From 3fb246ff84982a43c4323c60ae7c259d37d286f0 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 7 Nov 2015 11:02:52 +0100 Subject: Adding upstream version 1.16~pre1. Signed-off-by: Daniel Baumann --- doc/lzip.texi | 1254 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1254 insertions(+) create mode 100644 doc/lzip.texi (limited to 'doc/lzip.texi') diff --git a/doc/lzip.texi b/doc/lzip.texi new file mode 100644 index 0000000..957af34 --- /dev/null +++ b/doc/lzip.texi @@ -0,0 +1,1254 @@ +\input texinfo @c -*-texinfo-*- +@c %**start of header +@setfilename lzip.info +@documentencoding ISO-8859-15 +@settitle Lzip Manual +@finalout +@c %**end of header + +@set UPDATED 11 January 2014 +@set VERSION 1.16-pre1 + +@dircategory Data Compression +@direntry +* Lzip: (lzip). LZMA lossless data compressor +@end direntry + + +@ifnothtml +@titlepage +@title Lzip +@subtitle LZMA lossless data compressor +@subtitle for Lzip version @value{VERSION}, @value{UPDATED} +@author by Antonio Diaz Diaz + +@page +@vskip 0pt plus 1filll +@end titlepage + +@contents +@end ifnothtml + +@node Top +@top + +This manual is for Lzip (version @value{VERSION}, @value{UPDATED}). + +@menu +* Introduction:: Purpose and features of lzip +* Algorithm:: How lzip compresses the data +* Invoking lzip:: Command line interface +* File format:: Detailed format of the compressed file +* Stream format:: Format of the LZMA stream in lzip files +* Examples:: A small tutorial with examples +* Problems:: Reporting bugs +* Reference source code:: Source code illustrating stream format +* Concept index:: Index of concepts +@end menu + +@sp 1 +Copyright @copyright{} 2008, 2009, 2010, 2011, 2012, 2013, 2014 +Antonio Diaz Diaz. + +This manual is free documentation: you have unlimited permission +to copy, distribute and modify it. + + +@node Introduction +@chapter Introduction +@cindex introduction + +Lzip is a lossless data compressor with a user interface similar to the +one of gzip or bzip2. Lzip is about as fast as gzip, compresses most +files more than bzip2, and is better than both from a data recovery +perspective. Lzip is a clean implementation of the LZMA algorithm. + +The lzip file format is designed for long-term data archiving and +provides very safe integrity checking. It is as simple as possible (but +not simpler), so that with the only help of the lzip manual it would be +possible for a digital archaeologist to extract the data from a lzip +file long after quantum computers eventually render LZMA obsolete. +Additionally lzip is copylefted, which guarantees that it will remain +free forever. + +The member trailer stores the 32-bit CRC of the original data, the size +of the original data and the size of the member. These values, together +with the value remaining in the range decoder and the end-of-stream +marker, provide a 4 factor integrity checking which guarantees that the +decompressed version of the data is identical to the original. This +guards against corruption of the compressed data, and against undetected +bugs in lzip (hopefully very unlikely). The chances of data corruption +going undetected are microscopic. Be aware, though, that the check +occurs upon decompression, so it can only tell you that something is +wrong. It can't help you recover the original uncompressed data. + +If you ever need to recover data from a damaged lzip file, try the +lziprecover program. Lziprecover makes lzip files resistant to bit-flip +(one of the most common forms of data corruption), and provides data +recovery capabilities, including error-checked merging of damaged copies +of a file. + +Lzip uses the same well-defined exit status values used by bzip2, which +makes it safer than compressors returning ambiguous warning values (like +gzip) when it is used as a back end for tar or zutils. + +When compressing, lzip replaces every file given in the command line +with a compressed version of itself, with the name "original_name.lz". +When decompressing, lzip attempts to guess the name for the decompressed +file from that of the compressed file as follows: + +@multitable {anyothername} {becomes} {anyothername.out} +@item filename.lz @tab becomes @tab filename +@item filename.tlz @tab becomes @tab filename.tar +@item anyothername @tab becomes @tab anyothername.out +@end multitable + +(De)compressing a file is much like copying or moving it; therefore lzip +preserves the access and modification dates, permissions, and, when +possible, ownership of the file just as "cp -p" does. (If the user ID or +the group ID can't be duplicated, the file permission bits S_ISUID and +S_ISGID are cleared). + +Lzip is able to read from some types of non regular files if the +@samp{--stdout} option is specified. + +If no file names are specified, lzip compresses (or decompresses) from +standard input to standard output. In this case, lzip will decline to +write compressed output to a terminal, as this would be entirely +incomprehensible and therefore pointless. + +Lzip will correctly decompress a file which is the concatenation of two +or more compressed files. The result