summaryrefslogtreecommitdiffstats
path: root/doc
diff options
context:
space:
mode:
authorDaniel Baumann <mail@daniel-baumann.ch>2015-11-07 09:30:45 +0000
committerDaniel Baumann <mail@daniel-baumann.ch>2015-11-07 09:30:45 +0000
commit4a9d4aa2993742892cbc608b9df295e7c43a9b89 (patch)
treee6127869ff2cf3fa12b493926c84c4aec34a626e /doc
parentAdding upstream version 1.12. (diff)
downloadlzip-4a9d4aa2993742892cbc608b9df295e7c43a9b89.tar.xz
lzip-4a9d4aa2993742892cbc608b9df295e7c43a9b89.zip
Adding upstream version 1.13~rc1.upstream/1.13_rc1
Signed-off-by: Daniel Baumann <mail@daniel-baumann.ch>
Diffstat (limited to 'doc')
-rw-r--r--doc/lzip.110
-rw-r--r--doc/lzip.info252
-rw-r--r--doc/lzip.texinfo234
-rw-r--r--doc/lziprecover.147
4 files changed, 108 insertions, 435 deletions
diff --git a/doc/lzip.1 b/doc/lzip.1
index b0cf9a5..caac739 100644
--- a/doc/lzip.1
+++ b/doc/lzip.1
@@ -1,5 +1,5 @@
.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.37.1.
-.TH LZIP "1" "April 2011" "Lzip 1.12" "User Commands"
+.TH LZIP "1" "November 2011" "Lzip 1.13-rc1" "User Commands"
.SH NAME
Lzip \- reduces the size of files
.SH SYNOPSIS
@@ -15,7 +15,7 @@ display this help and exit
\fB\-V\fR, \fB\-\-version\fR
output version information and exit
.TP
-\fB\-b\fR, \fB\-\-member\-size=\fR<n>
+\fB\-b\fR, \fB\-\-member\-size=\fR<bytes>
set member size limit in bytes
.TP
\fB\-c\fR, \fB\-\-stdout\fR
@@ -33,7 +33,7 @@ force recompression of compressed files
\fB\-k\fR, \fB\-\-keep\fR
keep (don't delete) input files
.TP
-\fB\-m\fR, \fB\-\-match\-length=\fR<n>
+\fB\-m\fR, \fB\-\-match\-length=\fR<bytes>
set match length limit in bytes [36]
.TP
\fB\-o\fR, \fB\-\-output=\fR<file>
@@ -42,10 +42,10 @@ if reading stdin, place the output into <file>
\fB\-q\fR, \fB\-\-quiet\fR
suppress all messages
.TP
-\fB\-s\fR, \fB\-\-dictionary\-size=\fR<n>
+\fB\-s\fR, \fB\-\-dictionary\-size=\fR<bytes>
set dictionary size limit in bytes [8MiB]
.TP
-\fB\-S\fR, \fB\-\-volume\-size=\fR<n>
+\fB\-S\fR, \fB\-\-volume\-size=\fR<bytes>
set volume size limit in bytes
.TP
\fB\-t\fR, \fB\-\-test\fR
diff --git a/doc/lzip.info b/doc/lzip.info
index fa26348..2981447 100644
--- a/doc/lzip.info
+++ b/doc/lzip.info
@@ -11,7 +11,7 @@ File: lzip.info, Node: Top, Next: Introduction, Up: (dir)
Lzip Manual
***********
-This manual is for Lzip (version 1.12, 30 April 2011).
+This manual is for Lzip (version 1.13-rc1, 12 November 2011).
* Menu:
@@ -20,8 +20,6 @@ This manual is for Lzip (version 1.12, 30 April 2011).
* Invoking Lzip:: Command line interface
* File Format:: Detailed format of the compressed file
* Examples:: A small tutorial with examples
-* Lziprecover:: Recovering data from damaged compressed files
-* Invoking Lziprecover:: Command line interface
* Problems:: Reporting bugs
* Concept Index:: Index of concepts
@@ -43,6 +41,9 @@ gzip or bzip2. Lzip decompresses almost as fast as gzip and compresses
better than bzip2, which makes it well suited for software distribution
and data archiving.
