOTO(ctx, type_p->range->exts, num->range->exts, num->range, rc, cleanup); } } break; case LY_TYPE_IDENT: idref = (struct lysc_type_identityref *)*type; /* RFC 7950 9.10.2 - base */ if (type_p->bases) { if (base) { /* only the directly derived identityrefs can contain base specification */ if (tpdfname) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid base substatement for the type \"%s\" not directly derived from identityref built-in type.", tpdfname); } else { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid base substatement for the type not directly derived from identityref built-in type."); } rc = LY_EVALID; goto cleanup; } LY_CHECK_GOTO(rc = lys_compile_identity_bases(ctx, type_p->pmod, type_p->bases, NULL, &idref->bases), cleanup); } else if (base) { /* copy all the bases */ const struct lysc_type_identityref *idref_base = (struct lysc_type_identityref *)base; LY_ARRAY_COUNT_TYPE u; LY_ARRAY_CREATE_GOTO(ctx->ctx, idref->bases, LY_ARRAY_COUNT(idref_base->bases), rc, cleanup); LY_ARRAY_FOR(idref_base->bases, u) { idref->bases[u] = idref_base->bases[u]; LY_ARRAY_INCREMENT(idref->bases); } } else { /* type derived from identityref built-in type must contain at least one base */ if (tpdfname) { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "base", "identityref type ", tpdfname); } else { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "base", "identityref type", ""); } rc = LY_EVALID; goto cleanup; } break; case LY_TYPE_LEAFREF: lref = (struct lysc_type_leafref *)*type; /* RFC 7950 9.9.3 - require-instance */ if (type_p->flags & LYS_SET_REQINST) { if (type_p->pmod->version < LYS_VERSION_1_1) { if (tpdfname) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Leafref type \"%s\" can be restricted by require-instance statement only in YANG 1.1 modules.", tpdfname); } else { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Leafref type can be restricted by require-instance statement only in YANG 1.1 modules."); } rc = LY_EVALID; goto cleanup; } lref->require_instance = type_p->require_instance; } else if (base) { /* inherit */ lref->require_instance = ((struct lysc_type_leafref *)base)->require_instance; } else { /* default is true */ lref->require_instance = 1; } if (type_p->path) { LY_VALUE_FORMAT format; LY_CHECK_GOTO(rc = lyxp_expr_dup(ctx->ctx, type_p->path, 0, 0, &lref->path), cleanup); LY_CHECK_GOTO(lyplg_type_prefix_data_new(ctx->ctx, type_p->path->expr, strlen(type_p->path->expr), LY_VALUE_SCHEMA, type_p->pmod, &format, (void **)&lref->prefixes), cleanup); } else if (base) { LY_CHECK_GOTO(rc = lyxp_expr_dup(ctx->ctx, ((struct lysc_type_leafref *)base)->path, 0, 0, &lref->path), cleanup); LY_CHECK_GOTO(rc = lyplg_type_prefix_data_dup(ctx->ctx, LY_VALUE_SCHEMA_RESOLVED, ((struct lysc_type_leafref *)base)->prefixes, (void **)&lref->prefixes), cleanup); } else { /* type derived from leafref built-in type must contain path */ if (tpdfname) { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "path", "leafref type ", tpdfname); } else { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "path", "leafref type", ""); } rc = LY_EVALID; goto cleanup; } break; case LY_TYPE_INST: /* RFC 7950 9.9.3 - require-instance */ if (type_p->flags & LYS_SET_REQINST) { ((struct lysc_type_instanceid *)*type)->require_instance = type_p->require_instance; } else { /* default is true */ ((struct lysc_type_instanceid *)*type)->require_instance = 1; } break; case LY_TYPE_UNION: un = (struct lysc_type_union *)*type; /* RFC 7950 7.4 - type */ if (type_p->types) { if (base) { /* only the directly derived union can contain types specification */ if (tpdfname) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid type substatement for the type \"%s\" not directly derived from union built-in type.", tpdfname); } else { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid type substatement for the type not directly derived from union built-in type."); } rc = LY_EVALID; goto cleanup; } /* compile the type */ LY_CHECK_GOTO(rc = lys_compile_type_union(ctx, type_p->types, context_pnode, context_flags, context_name, &un->types), cleanup); } else if (base) { /* copy all the types */ const struct lysc_type_union *un_base = (struct lysc_type_union *)base; LY_ARRAY_COUNT_TYPE u; LY_ARRAY_CREATE_GOTO(ctx->ctx, un->types, LY_ARRAY_COUNT(un_base->types), rc, cleanup); LY_ARRAY_FOR(un_base->types, u) { un->types[u] = un_base->types[u]; LY_ATOMIC_INC_BARRIER(un->types[u]->refcount); LY_ARRAY_INCREMENT(un->types); } } else { /* type derived from union built-in type must contain at least one type */ if (tpdfname) { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "type", "union type ", tpdfname); } else { LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "type", "union type", ""); } rc = LY_EVALID; goto cleanup; } break; case LY_TYPE_BOOL: case LY_TYPE_EMPTY: case LY_TYPE_UNKNOWN: /* just to complete switch */ break; } if (tpdf_chain->count > tpdf_chain_last) { i = tpdf_chain->count; do { --i; tpdf_item = tpdf_chain->objs[i]; /* compile previous typedefs extensions */ COMPILE_EXTS_GOTO(ctx, tpdf_item->tpdf->type.exts, (*type)->exts, *type, rc, cleanup); } while (i > tpdf_chain_last); } /* compile new parsed extensions */ COMPILE_EXTS_GOTO(ctx, type_p->exts, (*type)->exts, *type, rc, cleanup); cleanup: if (rc) { LY_ATOMIC_INC_BARRIER((*type)->refcount); lysc_type_free(&ctx->free_ctx, *type); *type = NULL; } return rc; } LY_ERR lys_compile_type(struct lysc_ctx *ctx, struct lysp_node *context_pnode, uint16_t context_flags, const char *context_name, const struct lysp_type *type_p, struct lysc_type **type, const char **units, struct lysp_qname **dflt) { LY_ERR ret = LY_SUCCESS; ly_bool dummyloops = 0, has_leafref; struct lys_type_item *tctx, *tctx_prev = NULL, *tctx_iter; LY_DATA_TYPE basetype = LY_TYPE_UNKNOWN; struct lysc_type *base = NULL; struct lysc_type_union *base_un; LY_ARRAY_COUNT_TYPE u; struct ly_set tpdf_chain = {0}; struct lyplg_type *plugin; *type = NULL; if (dflt) { *dflt = NULL; } tctx = calloc(1, sizeof *tctx); LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM); for (ret = lysp_type_find(type_p->name, context_pnode, type_p->pmod, ctx->ext, &basetype, &tctx->tpdf, &tctx->node); ret == LY_SUCCESS; ret = lysp_type_find(tctx_prev->tpdf->type.name, tctx_prev->node, tctx_prev->tpdf->type.pmod, ctx->ext, &basetype, &tctx->tpdf, &tctx->node)) { if (basetype) { break; } /* check status */ ret = lysc_check_status(ctx, context_flags, (void *)type_p->pmod, context_name, tctx->tpdf->flags, (void *)tctx->tpdf->type.pmod, tctx->node ? tctx->node->name : tctx->tpdf->name); LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup); if (units && !*units) { /* inherit units */ DUP_STRING(ctx->ctx, tctx->tpdf->units, *units, ret); LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup); } if (dflt && !*dflt && tctx->tpdf->dflt.str) { /* inherit default */ *dflt = (struct lysp_qname *)&tctx->tpdf->dflt; } if (dummyloops && (!units || *units) && dflt && *dflt) { basetype = ((struct lys_type_item *)tpdf_chain.objs[tpdf_chain.count - 1])->tpdf->type.compiled->basetype; break; } if (tctx->tpdf->type.compiled && (tctx->tpdf->type.compiled->refcount == 1)) { /* context recompilation - everything was freed previously (the only reference is from the parsed type itself) * and we need now recompile the type again in the updated context. */ lysc_type_free(&ctx->free_ctx, tctx->tpdf->type.compiled); ((struct lysp_tpdf *)tctx->tpdf)->type.compiled = NULL; } if (tctx->tpdf->type.compiled) { /* it is not necessary to continue, the rest of the chain was already compiled, * but we still may need to inherit default and units values, so start dummy loops */ basetype = tctx->tpdf->type.compiled->basetype; ret = ly_set_add(&tpdf_chain, tctx, 1, NULL); LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup); if ((units && !*units) || (dflt && !*dflt)) { dummyloops = 1; goto preparenext; } else { tctx = NULL; break; } } /* circular typedef reference detection */ for (uint32_t u = 0; u < tpdf_chain.count; u++) { /* local part */ tctx_iter = (struct lys_type_item *)tpdf_chain.objs[u]; if (tctx_iter->tpdf == tctx->tpdf) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid \"%s\" type reference - circular chain of types detected.", tctx->tpdf->name); free(tctx); ret = LY_EVALID; goto cleanup; } } for (uint32_t u = 0; u < ctx->tpdf_chain.count; u++) { /* global part for unions corner case */ tctx_iter = (struct lys_type_item *)ctx->tpdf_chain.objs[u]; if (tctx_iter->tpdf == tctx->tpdf) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid \"%s\" type reference - circular chain of types detected.", tctx->tpdf->name); free(tctx); ret = LY_EVALID; goto cleanup; } } /* store information for the following processing */ ret = ly_set_add(&tpdf_chain, tctx, 1, NULL); LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup); preparenext: /* prepare next loop */ tctx_prev = tctx; tctx = calloc(1, sizeof *tctx); LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM); } free(tctx); /* basic checks */ if (basetype == LY_TYPE_UNKNOWN) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Referenced type \"%s\" not found.", tctx_prev ? tctx_prev->tpdf->type.name : type_p->name); ret = LY_EVALID; goto cleanup; } if (~type_substmt_map[basetype] & type_p->flags) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid type restrictions for %s type.", ly_data_type2str[basetype]); ret = LY_EVALID; goto cleanup; } /* get restrictions from the referred typedefs */ for (uint32_t u = tpdf_chain.count - 1; u + 1 > 0; --u) { tctx = (struct lys_type_item *)tpdf_chain.objs[u]; /* remember the typedef context for circular check */ ret = ly_set_add(&ctx->tpdf_chain, tctx, 1, NULL); LY_CHECK_GOTO(ret, cleanup); if (tctx->tpdf->type.compiled) { /* already compiled */ base = tctx->tpdf->type.compiled; continue; } /* try to find loaded user type plugins */ plugin = lyplg_type_plugin_find(ctx->ctx, tctx->tpdf->type.pmod->mod->name, tctx->tpdf->type.pmod->mod->revision, tctx->tpdf->name); if (!plugin && base) { /* use the base type implementation if available */ plugin = base->plugin; } if (!plugin) { /* use the internal built-in type implementation */ plugin = lyplg_type_plugin_find(ctx->ctx, "", NULL, ly_data_type2str[basetype]); } assert(plugin); if ((basetype != LY_TYPE_LEAFREF) && (u != tpdf_chain.count - 1) && !tctx->tpdf->type.flags && !tctx->tpdf->type.exts && (plugin == base->plugin)) { /* no change, reuse the compiled base */ ((struct lysp_tpdf *)tctx->tpdf)->type.compiled = base; LY_ATOMIC_INC_BARRIER(base->refcount); continue; } if (~type_substmt_map[basetype] & tctx->tpdf->type.flags) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid type \"%s\" restriction(s) for %s type.", tctx->tpdf->name, ly_data_type2str[basetype]); ret = LY_EVALID; goto cleanup; } else if ((basetype == LY_TYPE_EMPTY) && tctx->tpdf->dflt.str) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid type \"%s\" - \"empty\" type must not have a default value (%s).", tctx->tpdf->name, tctx->tpdf->dflt.str); ret = LY_EVALID; goto cleanup; } /* compile the typedef type */ ret = lys_compile_type_(ctx, tctx->node, tctx->tpdf->flags, tctx->tpdf->name, &tctx->tpdf->type, basetype, tctx->tpdf->name, base, plugin, &tpdf_chain, u + 1, &base); LY_CHECK_GOTO(ret, cleanup); /* store separately compiled typedef type to be reused */ ((struct lysp_tpdf *)tctx->tpdf)->type.compiled = base; LY_ATOMIC_INC_BARRIER(base->refcount); } /* remove the processed typedef contexts from the stack for circular check */ ctx->tpdf_chain.count = ctx->tpdf_chain.count - tpdf_chain.count; /* learn whether the type has a leafref, in which case it cannot be shared because it may resolve to a different * real type for every instantiation */ has_leafref = 0; if (basetype == LY_TYPE_LEAFREF) { /* leafref type */ has_leafref = 1; } else if ((basetype == LY_TYPE_UNION) && base) { /* union with a leafref */ base_un = (struct lysc_type_union *)base; LY_ARRAY_FOR(base_un->types, u) { if (base_un->types[u]->basetype == LY_TYPE_LEAFREF) { has_leafref = 1; break; } } } /* process the type definition in leaf */ if (type_p->flags || type_p->exts || !base || has_leafref) { /* leaf type has changes that need to be compiled into the type */ plugin = base ? base->plugin : lyplg_type_plugin_find(ctx->ctx, "", NULL, ly_data_type2str[basetype]); ret = lys_compile_type_(ctx, context_pnode, context_flags, context_name, (struct lysp_type *)type_p, basetype, NULL, base, plugin, &tpdf_chain, 0, type); LY_CHECK_GOTO(ret, cleanup); } else { /* no changes of the type in the leaf, just use the base compiled type */ *type = base; } cleanup: ly_set_erase(&tpdf_chain, free); return ret; } /** * @brief Check uniqness of the node/action/notification name. * * Data nodes, actions/RPCs and Notifications are stored separately (in distinguish lists) in the schema * structures, but they share the namespace so we need to check their name collisions. * * @param[in] ctx Compile context. * @param[in] parent Parent of the nodes to check, can be NULL. * @param[in] name Name of the item to find in the given lists. * @param[in] exclude Node that was just added that should be excluded from the name checking. * @return LY_SUCCESS in case of unique name, LY_EEXIST otherwise. */ static LY_ERR lys_compile_node_uniqness(struct lysc_ctx *ctx, const struct lysc_node *parent, const char *name, const struct lysc_node *exclude) { const struct lysc_node *iter, *iter2, *dup = NULL; const struct lysc_node_action *actions; const struct lysc_node_notif *notifs; uint32_t getnext_flags; struct ly_set parent_choices = {0}; const char *node_type_str = "data definition/RPC/action/notification"; char *spath; #define CHECK_NODE(iter, exclude, name) (iter != (void *)exclude && (iter)->module == exclude->module && !strcmp(name, (iter)->name)) if (exclude->nodetype == LYS_CASE) { /* check restricted only to all the cases */ assert(parent->nodetype == LYS_CHOICE); LY_LIST_FOR(lysc_node_child(parent), iter) { if (CHECK_NODE(iter, exclude, name)) { node_type_str = "case"; dup = iter; goto cleanup; } } return LY_SUCCESS; } /* no reason for our parent to be choice anymore */ assert(!parent || (parent->nodetype != LYS_CHOICE)); if (parent && (parent->nodetype == LYS_CASE)) { /* move to the first data definition parent */ /* but remember the choice nodes on the parents path to avoid believe they collide with our node */ iter = lysc_data_parent(parent); do { parent = parent->parent; if (parent && (parent->nodetype == LYS_CHOICE)) { ly_set_add(&parent_choices, (void *)parent, 1, NULL); } } while (parent != iter); } getnext_flags = LYS_GETNEXT_WITHCHOICE; if (parent && (parent->nodetype & (LYS_RPC | LYS_ACTION))) { /* move to the inout to avoid traversing a not-filled-yet (the other) node */ if (exclude->flags & LYS_IS_OUTPUT) { getnext_flags |= LYS_GETNEXT_OUTPUT; parent = lysc_node_child(parent)->next; } else { parent = lysc_node_child(parent); } } iter = NULL; if (!parent && ctx->ext) { while ((iter = lys_getnext_ext(iter, parent, ctx->ext, getnext_flags))) { if (!ly_set_contains(&parent_choices, (void *)iter, NULL) && CHECK_NODE(iter, exclude, name)) { dup = iter; goto cleanup; } /* we must compare with both the choice and all its nested data-definiition nodes (but not recursively) */ if (iter->nodetype == LYS_CHOICE) { iter2 = NULL; while ((iter2 = lys_getnext_ext(iter2, iter, NULL, 0))) { if (CHECK_NODE(iter2, exclude, name)) { dup = iter2; goto cleanup; } } } } } else { while ((iter = lys_getnext(iter, parent, ctx->cur_mod->compiled, getnext_flags))) { if (!ly_set_contains(&parent_choices, (void *)iter, NULL) && CHECK_NODE(iter, exclude, name)) { dup = iter; goto cleanup; } /* we must compare with both the choice and all its nested data-definiition nodes (but not recursively) */ if (iter->nodetype == LYS_CHOICE) { iter2 = NULL; while ((iter2 = lys_getnext(iter2, iter, NULL, 0))) { if (CHECK_NODE(iter2, exclude, name)) { dup = iter2; goto cleanup; } } } } actions = parent ? lysc_node_actions(parent) : ctx->cur_mod->compiled->rpcs; LY_LIST_FOR((struct lysc_node *)actions, iter) { if (CHECK_NODE(iter, exclude, name)) { dup = iter; goto cleanup; } } notifs = parent ? lysc_node_notifs(parent) : ctx->cur_mod->compiled->notifs; LY_LIST_FOR((struct lysc_node *)notifs, iter) { if (CHECK_NODE(iter, exclude, name)) { dup = iter; goto cleanup; } } } cleanup: ly_set_erase(&parent_choices, NULL); if (dup) { spath = lysc_path(dup, LYSC_PATH_LOG, NULL, 0); LOGVAL(ctx->ctx, LY_VCODE_DUPIDENT, spath, node_type_str); free(spath); return LY_EEXIST; } return LY_SUCCESS; #undef CHECK_NODE } LY_ERR lys_compile_node_connect(struct lysc_ctx *ctx, struct lysc_node *parent, struct lysc_node *node) { struct lysc_node **children, *anchor = NULL; int insert_after = 0; node->parent = parent; if (parent) { if (node->nodetype == LYS_INPUT) { assert(parent->nodetype & (LYS_ACTION | LYS_RPC)); /* input node is part of the action but link it with output */ node->next = &((struct lysc_node_action *)parent)->output.node; node->prev = node->next; return LY_SUCCESS; } else if (node->nodetype == LYS_OUTPUT) { /* output node is part of the action but link it with input */ node->next = NULL; node->prev = &((struct lysc_node_action *)parent)->input.node; return LY_SUCCESS; } else if (node->nodetype == LYS_ACTION) { children = (struct lysc_node **)lysc_node_actions_p(parent); } else if (node->nodetype == LYS_NOTIF) { children = (struct lysc_node **)lysc_node_notifs_p(parent); } else { children = lysc_node_child_p(parent); } assert(children); if (!