is the concatenation of the +corresponding uncompressed files. Integrity testing of concatenated +compressed files is also supported. + +Lzip can produce multi-member files and safely recover, with +lziprecover, the undamaged members in case of file damage. Lzip can also +split the compressed output in volumes of a given size, even when +reading from standard input. This allows the direct creation of +multivolume compressed tar archives. + +Lzip is able to compress and decompress streams of unlimited size by +automatically creating multi-member output. The members so created are +large, about 64 PiB each. + +The amount of memory required for compression is about 1 or 2 times the +dictionary size limit (1 if input file size is less than dictionary size +limit, else 2) plus 9 times the dictionary size really used. The option +@samp{-0} is special and only requires about 1.5 MiB at most. The amount +of memory required for decompression is about 46 kB larger than the +dictionary size really used. + +Lzip will automatically use the smallest possible dictionary size +without exceeding the given limit. Keep in mind that the decompression +memory requirement is affected at compression time by the choice of +dictionary size limit. + + +@node Algorithm +@chapter Algorithm +@cindex algorithm + +Lzip implements a simplified version of the LZMA (Lempel-Ziv-Markov +chain-Algorithm) algorithm. The high compression of LZMA comes from +combining two basic, well-proven compression ideas: sliding dictionaries +(LZ77/78) and markov models (the thing used by every compression +algorithm that uses a range encoder or similar order-0 entropy coder as +its last stage) with segregation of contexts according to what the bits +are used for. + +Lzip is a two stage compressor. The first stage is a Lempel-Ziv coder, +which reduces redundancy by translating chunks of data to their +corresponding distance-length pairs. The second stage is a range encoder +that uses a different probability model for each type of data; +distances, lengths, literal bytes, etc. + +The match finder, part of the LZ coder, is the most important piece of +the LZMA algorithm, as it is in many Lempel-Ziv based algorithms. Most +of lzip's execution time is spent in the match finder, and it has the +greatest influence on the compression ratio. + +Here is how it works, step by step: + +1) The member header is written to the output stream. + +2) The first byte is coded literally, because there are no previous +bytes to which the match finder can refer to. + +3) The main encoder advances to the next byte in the input data and +calls the match finder. + +4) The match finder fills an array with the minimum distances before the +current byte where a match of a given length can be found. + +5) Go back to step 3 until a sequence (formed of pairs, repeated +distances and literal bytes) of minimum price has been formed. Where the +price represents the number of output bits produced. + +6) The range encoder encodes the sequence produced by the main encoder +and sends the produced bytes to the output stream. + +7) Go back to step 3 until the input data are finished or until the +member or volume size limits are reached. + +8) The range encoder is flushed. + +9) The member trailer is written to the output stream. + +10) If there are more data to compress, go back to step 1. + +@sp 1 +@noindent +The ideas embodied in lzip are due to (at least) the following people: +Abraham Lempel and Jacob Ziv (for the LZ algorithm), Andrey Markov (for +the definition of Markov chains), G.N.N. Martin (for the definition of +range encoding), Igor Pavlov (for putting all the above together in +LZMA), and Julian Seward (for bzip2's CLI). + + +@node Invoking lzip +@chapter Invoking lzip +@cindex invoking +@cindex options +@cindex usage +@cindex version + +The format for running lzip is: + +@example +lzip [@var{options}] [@var{files}] +@end example + +Lzip supports the following options: + +@table @samp +@item -h +@itemx --help +Print an informative help message describing the options and exit. + +@item -V +@itemx --version +Print the version number of lzip on the standard output and exit. + +@item -b @var{bytes} +@itemx --member-size=@var{bytes} +Set the member size limit to @var{bytes}. A small member size may +degrade compression ratio, so use it only when needed. Valid values +range from 100 kB to 64 PiB. Defaults to 64 PiB. + +@item -c +@itemx --stdout +Compress or decompress to standard output. Needed when reading from a +named pipe (fifo) or from a device. Use it to recover as much of the +uncompressed data as possible when decompressing a corrupt file. + +@item -d +@itemx --decompress +Decompress. + +@item -f +@itemx --force +Force overwrite of output files. + +@item -F +@itemx --recompress +Force recompression of files whose name already has the @samp{.lz} or +@samp{.tlz} suffix. + +@item -k +@itemx --keep +Keep (don't delete) input files during compression or decompression. + +@item -m @var{bytes} +@itemx --match-length=@var{bytes} +Set the match length limit in bytes. After a match