+ If you ever need to recover data from a damaged lzip file, try the
+lziprecover program.
+
Lzip replaces every file given in the command line with a compressed
version of itself, with the name "original_name.lz". Each compressed
file has the same modification date, permissions, and, when possible,
@@ -182,12 +183,12 @@ The format for running lzip is:
`--version'
Print the version number of lzip on the standard output and exit.
-`-b SIZE'
-`--member-size=SIZE'
- Produce a multimember file and set the member size limit to SIZE
- bytes. Minimum member size limit is 100kB. Small member size may
- degrade compression ratio, so use it only when needed. The default
- is to produce single-member files.
+`-b BYTES'
+`--member-size=BYTES'
+ Produce a multimember file and set the member size limit to BYTES.
+ Minimum member size limit is 100kB. Small member size may degrade
+ compression ratio, so use it only when needed. The default is to
+ produce single-member files.
`-c'
`--stdout'
@@ -202,7 +203,7 @@ The format for running lzip is:
`-f'
`--force'
- Force overwrite of output file.
+ Force overwrite of output files.
`-F'
`--recompress'
@@ -214,8 +215,8 @@ The format for running lzip is:
Keep (don't delete) input files during compression or
decompression.
-`-m LENGTH'
-`--match-length=LENGTH'
+`-m BYTES'
+`--match-length=BYTES'
Set the match length limit in bytes. After a match this long is
found, the search is finished. Valid values range from 5 to 273.
Larger values usually give better compression ratios but longer
@@ -234,25 +235,25 @@ The format for running lzip is:
`--quiet'
Quiet operation. Suppress all messages.
-`-s SIZE'
-`--dictionary-size=SIZE'
+`-s BYTES'
+`--dictionary-size=BYTES'
Set the dictionary size limit in bytes. Valid values range from
4KiB to 512MiB. Lzip will use the smallest possible dictionary
size for each member without exceeding this limit. Note that
dictionary sizes are quantized. If the specified size does not
match one of the valid sizes, it will be rounded upwards by adding
- up to (SIZE / 16) to it.
+ up to (BYTES / 16) to it.
For maximum compression you should use a dictionary size limit as
large as possible, but keep in mind that the decompression memory
requirement is affected at compression time by the choice of
dictionary size limit.
-`-S SIZE'
-`--volume-size=SIZE'
+`-S BYTES'
+`--volume-size=BYTES'
Split the compressed output into several volume files with names
`original_name00001.lz', `original_name00002.lz', etc, and set the
- volume size limit to SIZE bytes. Each volume is a complete, maybe
+ volume size limit to BYTES. Each volume is a complete, maybe
multimember, lzip file. Minimum volume size limit is 100kB. Small
volume size may degrade compression ratio, so use it only when
needed.
@@ -266,11 +267,13 @@ The format for running lzip is:
`-v'
`--verbose'
- Verbose mode. When compressing, show the compression ratio for
- each file processed. When decompressing or testing, further -v's
- (up to 4) increase the verbosity level, showing status, dictionary
- size, compression ratio, trailer contents (CRC, data size, member
- size), and up to 6 bytes of trailing garbage (if any).
+ Verbose mode.
+ When compressing, show the compression ratio for each file
+ processed.
+ When decompressing or testing, further -v's (up to 4) increase the
+ verbosity level, showing status, dictionary size, compression
+ ratio, trailer contents (CRC, data size, member size), and up to 6
+ bytes of trailing garbage (if any).
`-0 .. -9'
Set the compression parameters (dictionary size and match length
@@ -379,7 +382,7 @@ additional information before, between, or after them.

-File: lzip.info, Node: Examples, Next: Lziprecover, Prev: File Format, Up: Top
+File: lzip.info, Node: Examples, Next: Problems, Prev: File Format, Up: Top
5 A small tutorial with examples
********************************
@@ -392,205 +395,69 @@ verify the compressed file with a command like
`lzip -cd file.lz | cmp file -'.
-Example 1: Replace a regular file with its compressed version file.lz
+Example 1: Replace a regular file with its compressed version `file.lz'
and show the compression ratio.
lzip -v file
-Example 2: Like example 1 but the created file.lz is multimember with a
-member size of 1MiB. The compression ratio is not shown.