(*children)) { /* first child */ *children = node; } else if (node->flags & LYS_KEY) { /* special handling of adding keys */ assert(node->module == parent->module); anchor = *children; if (anchor->flags & LYS_KEY) { while ((anchor->flags & LYS_KEY) && anchor->next) { anchor = anchor->next; } /* insert after the last key */ insert_after = 1; } /* else insert before anchor (at the beginning) */ } else if ((*children)->prev->module == node->module) { /* last child is from the same module, keep the order and insert at the end */ anchor = (*children)->prev; insert_after = 1; } else if (parent->module == node->module) { /* adding module child after some augments were connected */ for (anchor = *children; anchor->module == node->module; anchor = anchor->next) {} } else { /* some augments are already connected and we are connecting new ones, * keep module name order and insert the node into the children list */ anchor = *children; do { anchor = anchor->prev; /* check that we have not found the last augment node from our module or * the first augment node from a "smaller" module or * the first node from a local module */ if ((anchor->module == node->module) || (strcmp(anchor->module->name, node->module->name) < 0) || (anchor->module == parent->module)) { /* insert after */ insert_after = 1; break; } /* we have traversed all the nodes, insert before anchor (as the first node) */ } while (anchor->prev->next); } /* insert */ if (anchor) { if (insert_after) { node->next = anchor->next; node->prev = anchor; anchor->next = node; if (node->next) { /* middle node */ node->next->prev = node; } else { /* last node */ (*children)->prev = node; } } else { node->next = anchor; node->prev = anchor->prev; anchor->prev = node; if (anchor == *children) { /* first node */ *children = node; } else { /* middle node */ node->prev->next = node; } } } /* check the name uniqueness (even for an only child, it may be in case) */ if (lys_compile_node_uniqness(ctx, parent, node->name, node)) { return LY_EEXIST; } } else { /* top-level element */ struct lysc_node **list; if (ctx->ext) { lyplg_ext_get_storage_p(ctx->ext, LY_STMT_DATA_NODE_MASK, (uint64_t *)&list); } else if (node->nodetype == LYS_RPC) { list = (struct lysc_node **)&ctx->cur_mod->compiled->rpcs; } else if (node->nodetype == LYS_NOTIF) { list = (struct lysc_node **)&ctx->cur_mod->compiled->notifs; } else { list = &ctx->cur_mod->compiled->data; } if (!(*list)) { *list = node; } else { /* insert at the end of the module's top-level nodes list */ (*list)->prev->next = node; node->prev = (*list)->prev; (*list)->prev = node; } /* check the name uniqueness on top-level */ if (lys_compile_node_uniqness(ctx, NULL, node->name, node)) { return LY_EEXIST; } } return LY_SUCCESS; } /** * @brief Set config and operation flags for a node. * * @param[in] ctx Compile context. * @param[in] node Compiled node flags to set. * @return LY_ERR value. */ static LY_ERR lys_compile_config(struct lysc_ctx *ctx, struct lysc_node *node) { /* case never has any explicit config */ assert((node->nodetype != LYS_CASE) || !(node->flags & LYS_CONFIG_MASK)); if (ctx->compile_opts & LYS_COMPILE_NO_CONFIG) { /* ignore config statements inside Notification/RPC/action/... data */ node->flags &= ~LYS_CONFIG_MASK; } else if (!(node->flags & LYS_CONFIG_MASK)) { /* config not explicitly set, inherit it from parent */ assert(!node->parent || (node->parent->flags & LYS_CONFIG_MASK) || (node->parent->nodetype & LYS_AUGMENT)); if (node->parent && (node->parent->flags & LYS_CONFIG_MASK)) { node->flags |= node->parent->flags & LYS_CONFIG_MASK; } else { /* default is config true */ node->flags |= LYS_CONFIG_W; } } else { /* config set explicitly */ node->flags |= LYS_SET_CONFIG; } if (node->parent && (node->parent->flags & LYS_CONFIG_R) && (node->flags & LYS_CONFIG_W)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Configuration node cannot be child of any state data node."); return LY_EVALID; } return LY_SUCCESS; } /** * @brief Set various flags of the compiled nodes * * @param[in] ctx Compile context. * @param[in] parsed_flags Parsed node flags. * @param[in] inherited_flags Inherited flags from a schema-only statement. * @param[in,out] node Compiled node where the flags will be set. */ static LY_ERR lys_compile_node_flags(struct lysc_ctx *ctx, uint16_t parsed_flags, uint16_t inherited_flags, struct lysc_node *node) { uint16_t parent_flags; const char *parent_name; /* copy flags except for status */ node->flags = (parsed_flags & LYS_FLAGS_COMPILED_MASK) & ~LYS_STATUS_MASK; /* inherit config flags */ LY_CHECK_RET(lys_compile_config(ctx, node)); /* compile status */ parent_flags = node->parent ? node->parent->flags : 0; parent_name = node->parent ? node->parent->name : NULL; LY_CHECK_RET(lys_compile_status(ctx, parsed_flags, inherited_flags, parent_flags, parent_name, node->name, &node->flags)); /* other flags */ if ((ctx->compile_opts & LYS_IS_INPUT) && (node->nodetype != LYS_INPUT)) { node->flags |= LYS_IS_INPUT; } else if ((ctx->compile_opts & LYS_IS_OUTPUT) && (node->nodetype != LYS_OUTPUT)) { node->flags |= LYS_IS_OUTPUT; } else if ((ctx->compile_opts & LYS_IS_NOTIF) && (node->nodetype != LYS_NOTIF)) { node->flags |= LYS_IS_NOTIF; } return LY_SUCCESS; } static LY_ERR lys_compile_node_(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *parent, uint16_t inherited_flags, LY_ERR (*node_compile_spec)(struct lysc_ctx *, struct lysp_node *, struct lysc_node *), struct lysc_node *node, struct ly_set *child_set) { LY_ERR ret = LY_SUCCESS; ly_bool not_supported, enabled; struct lysp_node *dev_pnode = NULL; struct lysp_when *pwhen = NULL; uint32_t prev_opts = ctx->compile_opts; node->nodetype = pnode->nodetype; node->module = ctx->cur_mod; node->parent = parent; node->prev = node; node->priv = ctx->ctx->flags & LY_CTX_SET_PRIV_PARSED ? pnode : NULL; /* compile any deviations for this node */ LY_CHECK_GOTO(ret = lys_compile_node_deviations_refines(ctx, pnode, parent, &dev_pnode, ¬_supported), error); if (not_supported && !(ctx->compile_opts & (LYS_COMPILE_NO_DISABLED | LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING))) { /* if not supported, keep it just like disabled nodes by if-feature */ ly_set_add(&ctx->unres->disabled, node, 1, NULL); ctx->compile_opts |= LYS_COMPILE_DISABLED; } if (dev_pnode) { pnode = dev_pnode; } DUP_STRING_GOTO(ctx->ctx, pnode->name, node->name, ret, error); DUP_STRING_GOTO(ctx->ctx, pnode->dsc, node->dsc, ret, error); DUP_STRING_GOTO(ctx->ctx, pnode->ref, node->ref, ret, error); /* if-features */ LY_CHECK_GOTO(ret = lys_eval_iffeatures(ctx->ctx, pnode->iffeatures, &enabled), error); if (!enabled && !(ctx->compile_opts & (LYS_COMPILE_NO_DISABLED | LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING))) { ly_set_add(&ctx->unres->disabled, node, 1, NULL); ctx->compile_opts |= LYS_COMPILE_DISABLED; } /* config, status and other flags */ LY_CHECK_GOTO(ret = lys_compile_node_flags(ctx, pnode->flags, inherited_flags, node), error); /* list ordering */ if (node->nodetype & (LYS_LIST | LYS_LEAFLIST)) { if ((node->flags & (LYS_CONFIG_R | LYS_IS_OUTPUT | LYS_IS_NOTIF)) && (node->flags & LYS_ORDBY_MASK)) { node->flags &= ~LYS_ORDBY_MASK; LOGVRB("The ordered-by statement is ignored in lists representing %s (%s).", (node->flags & LYS_IS_OUTPUT) ? "RPC/action output parameters" : (ctx->compile_opts & LYS_IS_NOTIF) ? "notification content" : "state data", ctx->path); } if (node->flags & (LYS_IS_OUTPUT | LYS_IS_NOTIF | LYS_CONFIG_R)) { /* it is probably better not to order them */ node->flags |= LYS_ORDBY_USER; } else if (!(node->flags & LYS_ORDBY_MASK)) { /* default ordering is system */ node->flags |= LYS_ORDBY_SYSTEM; } } /* insert into parent's children/compiled module (we can no longer free the node separately on error) */ LY_CHECK_GOTO(ret = lys_compile_node_connect(ctx, parent, node), cleanup); if ((pwhen = lysp_node_when(pnode))) { /* compile when */ ret = lys_compile_when(ctx, pwhen, pnode->flags, node, lysc_data_node(node), node, NULL); LY_CHECK_GOTO(ret, cleanup); } /* nodetype-specific part */ LY_CHECK_GOTO(ret = node_compile_spec(ctx, pnode, node), cleanup); /* final compilation tasks that require the node to be connected */ COMPILE_EXTS_GOTO(ctx, pnode->exts, node->exts, node, ret, cleanup); if (node->flags & LYS_MAND_TRUE) { /* inherit LYS_MAND_TRUE in parent containers */ lys_compile_mandatory_parents(parent, 1); } if (child_set) { /* add the new node into set */ LY_CHECK_GOTO(ret = ly_set_add(child_set, node, 1, NULL), cleanup); } goto cleanup; error: lysc_node_free(&ctx->free_ctx, node, 0); cleanup: if (ret && dev_pnode) { LOGVAL(ctx->ctx, LYVE_OTHER, "Compilation of a deviated and/or refined node failed."); } ctx->compile_opts = prev_opts; lysp_dev_node_free(ctx, dev_pnode); return ret; } LY_ERR lys_compile_node_action_inout(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { LY_ERR ret = LY_SUCCESS; struct lysp_node *child_p; uint32_t prev_options = ctx->compile_opts; struct lysp_node_action_inout *inout_p = (struct lysp_node_action_inout *)pnode; struct lysc_node_action_inout *inout = (struct lysc_node_action_inout *)node; COMPILE_ARRAY_GOTO(ctx, inout_p->musts, inout->musts, lys_compile_must, ret, done); COMPILE_EXTS_GOTO(ctx, inout_p->exts, inout->exts, inout, ret, done); ctx->compile_opts |= (inout_p->nodetype == LYS_INPUT) ? LYS_COMPILE_RPC_INPUT : LYS_COMPILE_RPC_OUTPUT; LY_LIST_FOR(inout_p->child, child_p) { LY_CHECK_GOTO(ret = lys_compile_node(ctx, child_p, node, 0, NULL), done); } /* connect any augments */ LY_CHECK_GOTO(ret = lys_compile_node_augments(ctx, node), done); ctx->compile_opts = prev_options; done: return ret; } /** * @brief Compile parsed action node information. * * @param[in] ctx Compile context * @param[in] pnode Parsed action node. * @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information * is enriched with the action-specific information. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_node_action(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { LY_ERR ret; struct lysp_node_action *action_p = (struct lysp_node_action *)pnode; struct lysc_node_action *action = (struct lysc_node_action *)node; struct lysp_node_action_inout *input, implicit_input = { .nodetype = LYS_INPUT, .name = "input", .parent = pnode, }; struct lysp_node_action_inout *output, implicit_output = { .nodetype = LYS_OUTPUT, .name = "output", .parent = pnode, }; /* input */ lysc_update_path(ctx, action->module, "input"); if (action_p->input.nodetype == LYS_UNKNOWN) { input = &implicit_input; } else { input = &action_p->input; } ret = lys_compile_node_(ctx, &input->node, &action->node, 0, lys_compile_node_action_inout, &action->input.node, NULL); lysc_update_path(ctx, NULL, NULL); LY_CHECK_GOTO(ret, done); /* add must(s) to unres */ ret = lysc_unres_must_add(ctx, &action->input.node, &input->node); LY_CHECK_GOTO(ret, done); /* output */ lysc_update_path(ctx, action->module, "output"); if (action_p->output.nodetype == LYS_UNKNOWN) { output = &implicit_output; } else { output = &action_p->output; } ret = lys_compile_node_(ctx, &output->node, &action->node, 0, lys_compile_node_action_inout, &action->output.node, NULL); lysc_update_path(ctx, NULL, NULL); LY_CHECK_GOTO(ret, done); /* add must(s) to unres */ ret = lysc_unres_must_add(ctx, &action->output.node, &output->node); LY_CHECK_GOTO(ret, done); done: return ret; } /** * @brief Compile parsed action node information. * @param[in] ctx Compile context * @param[in] pnode Parsed action node. * @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information * is enriched with the action-specific information. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_node_notif(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { LY_ERR ret = LY_SUCCESS; struct lysp_node_notif *notif_p = (struct lysp_node_notif *)pnode; struct lysc_node_notif *notif = (struct lysc_node_notif *)node; struct lysp_node *child_p; COMPILE_ARRAY_GOTO(ctx, notif_p->musts, notif->musts, lys_compile_must, ret, done); /* add must(s) to unres */ ret = lysc_unres_must_add(ctx, node, pnode); LY_CHECK_GOTO(ret, done); LY_LIST_FOR(notif_p->child, child_p) { ret = lys_compile_node(ctx, child_p, node, 0, NULL); LY_CHECK_GOTO(ret, done); } /* connect any augments */ LY_CHECK_GOTO(ret = lys_compile_node_augments(ctx, node), done); done: return ret; } /** * @brief Compile parsed container node information. * @param[in] ctx Compile context * @param[in] pnode Parsed container node. * @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information * is enriched with the container-specific information. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_node_container(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { struct lysp_node_container *cont_p = (struct lysp_node_container *)pnode; struct lysc_node_container *cont = (struct lysc_node_container *)node; struct lysp_node *child_p; LY_ERR ret = LY_SUCCESS; if (cont_p->presence) { /* presence container */ cont->flags |= LYS_PRESENCE; } /* more cases when the container has meaning but is kept NP for convenience: * - when condition * - direct child action/notification */ LY_LIST_FOR(cont_p->child, child_p) { ret = lys_compile_node(ctx, child_p, node, 0, NULL); LY_CHECK_GOTO(ret, done); } COMPILE_ARRAY_GOTO(ctx, cont_p->musts, cont->musts, lys_compile_must, ret, done); /* add must(s) to unres */ ret = lysc_unres_must_add(ctx, node, pnode); LY_CHECK_GOTO(ret, done); /* connect any augments */ LY_CHECK_GOTO(ret = lys_compile_node_augments(ctx, node), done); LY_LIST_FOR((struct lysp_node *)cont_p->actions, child_p) { ret = lys_compile_node(ctx, child_p, node, 0, NULL); LY_CHECK_GOTO(ret, done); } LY_LIST_FOR((struct lysp_node *)cont_p->notifs, child_p) { ret = lys_compile_node(ctx, child_p, node, 0, NULL); LY_CHECK_GOTO(ret, done); } done: return ret; } /** * @brief Compile type in leaf/leaf-list node and do all the necessary checks. * @param[in] ctx Compile context. * @param[in] context_node Schema node where the type/typedef is placed to correctly find the base types. * @param[in] type_p Parsed type to compile. * @param[in,out] leaf Compiled leaf structure (possibly cast leaf-list) to provide node information and to store the compiled type information. * @return LY_ERR value. */ static LY_ERR lys_compile_node_type(struct lysc_ctx *ctx, struct lysp_node *context_node, struct lysp_type *type_p, struct lysc_node_leaf *leaf) { struct lysp_qname *dflt; struct lysc_type **t; LY_ARRAY_COUNT_TYPE u, count; ly_bool in_unres = 0; LY_CHECK_RET(lys_compile_type(ctx, context_node, leaf->flags, leaf->name, type_p, &leaf->type, leaf->units ? NULL : &leaf->units, &dflt)); LY_ATOMIC_INC_BARRIER(leaf->type->refcount); /* store default value, if any */ if (dflt && !(leaf->flags & LYS_SET_DFLT)) { LY_CHECK_RET(lysc_unres_leaf_dflt_add(ctx, leaf, dflt)); } /* store leafref(s) to be resolved */ LY_CHECK_RET(lysc_unres_leafref_add(ctx, leaf, type_p->pmod)); /* type-specific checks */ if (leaf->type->basetype == LY_TYPE_UNION) { t = ((struct lysc_type_union *)leaf->type)->types; count = LY_ARRAY_COUNT(t); } else { t = &leaf->type; count = 1; } for (u = 0; u < count; ++u) { if (t[u]->basetype == LY_TYPE_EMPTY) { if ((leaf->nodetype == LYS_LEAFLIST) && (ctx->pmod->version < LYS_VERSION_1_1)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Leaf-list of type \"empty\" is allowed only in YANG 1.1 modules."); return LY_EVALID; } } else if (!in_unres && ((t[u]->basetype == LY_TYPE_BITS) || (t[u]->basetype == LY_TYPE_ENUM))) { /* store in unres for all disabled bits/enums to be removed */ LY_CHECK_RET(lysc_unres_bitenum_add(ctx, leaf)); in_unres = 1; } } return LY_SUCCESS; } /** * @brief Compile parsed leaf node information. * @param[in] ctx Compile context * @param[in] pnode Parsed leaf node. * @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information * is enriched with the leaf-specific information. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_node_leaf(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { struct lysp_node_leaf *leaf_p = (struct lysp_node_leaf *)pnode; struct lysc_node_leaf *leaf = (struct lysc_node_leaf *)node; LY_ERR ret = LY_SUCCESS; COMPILE_ARRAY_GOTO(ctx, leaf_p->musts, leaf->musts, lys_compile_must, ret, done); /* add must(s) to unres */ ret = lysc_unres_must_add(ctx, node, pnode); LY_CHECK_GOTO(ret, done); if (leaf_p->units) { LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, leaf_p->units, 0, &leaf->units), done); leaf->flags |= LYS_SET_UNITS; } /* compile type */ ret = lys_compile_node_type(ctx, pnode, &leaf_p->type, leaf); LY_CHECK_GOTO(ret, done); /* store/update default value */ if (leaf_p->dflt.str) { LY_CHECK_RET(lysc_unres_leaf_dflt_add(ctx, leaf, &leaf_p->dflt)); leaf->flags |= LYS_SET_DFLT; } /* checks */ if ((leaf->flags & LYS_SET_DFLT) && (leaf->flags & LYS_MAND_TRUE)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid mandatory leaf with a default value."); return LY_EVALID; } done: return ret; } /** * @brief Compile parsed leaf-list node information. * @param[in] ctx Compile context * @param[in] pnode Parsed leaf-list node. * @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information * is enriched with the leaf-list-specific information. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_node_leaflist(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { struct lysp_node_leaflist *llist_p = (struct lysp_node_leaflist *)pnode; struct lysc_node_leaflist *llist = (struct lysc_node_leaflist *)node; LY_ERR ret = LY_SUCCESS; COMPILE_ARRAY_GOTO(ctx, llist_p->musts, llist->musts, lys_compile_must, ret, done); /* add must(s) to unres */ ret = lysc_unres_must_add(ctx, node, pnode); LY_CHECK_GOTO(ret, done); if (llist_p->units) { LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, llist_p->units, 0, &llist->units), done); llist->flags |= LYS_SET_UNITS; } /* compile type */ ret = lys_compile_node_type(ctx, pnode, &llist_p->type, (struct lysc_node_leaf *)llist); LY_CHECK_GOTO(ret, done); /* store/update default values */ if (llist_p->dflts) { if (ctx->pmod->version < LYS_VERSION_1_1) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Leaf-list default values are allowed only in YANG 1.1 modules."); return LY_EVALID; } LY_CHECK_GOTO(lysc_unres_llist_dflts_add(ctx, llist, llist_p->dflts), done); llist->flags |= LYS_SET_DFLT; } llist->min = llist_p->min; if (llist->min) { llist->flags |= LYS_MAND_TRUE; } llist->max = llist_p->max ? llist_p->max : UINT32_MAX; if (llist->flags & LYS_CONFIG_R) { /* state leaf-list is always ordered-by user */ llist->flags &= ~LYS_ORDBY_SYSTEM; llist->flags |= LYS_ORDBY_USER; } /* checks */ if ((llist->flags & LYS_SET_DFLT) && (llist->flags & LYS_MAND_TRUE)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "The default statement is present on leaf-list with a nonzero min-elements."); return LY_EVALID; } if (llist->min > llist->max) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Leaf-list min-elements %" PRIu32 " is bigger than max-elements %" PRIu32 ".", llist->min, llist->max); return LY_EVALID; } done: return ret; } /** * @brief Find the node according to the given descendant/absolute schema nodeid. * Used in unique, refine and augment statements. * * @param[in] ctx Compile context * @param[in] nodeid Descendant-schema-nodeid (according to the YANG grammar) * @param[in] nodeid_len Length of the given nodeid, if it is not NULL-terminated string. * @param[in] ctx_node Context node for a relative nodeid. * @param[in] format Format of any prefixes. * @param[in] prefix_data Format-specific prefix data (see ::ly_resolve_prefix). * @param[in] nodetype Optional (can be 0) restriction for target's nodetype. If target exists, but does not match * the given nodetype, LY_EDENIED is returned (and target is provided), but no error message is printed. * The value can be even an ORed value to allow multiple nodetypes. * @param[out] target Found target node if any. * @param[out] result_flag Output parameter to announce if the schema nodeid goes through the action's input/output or a Notification. * The LYSC_OPT_RPC_INPUT, LYSC_OPT_RPC_OUTPUT and LYSC_OPT_NOTIFICATION are used as flags. * @return LY_ERR values - LY_ENOTFOUND, LY_EVALID, LY_EDENIED or LY_SUCCESS. */ static LY_ERR lysc_resolve_schema_nodeid(struct lysc_ctx *ctx, const char *nodeid, size_t nodeid_len, const struct lysc_node *ctx_node, LY_VALUE_FORMAT format, void *prefix_data, uint16_t nodetype, const struct lysc_node **target, uint16_t *result_flag) { LY_ERR ret = LY_EVALID; const char *name, *prefix, *id; size_t name_len, prefix_len; const struct lys_module *mod = NULL; const char *nodeid_type; uint32_t getnext_extra_flag = 0; uint16_t current_nodetype = 0; assert(nodeid); assert(target); assert(result_flag); *target = NULL; *result_flag = 0; id = nodeid; if (ctx_node) { /* descendant-schema-nodeid */ nodeid_type = "descendant"; if (*id == '/') { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid descendant-schema-nodeid value \"%.