this long is found, +the search is finished. Valid values range from 5 to 273. Larger values +usually give better compression ratios but longer compression times. + +@item -o @var{file} +@itemx --output=@var{file} +When reading from standard input and @samp{--stdout} has not been +specified, use @samp{@var{file}} as the virtual name of the uncompressed +file. This produces a file named @samp{@var{file}} when decompressing, a +file named @samp{@var{file}.lz} when compressing, and several files +named @samp{@var{file}00001.lz}, @samp{@var{file}00002.lz}, etc, when +compressing and splitting the output in volumes. + +@item -q +@itemx --quiet +Quiet operation. Suppress all messages. + +@item -s @var{bytes} +@itemx --dictionary-size=@var{bytes} +Set the dictionary size limit in bytes. Valid values range from 4 KiB to +512 MiB. Lzip will use the smallest possible dictionary size for each +member without exceeding this limit. Note that dictionary sizes are +quantized. If the specified size does not match one of the valid sizes, +it will be rounded upwards by adding up to (@var{bytes} / 16) to it. + +For maximum compression you should use a dictionary size limit as large +as possible, but keep in mind that the decompression memory requirement +is affected at compression time by the choice of dictionary size limit. + +@item -S @var{bytes} +@itemx --volume-size=@var{bytes} +Split the compressed output into several volume files with names +@samp{original_name00001.lz}, @samp{original_name00002.lz}, etc, and set +the volume size limit to @var{bytes}. Each volume is a complete, maybe +multi-member, lzip file. A small volume size may degrade compression +ratio, so use it only when needed. Valid values range from 100 kB to 4 +EiB. + +@item -t +@itemx --test +Check integrity of the specified file(s), but don't decompress them. +This really performs a trial decompression and throws away the result. +Use it together with @samp{-v} to see information about the file. + +@item -v +@itemx --verbose +Verbose mode.@* +When compressing, show the compression ratio for each file processed. A +second @samp{-v} shows the progress of compression.@* +When decompressing or testing, further -v's (up to 4) increase the +verbosity level, showing status, compression ratio, dictionary size, +trailer contents (CRC, data size, member size), and up to 6 bytes of +trailing garbage (if any). + +@item -0 .. -9 +Set the compression parameters (dictionary size and match length limit) +as shown in the table below. Note that @samp{-9} can be much slower than +@samp{-0}. These options have no effect when decompressing. + +The bidimensional parameter space of LZMA can't be mapped to a linear +scale optimal for all files. If your files are large, very repetitive, +etc, you may need to use the @samp{--match-length} and +@samp{--dictionary-size} options directly to achieve optimal +performance. For example, @samp{-9m64} usually compresses executables +more (and faster) than @samp{-9}. + +@multitable {Level} {Dictionary size} {Match length limit} +@item Level @tab Dictionary size @tab Match length limit +@item -0 @tab 64 KiB @tab 16 bytes +@item -1 @tab 1 MiB @tab 5 bytes +@item -2 @tab 1.5 MiB @tab 6 bytes +@item -3 @tab 2 MiB @tab 8 bytes +@item -4 @tab 3 MiB @tab 12 bytes +@item -5 @tab 4 MiB @tab 20 bytes +@item -6 @tab 8 MiB @tab 36 bytes +@item -7 @tab 16 MiB @tab 68 bytes +@item -8 @tab 24 MiB @tab 132 bytes +@item -9 @tab 32 MiB @tab 273 bytes +@end multitable + +@item --fast +@itemx --best +Aliases for GNU gzip compatibility. + +@end table + +Numbers given as arguments to options may be followed by a multiplier +and an optional @samp{B} for "byte". + +Table of SI and binary prefixes (unit multipliers): + +@multitable {Prefix} {kilobyte (10^3 = 1000)} {|} {Prefix} {kibibyte (2^10 = 1024)} +@item Prefix @tab Value @tab | @tab Prefix @tab Value +@item k @tab kilobyte (10^3 = 1000) @tab | @tab Ki @tab kibibyte (2^10 = 1024) +@item M @tab megabyte (10^6) @tab | @tab Mi @tab mebibyte (2^20) +@item G @tab gigabyte (10^9) @tab | @tab Gi @tab gibibyte (2^30) +@item T @tab terabyte (10^12) @tab | @tab Ti @tab tebibyte (2^40) +@item P @tab petabyte (10^15) @tab | @tab Pi @tab pebibyte (2^50) +@item E @tab exabyte (10^18) @tab | @tab Ei @tab exbibyte (2^60) +@item Z @tab zettabyte (10^21) @tab | @tab Zi @tab zebibyte (2^70) +@item Y @tab yottabyte (10^24) @tab | @tab Yi @tab yobibyte (2^80) +@end multitable + +@sp 1 +Exit status: 0 for a normal exit, 1 for environmental problems (file not +found, invalid flags, I/O errors, etc), 2 to indicate a corrupt or +invalid input file, 3 for an internal consistency error (eg, bug) which +caused lzip to panic. + + +@node File format +@chapter File format +@cindex file format + +Perfection is reached, not when there is no longer anything to add, but +when there is no longer anything to take away.