+Example 2: Like example 1 but the created `file.lz' is multimember with
+a member size of 1MiB. The compression ratio is not shown.
lzip -b 1MiB file
-Example 3: Restore a regular file from its compressed version file.lz.
-If the operation is successful, file.lz is removed.
+Example 3: Restore a regular file from its compressed version
+`file.lz'. If the operation is successful, `file.lz' is removed.
lzip -d file.lz
-Example 4: Verify the integrity of the compressed file file.lz and show
-status.
+Example 4: Verify the integrity of the compressed file `file.lz' and
+show status.
lzip -tv file.lz
Example 5: Compress a whole floppy in /dev/fd0 and send the output to
-file.lz.
+`file.lz'.
lzip -c /dev/fd0 > file.lz
-Example 6: Decompress file.lz partially until 10KiB of decompressed data
-are produced.
+Example 6: Decompress `file.lz' partially until 10KiB of decompressed
+data are produced.
lzip -cd file.lz | dd bs=1024 count=10
-Example 7: Create a multivolume compressed tar archive with a volume
+Example 7: Decompress `file.lz' partially from decompressed byte 10000
+to decompressed byte 15000 (5000 bytes are produced).
+
+ lzip -cd file.lz | dd bs=1000 skip=10 count=5
+
+
+Example 8: Create a multivolume compressed tar archive with a volume
size of 1440KiB.
tar -c some_directory | lzip -S 1440KiB -o volume_name
-Example 8: Extract a multivolume compressed tar archive.
+Example 9: Extract a multivolume compressed tar archive.
lzip -cd volume_name*.lz | tar -xf -
-Example 9: Create a multivolume compressed backup of a big database file
-with a volume size of 650MB, where each volume is a multimember file
-with a member size of 32MiB.
+Example 10: Create a multivolume compressed backup of a big database
+file with a volume size of 650MB, where each volume is a multimember
+file with a member size of 32MiB.
lzip -b 32MiB -S 650MB big_db
-
-Example 10: Recover a compressed backup from two copies on CD-ROM (see
-the GNU ddrescue manual for details about ddrescue)
-
- ddrescue -b2048 /dev/cdrom cdimage1 logfile1
- mount -t iso9660 -o loop,ro cdimage1 /mnt/cdimage
- cp /mnt/cdimage/backup.tar.lz rescued1.tar.lz
- umount /mnt/cdimage
- (insert second copy in the CD drive)
- ddrescue -b2048 /dev/cdrom cdimage2 logfile2
- mount -t iso9660 -o loop,ro cdimage2 /mnt/cdimage
- cp /mnt/cdimage/backup.tar.lz rescued2.tar.lz
- umount /mnt/cdimage
- lziprecover -m -v -o rescued.tar.lz rescued1.tar.lz rescued2.tar.lz
-
-
-Example 11: Recover the first volume of those created in example 9 from
-two copies, `big_db1_00001.lz' and `big_db2_00001.lz', with member
-00007 damaged in the first copy, member 00018 damaged in the second
-copy, and member 00012 damaged in both copies. (Indented lines are
-abridged error messages from lzip/lziprecover). Two correct copies are
-produced and compared.
-
- lziprecover -s big_db1_00001.lz
- lziprecover -s big_db2_00001.lz
- lzip -t rec*big_db1_00001.lz
- rec00007big_db1_00001.lz: crc mismatch
- rec00012big_db1_00001.lz: crc mismatch
- lzip -t rec*big_db2_00001.lz
- rec00012big_db2_00001.lz: crc mismatch
- rec00018big_db2_00001.lz: crc mismatch
- lziprecover -m -v rec00012big_db1_00001.lz rec00012big_db2_00001.lz
- Input files merged successfully
- cp rec00007big_db2_00001.lz rec00007big_db1_00001.lz
- cp rec00012big_db1_00001_fixed.lz rec00012big_db1_00001.lz
- cp rec00012big_db1_00001_fixed.lz rec00012big_db2_00001.lz
- cp rec00018big_db1_00001.lz rec00018big_db2_00001.lz
- cat rec*big_db1_00001.lz > big_db3_00001.lz
- cat rec*big_db2_00001.lz > big_db4_00001.lz
- zcmp big_db3_00001.lz big_db4_00001.lz
-
-
-File: lzip.info, Node: Lziprecover, Next: Invoking Lziprecover, Prev: Examples, Up: Top
-
-6 Lziprecover
-*************
-
-Lziprecover is a data recovery tool for lzip compressed files able to
-repair slightly damaged files, recover badly damaged files from two or
-more copies, and extract undamaged members from multi-member files.