*s\" - absolute-schema-nodeid used.", (int)(nodeid_len ? nodeid_len : strlen(nodeid)), nodeid); return LY_EVALID; } } else { /* absolute-schema-nodeid */ nodeid_type = "absolute"; if (*id != '/') { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid absolute-schema-nodeid value \"%.*s\" - missing starting \"/\".", (int)(nodeid_len ? nodeid_len : strlen(nodeid)), nodeid); return LY_EVALID; } ++id; } while (*id && (ret = ly_parse_nodeid(&id, &prefix, &prefix_len, &name, &name_len)) == LY_SUCCESS) { if (prefix) { mod = ly_resolve_prefix(ctx->ctx, prefix, prefix_len, format, prefix_data); if (!mod) { /* module must always be found */ assert(prefix); LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid %s-schema-nodeid value \"%.*s\" - prefix \"%.*s\" not defined in module \"%s\".", nodeid_type, (int)(id - nodeid), nodeid, (int)prefix_len, prefix, LYSP_MODULE_NAME(ctx->pmod)); return LY_ENOTFOUND; } } else { switch (format) { case LY_VALUE_SCHEMA: case LY_VALUE_SCHEMA_RESOLVED: /* use the current module */ mod = ctx->cur_mod; break; case LY_VALUE_JSON: case LY_VALUE_LYB: if (!ctx_node) { LOGINT_RET(ctx->ctx); } /* inherit the module of the previous context node */ mod = ctx_node->module; break; case LY_VALUE_CANON: case LY_VALUE_XML: case LY_VALUE_STR_NS: /* not really defined */ LOGINT_RET(ctx->ctx); } } if (ctx_node && (ctx_node->nodetype & (LYS_RPC | LYS_ACTION))) { /* move through input/output manually */ if (mod != ctx_node->module) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid %s-schema-nodeid value \"%.*s\" - target node not found.", nodeid_type, (int)(id - nodeid), nodeid); return LY_ENOTFOUND; } if (!ly_strncmp("input", name, name_len)) { ctx_node = &((struct lysc_node_action *)ctx_node)->input.node; } else if (!ly_strncmp("output", name, name_len)) { ctx_node = &((struct lysc_node_action *)ctx_node)->output.node; getnext_extra_flag = LYS_GETNEXT_OUTPUT; } else { /* only input or output is valid */ ctx_node = NULL; } } else if (ctx->ext && !ctx_node) { /* top-level extension nodes */ ctx_node = lysc_ext_find_node(ctx->ext, mod, name, name_len, 0, LYS_GETNEXT_WITHCHOICE | LYS_GETNEXT_WITHCASE); } else { ctx_node = lys_find_child(ctx_node, mod, name, name_len, 0, getnext_extra_flag | LYS_GETNEXT_WITHCHOICE | LYS_GETNEXT_WITHCASE); getnext_extra_flag = 0; } if (!ctx_node) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid %s-schema-nodeid value \"%.*s\" - target node not found.", nodeid_type, (int)(id - nodeid), nodeid); return LY_ENOTFOUND; } current_nodetype = ctx_node->nodetype; if (current_nodetype == LYS_NOTIF) { (*result_flag) |= LYS_COMPILE_NOTIFICATION; } else if (current_nodetype == LYS_INPUT) { (*result_flag) |= LYS_COMPILE_RPC_INPUT; } else if (current_nodetype == LYS_OUTPUT) { (*result_flag) |= LYS_COMPILE_RPC_OUTPUT; } if (!*id || (nodeid_len && ((size_t)(id - nodeid) >= nodeid_len))) { break; } if (*id != '/') { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid %s-schema-nodeid value \"%.*s\" - missing \"/\" as node-identifier separator.", nodeid_type, (int)(id - nodeid + 1), nodeid); return LY_EVALID; } ++id; } if (ret == LY_SUCCESS) { *target = ctx_node; if (nodetype && !(current_nodetype & nodetype)) { return LY_EDENIED; } } else { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid %s-schema-nodeid value \"%.*s\" - unexpected end of expression.", nodeid_type, (int)(nodeid_len ? nodeid_len : strlen(nodeid)), nodeid); } return ret; } /** * @brief Compile information about list's uniques. * @param[in] ctx Compile context. * @param[in] uniques Sized array list of unique statements. * @param[in] list Compiled list where the uniques are supposed to be resolved and stored. * @return LY_ERR value. */ static LY_ERR lys_compile_node_list_unique(struct lysc_ctx *ctx, struct lysp_qname *uniques, struct lysc_node_list *list) { LY_ERR ret = LY_SUCCESS; struct lysc_node_leaf **key, ***unique; struct lysc_node *parent; const char *keystr, *delim; size_t len; LY_ARRAY_COUNT_TYPE v; int8_t config; /* -1 - not yet seen; 0 - LYS_CONFIG_R; 1 - LYS_CONFIG_W */ uint16_t flags; LY_ARRAY_FOR(uniques, v) { config = -1; LY_ARRAY_NEW_RET(ctx->ctx, list->uniques, unique, LY_EMEM); keystr = uniques[v].str; while (keystr) { delim = strpbrk(keystr, " \t\n"); if (delim) { len = delim - keystr; while (isspace(*delim)) { ++delim; } } else { len = strlen(keystr); } /* unique node must be present */ LY_ARRAY_NEW_RET(ctx->ctx, *unique, key, LY_EMEM); ret = lysc_resolve_schema_nodeid(ctx, keystr, len, &list->node, LY_VALUE_SCHEMA, (void *)uniques[v].mod, LYS_LEAF, (const struct lysc_node **)key, &flags); if (ret != LY_SUCCESS) { if (ret == LY_EDENIED) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Unique's descendant-schema-nodeid \"%.*s\" refers to %s node instead of a leaf.", (int)len, keystr, lys_nodetype2str((*key)->nodetype)); } return LY_EVALID; } else if (flags) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Unique's descendant-schema-nodeid \"%.*s\" refers into %s node.", (int)len, keystr, flags & LYS_IS_NOTIF ? "notification" : "RPC/action"); return LY_EVALID; } /* all referenced leafs must be of the same config type */ if ((config != -1) && ((((*key)->flags & LYS_CONFIG_W) && (config == 0)) || (((*key)->flags & LYS_CONFIG_R) && (config == 1)))) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Unique statement \"%s\" refers to leaves with different config type.", uniques[v].str); return LY_EVALID; } else if ((*key)->flags & LYS_CONFIG_W) { config = 1; } else { /* LYS_CONFIG_R */ config = 0; } /* we forbid referencing nested lists because it is unspecified what instance of such a list to use */ for (parent = (*key)->parent; parent != (struct lysc_node *)list; parent = parent->parent) { if (parent->nodetype == LYS_LIST) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Unique statement \"%s\" refers to a leaf in nested list \"%s\".", uniques[v].str, parent->name); return LY_EVALID; } } /* check status */ LY_CHECK_RET(lysc_check_status(ctx, list->flags, uniques[v].mod->mod, list->name, (*key)->flags, (*key)->module, (*key)->name)); /* mark leaf as unique */ (*key)->flags |= LYS_UNIQUE; /* next unique value in line */ keystr = delim; } /* next unique definition */ } return LY_SUCCESS; } /** * @brief Compile parsed list node information. * @param[in] ctx Compile context * @param[in] pnode Parsed list node. * @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information * is enriched with the list-specific information. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_node_list(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { struct lysp_node_list *list_p = (struct lysp_node_list *)pnode; struct lysc_node_list *list = (struct lysc_node_list *)node; struct lysp_node *child_p; struct lysc_node *parent; struct lysc_node_leaf *key, *prev_key = NULL; size_t len; const char *keystr, *delim; LY_ERR ret = LY_SUCCESS; list->min = list_p->min; if (list->min) { list->flags |= LYS_MAND_TRUE; } list->max = list_p->max ? list_p->max : (uint32_t)-1; LY_LIST_FOR(list_p->child, child_p) { LY_CHECK_RET(lys_compile_node(ctx, child_p, node, 0, NULL)); } COMPILE_ARRAY_GOTO(ctx, list_p->musts, list->musts, lys_compile_must, ret, done); /* add must(s) to unres */ ret = lysc_unres_must_add(ctx, node, pnode); LY_CHECK_GOTO(ret, done); /* keys */ if (list->flags & LYS_CONFIG_W) { parent = node; if (ctx->compile_opts & LYS_COMPILE_GROUPING) { /* compiling individual grouping, we can check this only if there is an explicit config set */ while (parent) { if (parent->flags & LYS_SET_CONFIG) { break; } parent = parent->parent; } } if (parent && (!list_p->key || !list_p->key[0])) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Missing key in list representing configuration data."); return LY_EVALID; } } /* find all the keys (must be direct children) */ keystr = list_p->key; if (!keystr) { /* keyless list */ list->flags &= ~LYS_ORDBY_SYSTEM; list->flags |= LYS_KEYLESS | LYS_ORDBY_USER; } while (keystr) { delim = strpbrk(keystr, " \t\n"); if (delim) { len = delim - keystr; while (isspace(*delim)) { ++delim; } } else { len = strlen(keystr); } /* key node must be present */ key = (struct lysc_node_leaf *)lys_find_child(node, node->module, keystr, len, LYS_LEAF, LYS_GETNEXT_NOCHOICE); if (!key) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "The list's key \"%.