@* +--- Antoine de Saint-Exupery + +@sp 1 +In the diagram below, a box like this: +@verbatim ++---+ +| | <-- the vertical bars might be missing ++---+ +@end verbatim + +represents one byte; a box like this: +@verbatim ++==============+ +| | ++==============+ +@end verbatim + +represents a variable number of bytes. + +@sp 1 +A lzip file consists of a series of "members" (compressed data sets). +The members simply appear one after another in the file, with no +additional information before, between, or after them. + +Each member has the following structure: +@verbatim ++--+--+--+--+----+----+=============+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +| ID string | VN | DS | Lzma stream | CRC32 | Data size | Member size | ++--+--+--+--+----+----+=============+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +@end verbatim + +All multibyte values are stored in little endian order. + +@table @samp +@item ID string +A four byte string, identifying the lzip format, with the value "LZIP" +(0x4C, 0x5A, 0x49, 0x50). + +@item VN (version number, 1 byte) +Just in case something needs to be modified in the future. 1 for now. + +@item DS (coded dictionary size, 1 byte) +Lzip divides the distance between any two powers of 2 into 8 equally +spaced intervals, named "wedges". The dictionary size is calculated by +taking a power of 2 (the base size) and substracting from it a number of +wedges between 0 and 7. The size of a wedge is (base_size / 16).@* +Bits 4-0 contain the base 2 logarithm of the base size (12 to 29).@* +Bits 7-5 contain the number of wedges (0 to 7) to substract from the +base size to obtain the dictionary size.@* +Example: 0xD3 = 2^19 - 6 * 2^15 = 512 KiB - 6 * 32 KiB = 320 KiB@* +Valid values for dictionary size range from 4 KiB to 512 MiB. + +@item Lzma stream +The lzma stream, finished by an end of stream marker. Uses default +values for encoder properties. See the chapter @samp{Stream format} +(@pxref{Stream format}) for a complete description. + +@item CRC32 (4 bytes) +CRC of the uncompressed original data. + +@item Data size (8 bytes) +Size of the uncompressed original data. + +@item Member size (8 bytes) +Total size of the member, including header and trailer. This field acts +as a distributed index, allows the verification of stream integrity, and +facilitates safe recovery of undamaged members from multi-member files. + +@end table + + +@node Stream format +@chapter Format of the LZMA stream in lzip files +@cindex format of the LZMA stream + +The LZMA algorithm has three parameters, called "special LZMA +properties", to adjust it for some kinds of binary data. These +parameters are; @samp{literal_context_bits} (with a default value of 3), +@samp{literal_pos_state_bits} (with a default value of 0), and +@samp{pos_state_bits} (with a default value of 2). As a general purpose +compressor, lzip only uses the default values for these parameters. + +Lzip also finishes the LZMA stream with an "End Of Stream" marker (the +distance-length pair 0xFFFFFFFFU, 2), which in conjunction with the +"member size" field in the member trailer allows the verification of +stream integrity. The LZMA stream in lzip files always has these two +features (default properties and EOS marker) and is referred to in this +document as LZMA-302eos or LZMA-lzip. + +The second stage of LZMA is a range encoder that uses a different +probability model for each type of symbol; distances, lengths, literal +bytes, etc. Range encoding conceptually encodes all the symbols of the +message into one number. Unlike Huffman coding, which assigns to each +symbol a bit-pattern and concatenates all the bit-patterns together, +range encoding can compress one symbol to less than one bit. Therefore +the compressed data produced by a range encoder can't be split in pieces +that could be individually described. + +It seems that the only way of describing the LZMA-302eos stream is +describing the algorithm that decodes it. And given the many details +about the range decoder that need to be described accurately, the source +code of a real decoder seems the only appropiate reference to use. + +What follows is a description of the decoding algorithm for LZMA-302eos +streams using as reference the source code of "lzd", an educational +decompressor for lzip files which can be downloaded from the lzip +download directory. The source code of lzd is included in appendix A. +@ref{Reference source code} + +@sp 1 +@section What is coded + +The LZMA stream includes literals, matches and repeated matches (matches +reusing a recently used distance). There are 7 different coding sequences: + +@multitable @columnfractions .35 .14 .51 +@headitem Bit sequence @tab Name @tab Description +@item 0 + byte @tab literal @tab literal byte +@item 1 + 0 + len + dis @tab match @tab distance-length pair +@item 1 + 1 + 0 + 0 @tab shortrep @tab 1 byte match at latest used +distance +@item 1 + 1 + 0 + 1 + len @tab rep0 @tab len bytes match at latest used +distance +@item 1 + 1 + 1 + 0 + len @tab rep1 @tab len bytes match at second +latest used distance +@item 1 + 1 + 1 + 1 + 0 + len @tab rep2 @tab len bytes match at third +latest used distance +@item 1 + 1 + 1 + 1 + 1 + len @tab rep3 @tab len bytes match at fourth +latest used distance +@end multitable + +@sp 1 +In the following