-
- Lziprecover takes as arguments the names of the damaged files and
-writes zero or more recovered files depending on the operation selected
-and whether the recovery succeeded or not. The damaged files themselves
-are never modified.
-
- If the files are too damaged for lziprecover to repair them, data
-from damaged members can be partially recovered writing it to stdout as
-shown in the following example (the resulting file may contain garbage
-data at the end):
-
- lzip -cd rec00001file.lz > rec00001file
-
- If the cause of file corruption is damaged media, the combination GNU
-ddrescue + lziprecover is the best option for recovering data from
-multiple damaged copies. *Note ddrescue-example::, for an example.
-
-
-File: lzip.info, Node: Invoking Lziprecover, Next: Problems, Prev: Lziprecover, Up: Top
-
-7 Invoking Lziprecover
-**********************
-
-The format for running lziprecover is:
-
- lziprecover [OPTIONS] [FILES]
-
- Lziprecover supports the following options:
-
-`-h'
-`--help'
- Print an informative help message describing the options and exit.
-
-`-V'
-`--version'
- Print the version number of lziprecover on the standard output and
- exit.
-
-`-f'
-`--force'
- Force overwrite of output file.
-
-`-m'
-`--merge'
- Try to produce a correct file merging the good parts of two or more
- damaged copies. The copies must be single-member files. The merge
- will fail if the copies have too many damaged areas or if the same
- byte is damaged in all copies. If successful, a repaired copy is
- written to the file `FILE_fixed.lz'.
-
- To give you an idea of its possibilities, when merging two copies
- each of them with one damaged area affecting 1 percent of the
- copy, the probability of obtaining a correct file is about 98
- percent. With three such copies the probability rises to 99.97
- percent. For large files with small errors, the probability
- approaches 100 percent even with only two copies.
-
-`-o FILE'
-`--output=FILE'
- Place the output into `FILE' instead of into `FILE_fixed.lz'.
-
- If splitting, the names of the files produced are in the form
- `rec00001FILE', etc.
-
-`-q'
-`--quiet'
- Quiet operation. Suppress all messages.
-
-`-R'
-`--repair'
- Try to repair a small error, affecting only one byte, in a
- single-member FILE. If successful, a repaired copy is written to
- the file `FILE_fixed.lz'. `FILE' is not modified at all.
-
-`-s'
-`--split'
- Search for members in `FILE' and write each member in its own
- `.lz' file. You can then use `lzip -t' to test the integrity of
- the resulting files, decompress those which are undamaged, and try
- to repair or partially decompress those which are damaged.
-
- The names of the files produced are in the form `rec00001FILE.lz',
- `rec00002FILE.lz', etc, and are designed so that the use of
- wildcards in subsequent processing, for example,
- `lzip -cd rec*FILE.lz > recovered_data', processes the files in
- the correct order.
-
-`-v'
-`--verbose'
- Verbose mode. Further -v's increase the verbosity level.
