/* Lzip - Data compressor based on the LZMA algorithm
Copyright (C) 2008, 2009, 2010, 2011 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
class Range_decoder
{
enum { buffer_size = 16384 };
long long partial_member_pos;
uint8_t * const buffer; // input buffer
int pos; // current pos in buffer
int stream_pos; // when reached, a new block must be read
uint32_t code;
uint32_t range;
const int infd; // input file descriptor
bool at_stream_end;
bool read_block();
public:
Range_decoder( const int ifd )
:
partial_member_pos( 0 ),
buffer( new uint8_t[buffer_size] ),
pos( 0 ),
stream_pos( 0 ),
code( 0 ),
range( 0xFFFFFFFFU ),
infd( ifd ),
at_stream_end( false ) {}
~Range_decoder() { delete[] buffer; }
bool code_is_zero() const throw() { return ( code == 0 ); }
bool finished() { return pos >= stream_pos && !read_block(); }
long long member_position() const throw()
{ return partial_member_pos + pos; }
void reset_member_position() throw()
{ partial_member_pos = -pos; }
uint8_t get_byte()
{
if( finished() ) return 0x55; // make code != 0
return buffer[pos++];
}
void load()
{
code = 0;
range = 0xFFFFFFFFU;
for( int i = 0; i < 5; ++i ) code = (code << 8) | get_byte();
}
void normalize()
{
if( range <= 0x00FFFFFFU )
{ range <<= 8; code = (code << 8) | get_byte(); }
}
int decode( const int num_bits )
{
int symbol = 0;
for( int i = num_bits; i > 0; --i )
{
symbol <<= 1;
if( range <= 0x00FFFFFFU )
{
range <<= 7; code = (code << 8) | get_byte();
if( code >= range ) { code -= range; symbol |= 1; }
}
else
{
range >>= 1;
if( code >= range ) { code -= range; symbol |= 1; }
}
}
return symbol;
}
int decode_bit( Bit_model & bm )
{
normalize();
const uint32_t bound = ( range >> bit_model_total_bits ) * bm.probability;
if( code < bound )
{
range = bound;
bm.probability += (bit_model_total - bm.probability) >> bit_model_move_bits;
return 0;
}
else
{
range -= bound;
code -= bound;
bm.probability -= bm.probability >> bit_model_move_bits;
return 1;
}
}
int decode_tree( Bit_model bm[], const int num_bits )
{
int model = 1;
for( int i = num_bits; i > 0; --i )
model = ( model << 1 ) | decode_bit( bm[model] );
return model - (1 << num_bits);
}
int decode_tree_reversed( Bit_model bm[], const int num_bits )
{
int model = 1;
int symbol = 0;
for( int i = 0; i < num_bits; ++i )
{
const int bit = decode_bit( bm[model] );
model <<= 1;
if( bit ) { model |= 1; symbol |= (1 << i); }
}
return symbol;
}
int decode_matched( Bit_model bm[], const int match_byte )
{
Bit_model * const bm1 = bm + 0x100;
int symbol = 1;
for( int i = 7; i >= 0; --i )
{
const int match_bit = ( match_byte >> i ) & 1;
const int bit = decode_bit( bm1[(match_bit<<8)+symbol] );
symbol = ( symbol << 1 ) | bit;
if( match_bit != bit )
{
while( --i >= 0 )
symbol = ( symbol << 1 ) | decode_bit( bm[symbol] );
break;
}
}
return symbol & 0xFF;
}
};
class Len_decoder
{
Bit_model choice1;
Bit_model choice2;
Bit_model bm_low[pos_states][len_low_symbols];
Bit_model bm_mid[pos_states][len_mid_symbols];
Bit_model bm_high[len_high_symbols];
public:
int decode( Range_decoder & range_decoder, const int pos_state )
{
if( range_decoder.decode_bit( choice1 ) == 0 )
return range_decoder.decode_tree( bm_low[pos_state], len_low_bits );
if( range_decoder.decode_bit( choice2 ) == 0 )
return len_low_symbols +
range_decoder.decode_tree( bm_mid[pos_state], len_mid_bits );
return len_low_symbols + len_mid_symbols +
range_decoder.decode_tree( bm_high, len_high_bits );
}
};
class Literal_decoder
{
Bit_model bm_literal[1<> ( 8 - literal_context_bits ) ); }
public:
uint8_t decode( Range_decoder & range_decoder, const uint8_t prev_byte )
{ return range_decoder.decode_tree( bm_literal[lstate(prev_byte)], 8 ); }
uint8_t decode_matched( Range_decoder & range_decoder,
const uint8_t prev_byte, const uint8_t match_byte )
{ return range_decoder.decode_matched( bm_literal[lstate(prev_byte)],
match_byte ); }
};
class LZ_decoder
{
long long partial_data_pos;
const int dictionary_size;
const int buffer_size;
uint8_t * const buffer; // output buffer
int pos; // current pos in buffer
int stream_pos; // first byte not yet written to file
uint32_t crc_;
const int outfd; // output file descriptor
const int member_version;
Range_decoder & range_decoder;
void flush_data();
bool verify_trailer( const Pretty_print & pp ) const;
uint8_t get_prev_byte() const throw()
{
const int i = ( ( pos > 0 ) ? pos : buffer_size ) - 1;
return buffer[i];
}
uint8_t get_byte( const int distance ) const throw()
{
int i = pos - distance - 1;
if( i < 0 ) i += buffer_size;
return buffer[i];
}
void put_byte( const uint8_t b )
{
buffer[pos] = b;
if( ++pos >= buffer_size ) flush_data();
}
void copy_block( const int distance, int len )
{
int i = pos - distance - 1;
if( i < 0 ) i += buffer_size;
if( len < buffer_size - std::max( pos, i ) && len <= std::abs( pos - i ) )
{
std::memcpy( buffer + pos, buffer + i, len );
pos += len;
}
else for( ; len > 0; --len )
{
buffer[pos] = buffer[i];
if( ++pos >= buffer_size ) flush_data();
if( ++i >= buffer_size ) i = 0;
}
}
public:
LZ_decoder( const File_header & header, Range_decoder & rdec, const int ofd )
:
partial_data_pos( 0 ),
dictionary_size( header.dictionary_size() ),
buffer_size( std::max( 65536, dictionary_size ) ),
buffer( new uint8_t[buffer_size] ),
pos( 0 ),
stream_pos( 0 ),
crc_( 0xFFFFFFFFU ),
outfd( ofd ),
member_version( header.version() ),
range_decoder( rdec )
{ buffer[buffer_size-1] = 0; } // prev_byte of first_byte
~LZ_decoder() { delete[] buffer; }
uint32_t crc() const throw() { return crc_ ^ 0xFFFFFFFFU; }
long long data_position() const throw()
{ return partial_data_pos + pos; }
int decode_member( const Pretty_print & pp );
};