tables, multi-bit sequences are coded in normal order, +from MSB to LSB, except where noted otherwise. + +Lengths (the @samp{len} in the table above) are coded as follows: + +@multitable @columnfractions .5 .5 +@headitem Bit sequence @tab Description +@item 0 + 3 bits @tab lengths from 2 to 9 +@item 1 + 0 + 3 bits @tab lengths from 10 to 17 +@item 1 + 1 + 8 bits @tab lengths from 18 to 273 +@end multitable + +@sp 1 +The coding of distances is a little more complicated. LZMA divides the +interval between any two powers of 2 into 2 halves, named slots. As +possible distances range from 0 to (2^32 - 1), there are 64 slots (0 to +63). The slot number is context-coded in 6 bits. @samp{direct_bits} are +the remaining bits (from 0 to 30) needed to form a complete distance, +and are calculated as (slot >> 1) - 1. If a distance needs 6 or more +direct_bits, the last 4 bits are coded separately. The last piece +(direct_bits for distances 4 to 127 or the last 4 bits for distances >= +128) is context-coded in reverse order (from LSB to MSB). For distances +>= 128, the @samp{direct_bits - 4} part is coded with fixed 0.5 +probability. + +@multitable @columnfractions .5 .5 +@headitem Bit sequence @tab Description +@item slot @tab distances from 0 to 3 +@item slot + direct_bits @tab distances from 4 to 127 +@item slot + (direct_bits - 4) + 4 bits @tab distances from 128 to +2^32 - 1 +@end multitable + +@sp 1 +@section The coding contexts + +These contexts (@samp{Bit_model} in the source), are integers or arrays +of integers representing the probability of the corresponding bit being 0. + +The indices used in these arrays are: + +@table @samp +@item state +A state machine (@samp{State} in the source) with 12 states (0 to 11), +coding the latest 2 to 4 types of sequences processed. The initial state +is 0. + +@item pos_state +Value of the 2 least significant bits of the current position in the +decoded data. + +@item literal_state +Value of the 3 most significant bits of the latest byte decoded. + +@item len_state +Coded value of length (length - 2), with a maximum of 3. The resulting +value is in the range 0 to 3. + +@end table + + +In the following table, @samp{!literal} is any sequence except a literal +byte. @samp{rep} is any one of @samp{rep0}, @samp{rep1}, @samp{rep2} or +@samp{rep3}. The types of previous sequences corresponding to each state +are: + +@multitable {State} {rep or (!literal, shortrep), literal, literal} +@headitem State @tab Types of previous sequences +@item 0 @tab literal, literal, literal +@item 1 @tab match, literal, literal +@item 2 @tab rep or (!literal, shortrep), literal, literal +@item 3 @tab literal, shortrep, literal, literal +@item 4 @tab match, literal +@item 5 @tab rep or (!literal, shortrep), literal +@item 6 @tab literal, shortrep, literal +@item 7 @tab literal, match +@item 8 @tab literal, rep +@item 9 @tab literal, shortrep +@item 10 @tab !literal, match +@item 11 @tab !literal, (rep or shortrep) +@end multitable + +@sp 1 +The contexts for decoding the type of coding sequence are: + +@multitable @columnfractions .2 .4 .4 +@headitem Name @tab Indices @tab Used when +@item bm_match @tab state, pos_state @tab sequence start +@item bm_rep @tab state @tab after sequence 1 +@item bm_rep0 @tab state @tab after sequence 11 +@item bm_rep1 @tab state @tab after sequence 111 +@item bm_rep2 @tab state @tab after sequence 1111 +@item bm_len @tab state, pos_state @tab after sequence 110 +@end multitable + +@sp 1 +The contexts for decoding distances are: + +@multitable @columnfractions .2 .4 .4 +@headitem Name @tab Indices @tab Used when +@item bm_dis_slot @tab len_state, bit tree @tab distance start +@item bm_dis @tab reverse bit tree @tab after slots 4 to 13 +@item bm_align @tab reverse bit tree @tab for distances >= 128, after +fixed probability bits +@end multitable + +@sp 1 +There are two separate sets of contexts for lengths (@samp{Len_model} in +the source). One for normal matches, the other for repeated matches. The +contexts in each Len_model are (see @samp{decode_len} in the source): + +@multitable @columnfractions .2 .4 .4 +@headitem Name @tab Indices @tab Used when +@item choice1 @tab none @tab length start +@item choice2 @tab none @tab after sequence 1 +@item bm_low @tab pos_state, bit tree @tab after sequence 0 +@item bm_mid @tab pos_state, bit tree @tab after sequence 10 +@item bm_high @tab bit tree @tab after sequence 11 +@end multitable + +@sp 1 +The context array @samp{bm_literal} is special. In principle it acts as +a normal bit tree context, the one selected by @samp{literal_state}. But +if the previous decoded byte was not a literal, two other bit tree +contexts are used depending on the value of each bit in +@samp{match_byte} (the byte at the latest used distance), until a bit is +decoded that is different from its corresponding bit in +@samp{match_byte}. After the first difference is found, the rest of the +byte is decoded using the normal bit tree context. (See +@samp{decode_matched} in the source). + +@sp 1 +@section The range decoder + +The LZMA stream is consumed one byte