-
-

-File: lzip.info, Node: Problems, Next: Concept Index, Prev: Invoking Lziprecover, Up: Top
+File: lzip.info, Node: Problems, Next: Concept Index, Prev: Examples, Up: Top
-8 Reporting Bugs
+6 Reporting Bugs
****************
There are probably bugs in lzip. There are certainly errors and
@@ -618,8 +485,6 @@ Concept Index
* getting help: Problems. (line 6)
* introduction: Introduction. (line 6)
* invoking lzip: Invoking Lzip. (line 6)
-* invoking lziprecover: Invoking Lziprecover. (line 6)
-* lziprecover: Lziprecover. (line 6)
* options: Invoking Lzip. (line 6)
* usage: Invoking Lzip. (line 6)
* version: Invoking Lzip. (line 6)
@@ -628,15 +493,12 @@ Concept Index

Tag Table:
Node: Top224
-Node: Introduction1031
-Node: Algorithm4439
-Node: Invoking Lzip6957
-Node: File Format12303
-Node: Examples14295
-Ref: ddrescue-example16049
-Node: Lziprecover17848
-Node: Invoking Lziprecover18901
-Node: Problems21262
-Node: Concept Index21796
+Node: Introduction917
+Node: Algorithm4417
+Node: Invoking Lzip6935
+Node: File Format12285
+Node: Examples14277
+Node: Problems16221
+Node: Concept Index16743

End Tag Table
diff --git a/doc/lzip.texinfo b/doc/lzip.texinfo
index b86de34..190f20f 100644
--- a/doc/lzip.texinfo
+++ b/doc/lzip.texinfo
@@ -5,8 +5,8 @@
@finalout
@c %**end of header
-@set UPDATED 30 April 2011
-@set VERSION 1.12
+@set UPDATED 12 November 2011
+@set VERSION 1.13-rc1
@dircategory Data Compression
@direntry
@@ -39,8 +39,6 @@ This manual is for Lzip (version @value{VERSION}, @value{UPDATED}).
* Invoking Lzip:: Command line interface
* File Format:: Detailed format of the compressed file
* Examples:: A small tutorial with examples
-* Lziprecover:: Recovering data from damaged compressed files
-* Invoking Lziprecover:: Command line interface
* Problems:: Reporting bugs
* Concept Index:: Index of concepts
@end menu
@@ -62,6 +60,9 @@ gzip or bzip2. Lzip decompresses almost as fast as gzip and compresses
better than bzip2, which makes it well suited for software distribution
and data archiving.
+If you ever need to recover data from a damaged lzip file, try the
+lziprecover program.
+
Lzip replaces every file given in the command line with a compressed
version of itself, with the name "original_name.lz". Each compressed
file has the same modification date, permissions, and, when possible,
@@ -208,10 +209,10 @@ Print an informative help message describing the options and exit.
@itemx --version
Print the version number of lzip on the standard output and exit.
-@item -b @var{size}
-@itemx --member-size=@var{size}
-Produce a multimember file and set the member size limit to @var{size}
-bytes. Minimum member size limit is 100kB. Small member size may degrade
+@item -b @var{bytes}
+@itemx --member-size=@var{bytes}
+Produce a multimember file and set the member size limit to @var{bytes}.
+Minimum member size limit is 100kB. Small member size may degrade
compression ratio, so use it only when needed. The default is to produce
single-member files.
@@ -227,7 +228,7 @@ Decompress.
@item -f
@itemx --force
-Force overwrite of output file.
+Force overwrite of output files.
@item -F
@itemx --recompress
@@ -238,8 +239,8 @@ Force recompression of files whose name already has the @samp{.lz} or
@itemx --keep
Keep (don't delete) input files during compression or decompression.
-@item -m @var{length}
-@itemx --match-length=@var{length}
+@item -m @var{bytes}
+@itemx --match-length=@var{bytes}
Set the match length limit in bytes. After a match this long is found,
the search is finished. Valid values range from 5 to 273. Larger values
usually give better compression ratios but longer compression times.
@@ -257,25 +258,25 @@ compressing and splitting the output in volumes.
@itemx --quiet
Quiet operation. Suppress all messages.
-@item -s @var{size}
-@itemx --dictionary-size=@var{size}
+@item -s @var{bytes}
+@itemx --dictionary-size=@var{bytes}
Set the dictionary size limit in bytes. Valid values range from 4KiB to
512MiB. Lzip will use the smallest possible dictionary size for each
member without exceeding this limit. Note that dictionary sizes are
quantized. If the specified size does not match one of the valid sizes,
-it will be rounded upwards by adding up to (@var{size} / 16) to it.
+it will be rounded upwards by adding up to (@var{bytes} / 16) to it.
For maximum compression you should use a dictionary size limit as large
as possible, but keep in mind that the decompression memory requirement
is affected at compression time by the choice of dictionary size limit.