*s\" not found.", (int)len, keystr); return LY_EVALID; } /* keys must be unique */ if (key->flags & LYS_KEY) { /* the node was already marked as a key */ LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Duplicated key identifier \"%.*s\".", (int)len, keystr); return LY_EVALID; } lysc_update_path(ctx, list->module, key->name); /* key must have the same config flag as the list itself */ if ((list->flags & LYS_CONFIG_MASK) != (key->flags & LYS_CONFIG_MASK)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Key of a configuration list must not be a state leaf."); return LY_EVALID; } if (ctx->pmod->version < LYS_VERSION_1_1) { /* YANG 1.0 denies key to be of empty type */ if (key->type->basetype == LY_TYPE_EMPTY) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "List key of the \"empty\" type is allowed only in YANG 1.1 modules."); return LY_EVALID; } } else { /* when and if-feature are illegal on list keys */ if (key->when) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "List's key must not have any \"when\" statement."); return LY_EVALID; } /* unable to check if-features but compilation would fail if disabled */ } /* check status */ LY_CHECK_RET(lysc_check_status(ctx, list->flags, list->module, list->name, key->flags, key->module, key->name)); /* ignore default values of the key */ if (key->dflt) { key->dflt->realtype->plugin->free(ctx->ctx, key->dflt); lysc_type_free(&ctx->free_ctx, (struct lysc_type *)key->dflt->realtype); free(key->dflt); key->dflt = NULL; } /* mark leaf as key */ key->flags |= LYS_KEY; /* move it to the correct position */ if ((prev_key && ((struct lysc_node *)prev_key != key->prev)) || (!prev_key && key->prev->next)) { /* fix links in closest previous siblings of the key */ if (key->next) { key->next->prev = key->prev; } else { /* last child */ list->child->prev = key->prev; } if (key->prev->next) { key->prev->next = key->next; } /* fix links in the key */ if (prev_key) { key->prev = &prev_key->node; key->next = prev_key->next; } else { key->prev = list->child->prev; key->next = list->child; } /* fix links in closes future siblings of the key */ if (prev_key) { if (prev_key->next) { prev_key->next->prev = &key->node; } else { list->child->prev = &key->node; } prev_key->next = &key->node; } else { list->child->prev = &key->node; } /* fix links in parent */ if (!key->prev->next) { list->child = &key->node; } } /* next key value */ prev_key = key; keystr = delim; lysc_update_path(ctx, NULL, NULL); } /* connect any augments */ LY_CHECK_GOTO(ret = lys_compile_node_augments(ctx, node), done); /* uniques */ if (list_p->uniques) { LY_CHECK_RET(lys_compile_node_list_unique(ctx, list_p->uniques, list)); } LY_LIST_FOR((struct lysp_node *)list_p->actions, child_p) { ret = lys_compile_node(ctx, child_p, node, 0, NULL); LY_CHECK_GOTO(ret, done); } LY_LIST_FOR((struct lysp_node *)list_p->notifs, child_p) { ret = lys_compile_node(ctx, child_p, node, 0, NULL); LY_CHECK_GOTO(ret, done); } /* checks */ if (list->min > list->max) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "List min-elements %" PRIu32 " is bigger than max-elements %" PRIu32 ".", list->min, list->max); return LY_EVALID; } done: return ret; } /** * @brief Do some checks and set the default choice's case. * * Selects (and stores into ::lysc_node_choice#dflt) the default case and set LYS_SET_DFLT flag on it. * * @param[in] ctx Compile context. * @param[in] dflt Name of the default branch. Can even contain a prefix. * @param[in,out] ch The compiled choice node, its dflt member is filled to point to the default case node of the choice. * @return LY_ERR value. */ static LY_ERR lys_compile_node_choice_dflt(struct lysc_ctx *ctx, struct lysp_qname *dflt, struct lysc_node_choice *ch) { struct lysc_node *iter; const struct lys_module *mod; const char *prefix = NULL, *name; size_t prefix_len = 0; /* could use lys_parse_nodeid(), but it checks syntax which is already done in this case by the parsers */ name = strchr(dflt->str, ':'); if (name) { prefix = dflt->str; prefix_len = name - prefix; ++name; } else { name = dflt->str; } if (prefix) { mod = ly_resolve_prefix(ctx->ctx, prefix, prefix_len, LY_VALUE_SCHEMA, (void *)dflt->mod); if (!mod) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Default case prefix \"%.*s\" not found " "in imports of \"%s\".", (int)prefix_len, prefix, LYSP_MODULE_NAME(dflt->mod)); return LY_EVALID; } } else { mod = ch->module; } ch->dflt = (struct lysc_node_case *)lys_find_child(&ch->node, mod, name, 0, LYS_CASE, LYS_GETNEXT_WITHCASE); if (!ch->dflt) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Default case \"%s\" not found.", dflt->str); return LY_EVALID; } /* no mandatory nodes directly under the default case */ LY_LIST_FOR(ch->dflt->child, iter) { if (iter->parent != (struct lysc_node *)ch->dflt) { break; } if (iter->flags & LYS_MAND_TRUE) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Mandatory node \"%s\" under the default case \"%s\".", iter->name, dflt->str); return LY_EVALID; } } if (ch->flags & LYS_MAND_TRUE) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid mandatory choice with a default case."); return LY_EVALID; } ch->dflt->flags |= LYS_SET_DFLT; return LY_SUCCESS; } LY_ERR lys_compile_node_choice_child(struct lysc_ctx *ctx, struct lysp_node *child_p, struct lysc_node *node, struct ly_set *child_set) { LY_ERR ret = LY_SUCCESS; struct lysp_node *child_p_next = child_p->next; struct lysp_node_case *cs_p; struct lysc_node_case *cs_c; if (child_p->nodetype == LYS_CASE) { /* standard case under choice */ ret = lys_compile_node(ctx, child_p, node, 0, child_set); } else { /* we need the implicit case first, so create a fake parsed (shorthand) case */ cs_p = calloc(1, sizeof *cs_p); LY_CHECK_ERR_RET(!cs_p, LOGMEM(ctx->ctx), LY_EMEM); cs_p->nodetype = LYS_CASE; DUP_STRING_GOTO(ctx->ctx, child_p->name, cs_p->name, ret, revert_sh_case); cs_p->child = child_p; /* make the child the only case child */ child_p->next = NULL; /* compile it normally */ LY_CHECK_GOTO(ret = lys_compile_node(ctx, (struct lysp_node *)cs_p, node, 0, child_set), revert_sh_case); if (((struct lysc_node_choice *)node)->cases) { /* find our case node */ cs_c = (struct lysc_node_case *)((struct lysc_node_choice *)node)->cases; while (cs_c->name != cs_p->name) { cs_c = (struct lysc_node_case *)cs_c->next; assert(cs_c); } if (ctx->ctx->flags & LY_CTX_SET_PRIV_PARSED) { /* compiled case node cannot point to his corresponding parsed node * because it exists temporarily so it must be set to NULL */ assert(cs_c->priv == cs_p); cs_c->priv = NULL; } /* status is copied from his child and not from his parent as usual. */ if (cs_c->child) { cs_c->flags &= ~LYS_STATUS_MASK; cs_c->flags |= (LYS_STATUS_MASK & cs_c->child->flags); } } /* else it was removed by a deviation */ revert_sh_case: /* free the parsed shorthand case and correct pointers back */ cs_p->child = NULL; lysp_node_free(&ctx->free_ctx, (struct lysp_node *)cs_p); child_p->next = child_p_next; } return ret; } /** * @brief Compile parsed choice node information. * * @param[in] ctx Compile context * @param[in] pnode Parsed choice node. * @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information * is enriched with the choice-specific information. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_node_choice(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { struct lysp_node_choice *ch_p = (struct lysp_node_choice *)pnode; struct lysc_node_choice *ch = (struct lysc_node_choice *)node; struct lysp_node *child_p; LY_ERR ret = LY_SUCCESS; assert(node->nodetype == LYS_CHOICE); LY_LIST_FOR(ch_p->child, child_p) { LY_CHECK_GOTO(ret = lys_compile_node_choice_child(ctx, child_p, node, NULL), done); } /* connect any augments */ LY_CHECK_GOTO(ret = lys_compile_node_augments(ctx, node), done); /* default branch */ if (ch_p->dflt.str) { LY_CHECK_GOTO(ret = lys_compile_node_choice_dflt(ctx, &ch_p->dflt, ch), done); } done: return ret; } /** * @brief Compile parsed anydata or anyxml node information. * * @param[in] ctx Compile context * @param[in] pnode Parsed anydata or anyxml node. * @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information * is enriched with the any-specific information. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_node_any(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { struct lysp_node_anydata *any_p = (struct lysp_node_anydata *)pnode; struct lysc_node_anydata *any = (struct lysc_node_anydata *)node; LY_ERR ret = LY_SUCCESS; COMPILE_ARRAY_GOTO(ctx, any_p->musts, any->musts, lys_compile_must, ret, done); /* add must(s) to unres */ ret = lysc_unres_must_add(ctx, node, pnode); LY_CHECK_GOTO(ret, done); if (any->flags & LYS_CONFIG_W) { LOGVRB("Use of %s to define configuration data is not recommended. %s", lyplg_ext_stmt2str(any->nodetype == LYS_ANYDATA ? LY_STMT_ANYDATA : LY_STMT_ANYXML), ctx->path); } done: return ret; } /** * @brief Prepare the case structure in choice node for the new data node. * * It is able to handle implicit as well as explicit cases and the situation when the case has multiple data nodes and the case was already * created in the choice when the first child was processed. * * @param[in] ctx Compile context. * @param[in] pnode Node image from the parsed tree. If the case is explicit, it is the LYS_CASE node, but in case of implicit case, * it is the LYS_CHOICE, LYS_AUGMENT or LYS_GROUPING node. * @param[in] ch The compiled choice structure where the new case structures are created (if needed). * @param[in] child The new data node being part of a case (no matter if explicit or implicit). * @return The case structure where the child node belongs to, NULL in case of error. Note that the child is not connected into the siblings list, * it is linked from the case structure only in case it is its first child. */ static LY_ERR lys_compile_node_case(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node) { LY_ERR ret = LY_SUCCESS; struct lysp_node *child_p; struct lysp_node_case *cs_p = (struct lysp_node_case *)pnode; if (pnode->nodetype & (LYS_CHOICE | LYS_AUGMENT | LYS_GROUPING)) { /* we have to add an implicit case node into the parent choice */ } else if (pnode->nodetype == LYS_CASE) { /* explicit parent case */ LY_LIST_FOR(cs_p->child, child_p) { LY_CHECK_GOTO(ret = lys_compile_node(ctx, child_p, node, 0, NULL), done); } } else { LOGINT_RET(ctx->ctx); } /* connect any augments */ LY_CHECK_GOTO(ret = lys_compile_node_augments(ctx, node), done); done: return ret; } void lys_compile_mandatory_parents(struct lysc_node *parent, ly_bool add) { const struct lysc_node *iter; if (add) { /* set flag */ for ( ; parent && parent->nodetype == LYS_CONTAINER && !(parent->flags & LYS_MAND_TRUE) && !(parent->flags & LYS_PRESENCE); parent = parent->parent) { parent->flags |= LYS_MAND_TRUE; } } else { /* unset flag */ for ( ; parent && parent->nodetype == LYS_CONTAINER && (parent->flags & LYS_MAND_TRUE); parent = parent->parent) { for (iter = lysc_node_child(parent); iter; iter = iter->next) { if (iter->flags & LYS_MAND_TRUE) { /* there is another mandatory node */ return; } } /* unset mandatory flag - there is no mandatory children in the non-presence container */ parent->flags &= ~LYS_MAND_TRUE; } } } /** * @brief Get the grouping with the specified name from given groupings sized array. * * @param[in] node Linked list of nodes with groupings. * @param[in] name Name of the grouping to find, * @return NULL when there is no grouping with the specified name * @return Pointer to the grouping of the specified @p name. */ static struct lysp_node_grp * match_grouping(const struct lysp_node_grp *node, const char *name) { LY_LIST_FOR(node, node) { if ((node->nodetype == LYS_GROUPING) && !strcmp(node->name, name)) { return (struct lysp_node_grp *)node; } } return NULL; } /** * @brief Find grouping for a uses. * * @param[in] ctx Compile context. * @param[in] uses_p Parsed uses node. * @param[out] gpr_p Found grouping on success. * @param[out] grp_pmod Module of @p grp_p on success. * @return LY_ERR value. */ static LY_ERR lys_compile_uses_find_grouping(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, struct lysp_node_grp **grp_p, struct lysp_module **grp_pmod) { struct lysp_node *pnode; struct lysp_node_grp *grp; const struct lysp_node_grp *ext_grp; LY_ARRAY_COUNT_TYPE u; const char *id, *name, *prefix, *local_pref; size_t prefix_len, name_len; struct lysp_module *pmod, *found = NULL; const struct lys_module *mod; *grp_p = NULL; *grp_pmod = NULL; /* search for the grouping definition */ id = uses_p->name; LY_CHECK_RET(ly_parse_nodeid(&id, &prefix, &prefix_len, &name, &name_len), LY_EVALID); local_pref = ctx->pmod->is_submod ? ((struct lysp_submodule *)ctx->pmod)->prefix : ctx->pmod->mod->prefix; if (!prefix || !ly_strncmp(local_pref, prefix, prefix_len)) { /* current module, search local groupings first */ pmod = ctx->pmod->mod->parsed; /* make sure that we will start in main_module, not submodule */ for (pnode = uses_p->parent; !found && pnode; pnode = pnode->parent) { if ((grp = match_grouping(lysp_node_groupings(pnode), name))) { found = ctx->pmod; break; } } /* if in an extension, search possible groupings in it */ if (!found && ctx->ext) { lyplg_ext_parsed_get_storage(ctx->ext, LY_STMT_GROUPING, sizeof ext_grp, (const void **)&ext_grp); if ((grp = match_grouping(ext_grp, name))) { found = ctx->pmod; } } } else { /* foreign module, find it first */ mod = ly_resolve_prefix(ctx->ctx, prefix, prefix_len, LY_VALUE_SCHEMA, ctx->pmod); if (!mod) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid prefix used for grouping \"%s\" reference.", uses_p->name); return LY_EVALID; } pmod = mod->parsed; } if (!found) { /* search in top-level groupings of the main module ... */ if ((grp = match_grouping(pmod->groupings, name))) { found = pmod; } else { /* ... and all the submodules */ LY_ARRAY_FOR(pmod->includes, u) { if ((grp = match_grouping(pmod->includes[u].submodule->groupings, name))) { found = (struct lysp_module *)pmod->includes[u].submodule; break; } } } } if (!found) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Grouping \"%s\" referenced by a uses statement not found.", uses_p->name); return LY_EVALID; } if (!(ctx->compile_opts & LYS_COMPILE_GROUPING)) { /* remember that the grouping is instantiated to avoid its standalone validation */ grp->flags |= LYS_USED_GRP; } *grp_p = grp; *grp_pmod = found; return LY_SUCCESS; } /** * @brief Compile uses grouping children. * * @param[in] ctx Compile context. * @param[in] uses_p Parsed uses. * @param[in] inherited_flags Inherited flags from the uses. * @param[in] child First grouping child to compile. * @param[in] grp_mod Grouping parsed module. * @param[in] parent Uses compiled parent, may be NULL if top-level. * @param[in,out] child_set Set of all compiled child nodes. * @param[in] child_unres_disabled Whether the children are to be put into unres disabled set or not. * @return LY_SUCCESS on success. * @return LY_EVALID on failure. */ static LY_ERR lys_compile_uses_children(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, uint16_t inherited_flags, struct lysp_node *child, struct lysp_module *grp_mod, struct lysc_node *parent, struct ly_set *child_set, ly_bool child_unres_disabled) { LY_ERR rc = LY_SUCCESS; struct lysp_module *mod_old = ctx->pmod; uint32_t child_i, opt_prev = ctx->compile_opts; ly_bool enabled; struct lysp_node *pnode; struct lysc_node *node; struct lysc_when *when_shared = NULL; assert(child_set); child_i = child_set->count; LY_LIST_FOR(child, pnode) { /* compile the nodes with their parsed (grouping) module */ ctx->pmod = grp_mod; LY_CHECK_GOTO(rc = lys_compile_node(ctx, pnode, parent, inherited_flags, child_set), cleanup); /* eval if-features again for the rest of this node processing */ LY_CHECK_GOTO(rc = lys_eval_iffeatures(ctx->ctx, pnode->iffeatures, &enabled), cleanup); if (!enabled && !(ctx->compile_opts & (LYS_COMPILE_NO_DISABLED | LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING))) { ctx->compile_opts |= LYS_COMPILE_DISABLED; } /* restore the parsed module */ ctx->pmod = mod_old; /* since the uses node is not present in the compiled tree, we need to pass some of its * statements to all its children */ while (child_i < child_set->count) { node = child_set->snodes[child_i]; if (uses_p->when) { /* pass uses when to all the children */ rc = lys_compile_when(ctx, uses_p->when, inherited_flags, parent, lysc_data_node(parent), node, &when_shared); LY_CHECK_GOTO(rc, cleanup); } if (child_unres_disabled) { /* child is disabled by the uses if-features */ ly_set_add(&ctx->unres->disabled, node, 1, NULL); } /* child processed */ ++child_i; } /* next iter */ ctx->compile_opts = opt_prev; } cleanup: ctx->compile_opts = opt_prev; return rc; } /** * @brief Compile parsed uses statement - resolve target grouping and connect its content into parent. * If present, also apply uses's modificators. * * @param[in] ctx Compile context * @param[in] uses_p Parsed uses schema node. * @param[in] parent Compiled parent node where the content of the referenced grouping is supposed to be connected. It is * NULL for top-level nodes, in such a case the module where the node will be connected is taken from * the compile context. * @param[in] inherited_flags Inherited flags from a schema-only statement. * @param[in] child_set Optional set of all the compiled children. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_uses(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, struct lysc_node *parent, uint16_t inherited_flags, struct ly_set *child_set) { LY_ERR rc = LY_SUCCESS; ly_bool enabled, child_unres_disabled = 0; uint32_t i, grp_stack_count, opt_prev = ctx->compile_opts; struct lysp_node_grp *grp = NULL; uint16_t uses_flags = 0; struct lysp_module *grp_mod; struct ly_set uses_child_set = {0}; /* find the referenced grouping */ LY_CHECK_RET(lys_compile_uses_find_grouping(ctx, uses_p, &grp, &grp_mod)); /* grouping must not reference themselves - stack in ctx maintains list of groupings currently being applied */ grp_stack_count = ctx->groupings.count; LY_CHECK_RET(ly_set_add(&ctx->groupings, (void *)grp, 0, NULL)); if (grp_stack_count == ctx->groupings.count) { /* the target grouping is already in the stack, so we are already inside it -> circular dependency */ LOGVAL(ctx->ctx, LYVE_REFERENCE, "Grouping \"%s\" references itself through a uses statement.", grp->name); return LY_EVALID; } /* nodetype checks */ if (grp->actions && (parent && !lysc_node_actions_p(parent))) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid child %s \"%s\" of uses parent %s \"%s\" node.", grp->actions->name, lys_nodetype2str(grp->actions->nodetype), parent->name, lys_nodetype2str(parent->nodetype)); rc = LY_EVALID; goto cleanup; } if (grp->notifs && (parent && !lysc_node_notifs_p(parent))) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid child %s \"%s\" of uses parent %s \"%s\" node.", grp->notifs->name, lys_nodetype2str(grp->notifs->nodetype), parent->name, lys_nodetype2str(parent->nodetype)); rc = LY_EVALID; goto cleanup; } /* check status */ rc = lysc_check_status(ctx, uses_p->flags, ctx->pmod, uses_p->name, grp->flags, grp_mod, grp->name); LY_CHECK_GOTO(rc, cleanup); /* compile any augments and refines so they can be applied during the grouping nodes compilation */ rc = lys_precompile_uses_augments_refines(ctx, uses_p, parent); LY_CHECK_GOTO(rc, cleanup); /* compile special uses status flags */ rc = lys_compile_status(ctx, uses_p->flags, inherited_flags, parent ? parent->flags : 0, parent ? parent->name : NULL, "", &uses_flags); LY_CHECK_GOTO(rc, cleanup); /* uses if-features */ LY_CHECK_GOTO(rc = lys_eval_iffeatures(ctx->ctx, uses_p->iffeatures, &enabled), cleanup); if (!enabled && !(ctx->compile_opts & (LYS_COMPILE_NO_DISABLED | LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING))) { ctx->compile_opts |= LYS_COMPILE_DISABLED; child_unres_disabled = 1; } /* uses grouping children */ rc = lys_compile_uses_children(ctx, uses_p, uses_flags, grp->child, grp_mod, parent, child_set ? child_set : &uses_child_set, child_unres_disabled); LY_CHECK_GOTO(rc, cleanup); /* uses grouping RPCs/actions */ rc = lys_compile_uses_children(ctx, uses_p, uses_flags, (struct lysp_node *)grp->actions, grp_mod, parent, child_set ? child_set : &uses_child_set, child_unres_disabled); LY_CHECK_GOTO(rc, cleanup); /* uses grouping notifications */ rc = lys_compile_uses_children(ctx, uses_p, uses_flags, (struct lysp_node *)grp->notifs, grp_mod, parent, child_set ? child_set : &uses_child_set, child_unres_disabled); LY_CHECK_GOTO(rc, cleanup); /* check that all augments were applied */ for (i = 0; i < ctx->uses_augs.count; ++i) { if (((struct lysc_augment *)ctx->uses_augs.objs[i])->aug_p->parent != (struct lysp_node *)uses_p) { /* augment of some parent uses, irrelevant now */ continue; } LOGVAL(ctx->ctx, LYVE_REFERENCE, "Augment target node \"%s\" in grouping \"%s\" was not found.", ((struct lysc_augment *)ctx->uses_augs.objs[i])->nodeid->str, grp->name); rc = LY_ENOTFOUND; } LY_CHECK_GOTO(rc, cleanup); /* check that all refines were applied */ for (i = 0; i < ctx->uses_rfns.count; ++i) { if (((struct lysc_refine *)ctx->uses_rfns.objs[i])->uses_p != uses_p) { /* refine of some parent uses, irrelevant now */ continue; } LOGVAL(ctx->ctx, LYVE_REFERENCE, "Refine(s) target node \"%s\" in grouping \"%s\" was not found.", ((struct lysc_refine *)ctx->uses_rfns.objs[i])->nodeid->str, grp->name); rc = LY_ENOTFOUND; } LY_CHECK_GOTO(rc, cleanup); /* compile uses and grouping extensions into the parent */ COMPILE_EXTS_GOTO(ctx, uses_p->exts, parent->exts, parent, rc, cleanup); COMPILE_EXTS_GOTO(ctx, grp->exts, parent->exts, parent, rc, cleanup); cleanup: /* restore previous context */ ctx->compile_opts = opt_prev; /* remove the grouping from the stack for circular groupings dependency check */ ly_set_rm_index(&ctx->groupings, ctx->groupings.count - 1, NULL); assert(ctx->groupings.count == grp_stack_count); ly_set_erase(&uses_child_set, NULL); return rc; } static int lys_compile_grouping_pathlog(struct lysc_ctx *ctx, struct lysp_node *node, char **path) { struct lysp_node *iter; int len = 0; *path = NULL; for (iter = node; iter && len >= 0; iter = iter->parent) { char *s = *path; char *id; switch (iter->nodetype) { case LYS_USES: LY_CHECK_RET(asprintf(&id, "{uses='%s'}", iter->name) == -1, -1); break; case LYS_GROUPING: LY_CHECK_RET(asprintf(&id, "{grouping='%s'}", iter->name) == -1, -1); break; case LYS_AUGMENT: LY_CHECK_RET(asprintf(&id, "{augment='%s'}", iter->name) == -1, -1); break; default: id = strdup(iter->name); break; } if (!iter->parent) { /* print prefix */ len = asprintf(path, "/%s:%s%s", ctx->cur_mod->name, id, s ? s : ""); } else { /* prefix is the same as in parent */ len = asprintf(path, "/%s%s", id, s ? s : ""); } free(s); free(id); } if (len < 0) { free(*path); *path = NULL; } else if (len == 0) { *path = strdup("/"); len = 1; } return len; } LY_ERR lys_compile_grouping(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysp_node_grp *grp) { LY_ERR rc = LY_SUCCESS; char *path; int len; /* use grouping status to avoid errors */ struct lysp_node_uses fake_uses = { .parent = pnode, .nodetype = LYS_USES, .flags = grp->flags & LYS_STATUS_MASK, .next = NULL, .name = grp->name, .dsc = NULL, .ref = NULL, .when = NULL, .iffeatures = NULL, .exts = NULL, .refines = NULL, .augments = NULL }; struct lysc_node_container fake_container = { .nodetype = LYS_CONTAINER, .flags = 0, .module = ctx->cur_mod, .parent = NULL, .next = NULL, .prev = &fake_container.node, .name = "fake", .dsc = NULL, .ref = NULL, .exts = NULL, .when = NULL, .child = NULL, .musts = NULL, .actions = NULL, .notifs = NULL }; /* compile fake container flags */ LY_CHECK_GOTO(rc = lys_compile_node_flags(ctx, pnode ? pnode->flags : 0, 0, &fake_container.node), cleanup); if (grp->parent) { LOGWRN(ctx->ctx, "Locally scoped grouping \"%s\" not used.", grp->name); } len = lys_compile_grouping_pathlog(ctx, grp->parent, &path); if (len < 0) { LOGMEM(ctx->ctx); return LY_EMEM; } strncpy(ctx->path, path, LYSC_CTX_BUFSIZE - 1); ctx->path_len = (uint32_t)len; free(path); lysc_update_path(ctx, NULL, "{grouping}"); lysc_update_path(ctx, NULL, grp->name); rc = lys_compile_uses(ctx, &fake_uses, &fake_container.node, 0, NULL); lysc_update_path(ctx, NULL, NULL); lysc_update_path(ctx, NULL, NULL); ctx->path_len = 1; ctx->path[1] = '\0'; cleanup: lysc_node_container_free(&ctx->free_ctx, &fake_container); FREE_ARRAY(&ctx->free_ctx, fake_container.exts, lysc_ext_instance_free); return rc; } LY_ERR lys_compile_node(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *parent, uint16_t inherited_flags, struct ly_set *child_set) { LY_ERR ret = LY_SUCCESS; struct lysc_node *node = NULL; uint32_t prev_opts = ctx->compile_opts; LY_ERR (*node_compile_spec)(struct lysc_ctx *, struct lysp_node *, struct lysc_node *); if (pnode->nodetype != LYS_USES) { lysc_update_path(ctx, parent ? parent->module : NULL, pnode->name); } else { lysc_update_path(ctx, NULL, "{uses}"); lysc_update_path(ctx, NULL, pnode->name); } switch (pnode->nodetype) { case LYS_CONTAINER: node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_container)); node_compile_spec = lys_compile_node_container; break; case LYS_LEAF: node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_leaf)); node_compile_spec = lys_compile_node_leaf; break; case LYS_LIST: node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_list)); node_compile_spec = lys_compile_node_list; break; case LYS_LEAFLIST: node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_leaflist)); node_compile_spec = lys_compile_node_leaflist; break; case LYS_CHOICE: node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_choice)); node_compile_spec = lys_compile_node_choice; break; case LYS_CASE: node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_case)); node_compile_spec = lys_compile_node_case; break; case LYS_ANYXML: case LYS_ANYDATA: node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_anydata)); node_compile_spec = lys_compile_node_any; break; case LYS_RPC: case LYS_ACTION: if (ctx->compile_opts & (LYS_IS_INPUT | LYS_IS_OUTPUT | LYS_IS_NOTIF)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Action \"%s\" is placed inside %s.", pnode->name, (ctx->compile_opts & LYS_IS_NOTIF) ? "notification" : "another RPC/action"); return LY_EVALID; } node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_action)); node_compile_spec = lys_compile_node_action; ctx->compile_opts |= LYS_COMPILE_NO_CONFIG; break; case LYS_NOTIF: if (ctx->compile_opts & (LYS_IS_INPUT | LYS_IS_OUTPUT | LYS_IS_NOTIF)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Notification \"%s\" is placed inside %s.", pnode->name, (ctx->compile_opts & LYS_IS_NOTIF) ? "another notification" : "RPC/action"); return LY_EVALID; } node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_notif)); node_compile_spec = lys_compile_node_notif; ctx->compile_opts |= LYS_COMPILE_NOTIFICATION; break; case LYS_USES: ret = lys_compile_uses(ctx, (struct lysp_node_uses *)pnode, parent, inherited_flags, child_set); lysc_update_path(ctx, NULL, NULL); lysc_update_path(ctx, NULL, NULL); return ret; default: LOGINT(ctx->ctx); return LY_EINT; } LY_CHECK_ERR_RET(!node, LOGMEM(ctx->ctx), LY_EMEM); ret = lys_compile_node_(ctx, pnode, parent, inherited_flags, node_compile_spec, node, child_set); ctx->compile_opts = prev_opts; lysc_update_path(ctx, NULL, NULL); return ret; }