at a time by the range decoder. +(See @samp{normalize} in the source). Every byte consumed produces a +variable number of decoded bits, depending on how well these bits agree +with their context. (See @samp{decode_bit} in the source). + +The range decoder state consists of two unsigned 32-bit variables, +@code{range} (representing the most significant part of the range size +not yet decoded), and @code{code} (representing the current point within +@code{range}). @code{range} is initialized to (2^32 - 1), and +@code{code} is initialized to 0. + +The range encoder produces a first 0 byte that must be ignored by the +range decoder. This is done by shifting 5 bytes in the initialization of +@code{code} instead of 4. (See the @samp{Range_decoder} constructor in +the source). + +@sp 1 +@section Decoding the LZMA stream + +After decoding the member header and obtaining the dictionary size, the +range decoder is initialized and then the LZMA decoder enters a loop +(See @samp{decode_member} in the source) where it invokes the range +decoder with the appropiate contexts to decode the different coding +sequences (matches, repeated matches, and literal bytes), until the "End +Of Stream" marker is decoded. + + +@node Examples +@chapter A small tutorial with examples +@cindex examples + +WARNING! Even if lzip is bug-free, other causes may result in a corrupt +compressed file (bugs in the system libraries, memory errors, etc). +Therefore, if the data you are going to compress are important, give the +@samp{--keep} option to lzip and do not remove the original file until +you verify the compressed file with a command like +@w{@samp{lzip -cd file.lz | cmp file -}}. + +@sp 1 +@noindent +Example 1: Replace a regular file with its compressed version +@samp{file.lz} and show the compression ratio. + +@example +lzip -v file +@end example + +@sp 1 +@noindent +Example 2: Like example 1 but the created @samp{file.lz} is multi-member +with a member size of 1 MiB. The compression ratio is not shown. + +@example +lzip -b 1MiB file +@end example + +@sp 1 +@noindent +Example 3: Restore a regular file from its compressed version +@samp{file.lz}. If the operation is successful, @samp{file.lz} is +removed. + +@example +lzip -d file.lz +@end example + +@sp 1 +@noindent +Example 4: Verify the integrity of the compressed file @samp{file.lz} +and show status. + +@example +lzip -tv file.lz +@end example + +@sp 1 +@noindent +Example 5: Compress a whole floppy in /dev/fd0 and send the output to +@samp{file.lz}. + +@example +lzip -c /dev/fd0 > file.lz +@end example + +@sp 1 +@noindent +Example 6: Decompress @samp{file.lz} partially until 10 KiB of +decompressed data are produced. + +@example +lzip -cd file.lz | dd bs=1024 count=10 +@end example + +@sp 1 +@noindent +Example 7: Decompress @samp{file.lz} partially from decompressed byte +10000 to decompressed byte 15000 (5000 bytes are produced). + +@example +lzip -cd file.lz | dd bs=1000 skip=10 count=5 +@end example + +@sp 1 +@noindent +Example 8: Create a multivolume compressed tar archive with a volume +size of 1440 KiB. + +@example +tar -c some_directory | lzip -S 1440KiB -o volume_name +@end example + +@sp 1 +@noindent +Example 9: Extract a multivolume compressed tar archive. + +@example +lzip -cd volume_name*.lz | tar -xf - +@end example + +@sp 1 +@noindent +Example 10: Create a multivolume compressed backup of a large database +file with a volume size of 650 MB, where each volume is a multi-member +file with a member size of 32 MiB. + +@example +lzip -b 32MiB -S 650MB big_db +@end example + + +@node Problems +@chapter Reporting bugs +@cindex bugs +@cindex getting help + +There are probably bugs in lzip. There are certainly errors and +omissions in this manual. If you report them, they will get fixed. If +you don't, no one will ever know about them and they will remain unfixed +for all eternity, if not longer. + +If you find a bug in lzip, please send electronic mail to +@email{lzip-bug@@nongnu.org}. Include the version number, which you can +find by running @w{@samp{lzip --version}}. + + +@node Reference source code +@appendix Reference source code +@cindex reference source code + +@verbatim +/* Lzd - Educational decompressor for lzip files + Copyright (C) 2013, 2014 Antonio Diaz Diaz. + + This program is free software: you have unlimited permission + to copy, distribute and modify it. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +*/ +/* + Exit status: 0 for a normal exit, 1 for environmental problems + (file not found, invalid flags, I/O errors, etc), 2 to indicate a + corrupt or invalid input file. +*/ + +#include +#include +#include +#include +#include +#include +#include + + +class State + { + int st; + +public: + enum { states = 12 }; + State() : st( 0 ) {} + int operator()() const { return st; } + bool is_char() const { return st < 7; } + + void set_char() + { + static const int next[states] = { 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5 }; + st = next[st]; + } + void set_match() { st = ( st < 7 ) ? 7 : 10; } + void set_rep() { st = ( st < 7 ) ? 