-@item -S @var{size}
-@itemx --volume-size=@var{size}
+@item -S @var{bytes}
+@itemx --volume-size=@var{bytes}
Split the compressed output into several volume files with names
@samp{original_name00001.lz}, @samp{original_name00002.lz}, etc, and set
-the volume size limit to @var{size} bytes. Each volume is a complete,
-maybe multimember, lzip file. Minimum volume size limit is 100kB. Small
-volume size may degrade compression ratio, so use it only when needed.
+the volume size limit to @var{bytes}. Each volume is a complete, maybe
+multimember, lzip file. Minimum volume size limit is 100kB. Small volume
+size may degrade compression ratio, so use it only when needed.
@item -t
@itemx --test
@@ -285,8 +286,8 @@ Use it together with @samp{-v} to see information about the file.
@item -v
@itemx --verbose
-Verbose mode.
-When compressing, show the compression ratio for each file processed.
+Verbose mode.@*
+When compressing, show the compression ratio for each file processed.@*
When decompressing or testing, further -v's (up to 4) increase the
verbosity level, showing status, dictionary size, compression ratio,
trailer contents (CRC, data size, member size), and up to 6 bytes of
@@ -422,8 +423,8 @@ file.lz | cmp file -}}.
@sp 1
@noindent
-Example 1: Replace a regular file with its compressed version file.lz
-and show the compression ratio.
+Example 1: Replace a regular file with its compressed version
+@samp{file.lz} and show the compression ratio.
@example
lzip -v file
@@ -431,8 +432,8 @@ lzip -v file
@sp 1
@noindent
-Example 2: Like example 1 but the created file.lz is multimember with a
-member size of 1MiB. The compression ratio is not shown.
+Example 2: Like example 1 but the created @samp{file.lz} is multimember
+with a member size of 1MiB. The compression ratio is not shown.
@example
lzip -b 1MiB file
@@ -440,8 +441,9 @@ lzip -b 1MiB file
@sp 1
@noindent
-Example 3: Restore a regular file from its compressed version file.lz.
-If the operation is successful, file.lz is removed.
+Example 3: Restore a regular file from its compressed version
+@samp{file.lz}. If the operation is successful, @samp{file.lz} is
+removed.
@example
lzip -d file.lz
@@ -449,8 +451,8 @@ lzip -d file.lz
@sp 1
@noindent
-Example 4: Verify the integrity of the compressed file file.lz and show
-status.
+Example 4: Verify the integrity of the compressed file @samp{file.lz}
+and show status.
@example
lzip -tv file.lz
@@ -459,7 +461,7 @@ lzip -tv file.lz
@sp 1
@noindent
Example 5: Compress a whole floppy in /dev/fd0 and send the output to
-file.lz.
+@samp{file.lz}.
@example
lzip -c /dev/fd0 > file.lz
@@ -467,8 +469,8 @@ lzip -c /dev/fd0 > file.lz
@sp 1
@noindent
-Example 6: Decompress file.lz partially until 10KiB of decompressed data
-are produced.
+Example 6: Decompress @samp{file.lz} partially until 10KiB of
+decompressed data are produced.
@example
lzip -cd file.lz | dd bs=1024 count=10
@@ -476,184 +478,40 @@ lzip -cd file.lz | dd bs=1024 count=10
@sp 1
@noindent
-Example 7: Create a multivolume compressed tar archive with a volume
-size of 1440KiB.
-
-@example
-tar -c some_directory | lzip -S 1440KiB -o volume_name
-@end example
-
-@sp 1
-@noindent
-Example 8: Extract a multivolume compressed tar archive.
+Example 7: Decompress @samp{file.lz} partially from decompressed byte
+10000 to decompressed byte 15000 (5000 bytes are produced).
@example
-lzip -cd volume_name*.lz | tar -xf -
+lzip -cd file.lz | dd bs=1000 skip=10 count=5
@end example
@sp 1
@noindent
-Example 9: Create a multivolume compressed backup of a big database file
-with a volume size of 650MB, where each volume is a multimember file
-with a member size of 32MiB.
+Example 8: Create a multivolume compressed tar archive with a volume
+size of 1440KiB.
@example
-lzip -b 32MiB -S 650MB big_db
+tar -c some_directory | lzip -S 1440KiB -o volume_name
@end example
@sp 1
-@anchor{ddrescue-example}
@noindent
-Example 10: Recover a compressed backup from two copies on CD-ROM (see
-the GNU ddrescue manual for details about ddrescue)
+Example 9: Extract a multivolume compressed tar archive.
@example
-ddrescue -b2048 /dev/cdrom cdimage1 logfile1
-mount -t iso9660 -o loop,ro cdimage1 /mnt/cdimage
-cp /mnt/cdimage/backup.tar.lz rescued1.tar.lz
-umount /mnt/cdimage
- (insert second copy in the CD drive)
-ddrescue -b2048 /dev/cdrom cdimage2 logfile2
-mount -t iso9660 -o loop,ro cdimage2 /mnt/cdimage
-cp /mnt/cdimage/backup.tar.lz rescued2.tar.lz
-umount /mnt/cdimage
-lziprecover -m -v -o rescued.tar.lz rescued1.tar.lz rescued2.tar.lz
+lzip -cd volume_name*.lz | tar -xf -
@end example
@sp 1
@noindent
-Example 11: Recover the first volume of those created in example 9 from
-two copies, @samp{big_db1_00001.lz} and @samp{big_db2_00001.lz}, with
-member 00007 damaged in the first copy, member 00018 damaged in the
-second copy, and member 00012 damaged in both copies. (Indented lines
-are abridged error messages from lzip/lziprecover). Two correct copies
-are produced and compared.
-
-@example
-lziprecover -s big_db1_00001.lz
-lziprecover -s big_db2_00001.lz
-lzip -t rec*big_db1_00001.lz
- rec00007big_db1_00001.lz: crc mismatch
- rec00012big_db1_00001.lz: crc mismatch
-lzip -t rec*big_db2_00001.lz
- rec00012big_db2_00001.lz: crc mismatch
- rec00018big_db2_00001.lz: crc mismatch
-lziprecover -m -v rec00012big_db1_00001.lz rec00012big_db2_00001.lz
- Input files merged successfully
-cp rec00007big_db2_00001.lz rec00007big_db1_00001.lz
-cp rec00012big_db1_00001_fixed.lz rec00012big_db1_00001.lz
-cp rec00012big_db1_00001_fixed.lz rec00012big_db2_00001.lz
-cp rec00018big_db1_00001.lz rec00018big_db2_00001.lz
-cat rec*big_db1_00001.lz > big_db3_00001.lz
-cat rec*big_db2_00001.lz > big_db4_00001.lz
-zcmp big_db3_00001.lz big_db4_00001.lz
-@end example
-
-
-@node Lziprecover
-@chapter Lziprecover
-@cindex lziprecover
-
-Lziprecover is a data recovery tool for lzip compressed files able to
-repair slightly damaged files, recover badly damaged files from two or
-more copies, and extract undamaged members from multi-member files.
-
-Lziprecover takes as arguments the names of the damaged files and writes
-zero or more recovered files depending on the operation selected and
-whether the recovery succeeded or not. The damaged files themselves are
-never modified.
-
-If the files are too damaged for lziprecover to repair them, data from
-damaged members can be partially recovered writing it to stdout as shown
-in the following example (the resulting file may contain garbage data at
-the end):
-
-@example
-lzip -cd rec00001file.lz > rec00001file
-@end example
-
-If the cause of file corruption is damaged media, the combination GNU
-ddrescue + lziprecover is the best option for recovering data from
-multiple damaged copies. @xref{ddrescue-example}, for an example.
-
-
-@node Invoking Lziprecover
-@chapter Invoking Lziprecover
-@cindex invoking lziprecover
-
-The format for running lziprecover is:
+Example 10: Create a multivolume compressed backup of a big database
+file with a volume size of 650MB, where each volume is a multimember
+file with a member size of 32MiB.
@example
-lziprecover [@var{options}] [@var{files}]
+lzip -b 32MiB -S 650MB big_db
@end example
-Lziprecover supports the following options:
-
-@table @samp
-@item -h
-@itemx --help
-Print an informative help message describing the options and exit.