8 : 11; } + void set_short_rep() { st = ( st < 7 ) ? 9 : 11; } + }; + + +enum { + min_dictionary_size = 1 << 12, + max_dictionary_size = 1 << 29, + literal_context_bits = 3, + pos_state_bits = 2, + pos_states = 1 << pos_state_bits, + pos_state_mask = pos_states - 1, + + len_states = 4, + dis_slot_bits = 6, + start_dis_model = 4, + end_dis_model = 14, + modeled_distances = 1 << (end_dis_model / 2), // 128 + dis_align_bits = 4, + dis_align_size = 1 << dis_align_bits, + + len_low_bits = 3, + len_mid_bits = 3, + len_high_bits = 8, + len_low_symbols = 1 << len_low_bits, + len_mid_symbols = 1 << len_mid_bits, + len_high_symbols = 1 << len_high_bits, + max_len_symbols = len_low_symbols + len_mid_symbols + len_high_symbols, + + min_match_len = 2, // must be 2 + + bit_model_move_bits = 5, + bit_model_total_bits = 11, + bit_model_total = 1 << bit_model_total_bits }; + +struct Bit_model + { + int probability; + Bit_model() : probability( bit_model_total / 2 ) {} + }; + +struct Len_model + { + Bit_model choice1; + Bit_model choice2; + Bit_model bm_low[pos_states][len_low_symbols]; + Bit_model bm_mid[pos_states][len_mid_symbols]; + Bit_model bm_high[len_high_symbols]; + }; + + +class CRC32 + { + uint32_t data[256]; // Table of CRCs of all 8-bit messages. + +public: + CRC32() + { + for( unsigned n = 0; n < 256; ++n ) + { + unsigned c = n; + for( int k = 0; k < 8; ++k ) + { if( c & 1 ) c = 0xEDB88320U ^ ( c >> 1 ); else c >>= 1; } + data[n] = c; + } + } + + void update_buf( uint32_t & crc, const uint8_t * const buffer, + const int size ) const + { + for( int i = 0; i < size; ++i ) + crc = data[(crc^buffer[i])&0xFF] ^ ( crc >> 8 ); + } + }; + +const CRC32 crc32; + + +typedef uint8_t File_header[6]; // 0-3 magic, 4 version, 5 coded_dict_size + +typedef uint8_t File_trailer[20]; + // 0-3 CRC32 of the uncompressed data + // 4-11 size of the uncompressed data + // 12-19 member size including header and trailer + +class Range_decoder + { + uint32_t code; + uint32_t range; + +public: + Range_decoder() : code( 0 ), range( 0xFFFFFFFFU ) + { + for( int i = 0; i < 5; ++i ) code = (code << 8) | get_byte(); + } + + uint8_t get_byte() { return std::getc( stdin ); } + + int decode( const int num_bits ) + { + int symbol = 0; + for( int i = 0; i < num_bits; ++i ) + { + range >>= 1; + symbol <<= 1; + if( code >= range ) { code -= range; symbol |= 1; } + if( range <= 0x00FFFFFFU ) // normalize + { range <<= 8; code = (code << 8) | get_byte(); } + } + return symbol; + } + + int decode_bit( Bit_model & bm ) + { + int symbol; + const uint32_t bound = ( range >> bit_model_total_bits ) * bm.probability; + if( code < bound ) + { + range = bound; + bm.probability += (bit_model_total - bm.probability) >> bit_model_move_bits; + symbol = 0; + } + else + { + range -= bound; + code -= bound; + bm.probability -= bm.probability >> bit_model_move_bits; + symbol = 1; + } + if( range <= 0x00FFFFFFU ) // normalize + { range <<= 8; code = (code << 8) | get_byte(); } + return symbol; + } + + int decode_tree( Bit_model bm[], const int num_bits ) + { + int symbol = 1; + for( int i = 0; i < num_bits; ++i ) + symbol = ( symbol << 1 ) | decode_bit( bm[symbol] ); + return symbol - (1 << num_bits); + } + + int decode_tree_reversed( Bit_model bm[], const int num_bits ) + { + int symbol = decode_tree( bm, num_bits ); + int reversed_symbol = 0; + for( int i = 0; i < num_bits; ++i ) + { + reversed_symbol = ( reversed_symbol << 1 ) | ( symbol & 1 ); + symbol >>= 1; + } + return reversed_symbol; + } + + int decode_matched( Bit_model bm[], const int match_byte ) + { + Bit_model * const bm1 = bm + 0x100; + int symbol = 1; + for( int i = 7; i >= 0; --i ) + { + const int match_bit = ( match_byte >> i ) & 1; + const int bit = decode_bit( bm1[(match_bit<<8)+symbol] ); + symbol = ( symbol << 1 ) | bit; + if( match_bit != bit ) + { + while( symbol < 0x100 ) + symbol = ( symbol << 1 ) | decode_bit( bm[symbol] ); + break; + } + } + return symbol & 0xFF; + } + + int decode_len( Len_model & lm, const int pos_state ) + { + if( decode_bit( lm.choice1 ) == 0 ) + return decode_tree( lm.bm_low[pos_state], len_low_bits ); + if( decode_bit( lm.choice2 ) == 0 ) + return len_low_symbols + + decode_tree( lm.bm_mid[pos_state], len_mid_bits ); + return len_low_symbols + len_mid_symbols + + decode_tree( lm.bm_high, len_high_bits ); + } + }; + + +class LZ_decoder + { + unsigned long long partial_data_pos; + Range_decoder rdec; + const unsigned dictionary_size; + uint8_t * const buffer; // output buffer + unsigned pos; // current pos in buffer + unsigned stream_pos; // first byte not yet written to stdout + uint32_t crc_; + + void flush_data(); + + uint8_t get_byte( const unsigned distance ) const + { + unsigned i = pos - distance - 1; + if( pos <= distance ) i += dictionary_size; + return buffer[i]; + } + + void put_byte( const uint8_t b ) + { + buffer[pos] = b; + if( ++pos >= dictionary_size ) flush_data(); + } + +public: + LZ_decoder( const unsigned dict_size ) + : + partial_data_pos( 0 ), + dictionary_size( dict_size ), + buffer( new uint8_t[dictionary_size] ), + pos( 0 ), + stream_pos( 0 ), + crc_( 