-
-@item -V
-@itemx --version
-Print the version number of lziprecover on the standard output and exit.
-
-@item -f
-@itemx --force
-Force overwrite of output file.
-
-@item -m
-@itemx --merge
-Try to produce a correct file merging the good parts of two or more
-damaged copies. The copies must be single-member files. The merge will
-fail if the copies have too many damaged areas or if the same byte is
-damaged in all copies. If successful, a repaired copy is written to the
-file @samp{@var{file}_fixed.lz}.
-
-To give you an idea of its possibilities, when merging two copies each
-of them with one damaged area affecting 1 percent of the copy, the
-probability of obtaining a correct file is about 98 percent. With three
-such copies the probability rises to 99.97 percent. For large files with
-small errors, the probability approaches 100 percent even with only two
-copies.
-
-@item -o @var{file}
-@itemx --output=@var{file}
-Place the output into @samp{@var{file}} instead of into
-@samp{@var{file}_fixed.lz}.
-
-If splitting, the names of the files produced are in the form
-@samp{rec00001@var{file}}, etc.
-
-@item -q
-@itemx --quiet
-Quiet operation. Suppress all messages.
-
-@item -R
-@itemx --repair
-Try to repair a small error, affecting only one byte, in a single-member
-@var{file}. If successful, a repaired copy is written to the file
-@samp{@var{file}_fixed.lz}. @samp{@var{file}} is not modified at all.
-
-@item -s
-@itemx --split
-Search for members in @samp{@var{file}} and write each member in its own
-@samp{.lz} file. You can then use @samp{lzip -t} to test the integrity
-of the resulting files, decompress those which are undamaged, and try to
-repair or partially decompress those which are damaged.
-
-The names of the files produced are in the form
-@samp{rec00001@var{file}.lz}, @samp{rec00002@var{file}.lz}, etc, and are
-designed so that the use of wildcards in subsequent processing, for
-example, @w{@samp{lzip -cd rec*@var{file}.lz > recovered_data}},
-processes the files in the correct order.
-
-@item -v
-@itemx --verbose
-Verbose mode. Further -v's increase the verbosity level.
-
-@end table
-
@node Problems
@chapter Reporting Bugs
diff --git a/doc/lziprecover.1 b/doc/lziprecover.1
deleted file mode 100644
index ff8e0ed..0000000
--- a/doc/lziprecover.1
+++ /dev/null
@@ -1,47 +0,0 @@
-.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.37.1.
-.TH LZIPRECOVER "1" "April 2011" "Lziprecover 1.12" "User Commands"
-.SH NAME
-Lziprecover \- recovers data from damaged lzip files
-.SH SYNOPSIS
-.B lziprecover
-[\fIoptions\fR] [\fIfiles\fR]
-.SH DESCRIPTION
-Lziprecover \- Data recovery tool for lzip compressed files.
-.SH OPTIONS
-.TP
-\fB\-h\fR, \fB\-\-help\fR
-display this help and exit
-.TP
-\fB\-V\fR, \fB\-\-version\fR
-output version information and exit
-.TP
-\fB\-f\fR, \fB\-\-force\fR
-overwrite existing output files
-.TP
-\fB\-m\fR, \fB\-\-merge\fR
-correct errors in file using several copies
-.TP
-\fB\-o\fR, \fB\-\-output=\fR<file>
-place the output into <file>
-.TP
-\fB\-q\fR, \fB\-\-quiet\fR
-suppress all messages
-.TP
-\fB\-R\fR, \fB\-\-repair\fR
-try to repair a small error in file
-.TP
-\fB\-s\fR, \fB\-\-split\fR
-split a multimember file in single\-member files
-.TP
-\fB\-v\fR, \fB\-\-verbose\fR
-be verbose (a 2nd \fB\-v\fR gives more)
-.SH "REPORTING BUGS"
-Report bugs to lzip\-bug@nongnu.org
-.br
-Lzip home page: http://www.nongnu.org/lzip/lzip.html
-.SH COPYRIGHT
-Copyright \(co 2011 Antonio Diaz Diaz.
-License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
-.br
-This is free software: you are free to change and redistribute it.
-There is NO WARRANTY, to the extent permitted by law.