0xFFFFFFFFU ) + { buffer[dictionary_size-1] = 0; } // prev_byte of first_byte + + ~LZ_decoder() { delete[] buffer; } + + unsigned crc() const { return crc_ ^ 0xFFFFFFFFU; } + unsigned long long data_position() const { return partial_data_pos + pos; } + + bool decode_member(); + }; + + +void LZ_decoder::flush_data() + { + if( pos > stream_pos ) + { + const unsigned size = pos - stream_pos; + crc32.update_buf( crc_, buffer + stream_pos, size ); + errno = 0; + if( std::fwrite( buffer + stream_pos, 1, size, stdout ) != size ) + { std::fprintf( stderr, "Write error: %s\n", std::strerror( errno ) ); + std::exit( 1 ); } + if( pos >= dictionary_size ) { partial_data_pos += pos; pos = 0; } + stream_pos = pos; + } + } + + +bool LZ_decoder::decode_member() // Returns false if error + { + Bit_model bm_literal[1<> ( 8 - literal_context_bits ); + Bit_model * const bm = bm_literal[literal_state]; + if( state.is_char() ) + put_byte( rdec.decode_tree( bm, 8 ) ); + else + put_byte( rdec.decode_matched( bm, get_byte( rep0 ) ) ); + state.set_char(); + } + else + { + int len; + if( rdec.decode_bit( bm_rep[state()] ) != 0 ) // 2nd bit + { + if( rdec.decode_bit( bm_rep0[state()] ) != 0 ) // 3rd bit + { + unsigned distance; + if( rdec.decode_bit( bm_rep1[state()] ) == 0 ) // 4th bit + distance = rep1; + else + { + if( rdec.decode_bit( bm_rep2[state()] ) == 0 ) // 5th bit + distance = rep2; + else + { distance = rep3; rep3 = rep2; } + rep2 = rep1; + } + rep1 = rep0; + rep0 = distance; + } + else + { + if( rdec.decode_bit( bm_len[state()][pos_state] ) == 0 ) // 4th bit + { state.set_short_rep(); put_byte( get_byte( rep0 ) ); continue; } + } + state.set_rep(); + len = min_match_len + rdec.decode_len( rep_len_model, pos_state ); + } + else + { + rep3 = rep2; rep2 = rep1; rep1 = rep0; + len = min_match_len + rdec.decode_len( match_len_model, pos_state ); + const int len_state = std::min( len - min_match_len, len_states - 1 ); + const int dis_slot = + rdec.decode_tree( bm_dis_slot[len_state], dis_slot_bits ); + if( dis_slot < start_dis_model ) rep0 = dis_slot; + else + { + const int direct_bits = ( dis_slot >> 1 ) - 1; + rep0 = ( 2 | ( dis_slot & 1 ) ) << direct_bits; + if( dis_slot < end_dis_model ) + rep0 += rdec.decode_tree_reversed( bm_dis + rep0 - dis_slot - 1, + direct_bits ); + else + { + rep0 += rdec.decode( direct_bits - dis_align_bits ) << dis_align_bits; + rep0 += rdec.decode_tree_reversed( bm_align, dis_align_bits ); + if( rep0 == 0xFFFFFFFFU ) // Marker found + { + flush_data(); + return ( len == min_match_len ); // End Of Stream marker + } + } + } + state.set_match(); + if( rep0 >= dictionary_size || rep0 >= data_position() ) + return false; + } + for( int i = 0; i < len; ++i ) + put_byte( get_byte( rep0 ) ); + } + } + return false; + } + + +int main( const int argc, const char * const argv[] ) + { + if( argc > 1 ) + { + std::printf( "Lzd %s - Educational decompressor for lzip files.\n", + PROGVERSION ); + std::printf( "Study the source to learn how a lzip decompressor works.\n" + "See the lzip manual for an explanation of the code.\n" + "It is not safe to use lzd for any real work.\n" + "\nUsage: %s < file.lz > file\n", argv[0] ); + std::printf( "Lzd decompresses from standard input to standard output.\n" + "\nCopyright (C) 2014 Antonio Diaz Diaz.\n" + "This is free software: you are free to change and redistribute it.\n" + "There is NO WARRANTY, to the extent permitted by law.\n" + "Report bugs to lzip-bug@nongnu.org\n" + "Lzd home page: http://www.nongnu.org/lzip/lzd.html\n" ); + return 0; + } + + for( bool first_member = true; ; first_member = false ) + { + File_header header; + for( int i = 0; i < 6; ++i ) header[i] = std::getc( stdin ); + if( std::feof( stdin ) || std::memcmp( header, "LZIP", 4 ) != 0 ) + { + if( first_member ) + { std::fprintf( stderr, "Bad magic number (file not in lzip format)\n" ); + return 2; } + break; + } + if( header[4] != 1 ) + { + std::fprintf( stderr, "Version %d member format not supported.\n", + header[4] ); + return 2; + } + unsigned dict_size = 1 << ( header[5] & 0x1F ); + dict_size -= ( dict_size / 16 ) * ( ( header[5] >> 5 ) & 7 ); + if( dict_size < min_dictionary_size || dict_size > max_dictionary_size ) + { std::fprintf( stderr, "Invalid dictionary size in member header\n" ); + return 2; } + + LZ_decoder decoder( dict_size ); + if( !decoder.decode_member() ) + { std::fprintf( stderr, "Data error\n" ); return 2; } + + File_trailer trailer; + for( int i = 0; i < 20; ++i ) trailer[i] = std::getc( stdin ); + unsigned crc = 0; + for( int i = 3; i >= 0; --i ) { crc <<= 8; crc += trailer[i]; } + unsigned long long data_size = 0; + for( int i = 11; i >= 4; --i ) { data_size <<= 8; data_size += trailer[i]; } + if( crc != decoder.crc() || data_size != decoder.data_position() ) + { std::fprintf( stderr, "CRC error\n" ); return 2; } + } + + if( std::fclose( stdout ) != 0 ) + { std::fprintf( stderr, "Can't close stdout: %s\n", std::strerror( errno ) ); + return 1; } + return 0; + } +@end verbatim + + +@node Concept index +@unnumbered Concept index + +@printindex cp + +@bye -- cgit v1.2.3