/* Lzip - A data compressor based on the LZMA algorithm Copyright (C) 2008, 2009 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ class Input_buffer { enum { buffer_size = 65536 }; uint8_t * const buffer; int pos; int stream_pos; // when reached, a new block must be read const int ides_; bool at_stream_end; bool read_block(); public: Input_buffer( const int ides ) : buffer( new uint8_t[buffer_size] ), pos( 0 ), stream_pos( 0 ), ides_( ides ), at_stream_end( false ) {} ~Input_buffer() { delete[] buffer; } bool finished() const throw() { return at_stream_end && pos >= stream_pos; } uint8_t read_byte() { if( pos >= stream_pos && !read_block() ) return 0; return buffer[pos++]; } }; class Range_decoder { mutable long long member_pos; uint32_t code; uint32_t range; Input_buffer & ibuf; public: Range_decoder( const int header_size, Input_buffer & buf ) : member_pos( header_size ), code( 0 ), range( 0xFFFFFFFF ), ibuf( buf ) { for( int i = 0; i < 5; ++i ) code = (code << 8) | read_byte(); } uint8_t read_byte() const { ++member_pos; return ibuf.read_byte(); } long long member_position() const throw() { return member_pos; } bool finished() const throw() { return ibuf.finished(); } int decode( const int num_bits ) { int symbol = 0; for( int i = num_bits - 1; i >= 0; --i ) { range >>= 1; symbol <<= 1; if( code >= range ) { code -= range; symbol |= 1; } if( range <= 0x00FFFFFF ) { range <<= 8; code = (code << 8) | read_byte(); } } return symbol; } int decode_bit( Bit_model & bm ) { int symbol; const uint32_t bound = ( range >> bit_model_total_bits ) * bm.probability; if( code < bound ) { range = bound; bm.probability += (bit_model_total - bm.probability) >> bit_model_move_bits; symbol = 0; } else { range -= bound; code -= bound; bm.probability -= bm.probability >> bit_model_move_bits; symbol = 1; } if( range <= 0x00FFFFFF ) { range <<= 8; code = (code << 8) | read_byte(); } return symbol; } int decode_tree( Bit_model bm[], const int num_bits ) { int model = 1; for( int i = num_bits; i > 0; --i ) model = ( model << 1 ) | decode_bit( bm[model-1] ); return model - (1 << num_bits); } int decode_tree_reversed( Bit_model bm[], const int num_bits ) { int model = 1; int symbol = 0; for( int i = 1; i < (1 << num_bits); i <<= 1 ) { const int bit = decode_bit( bm[model-1] ); model = ( model << 1 ) | bit; if( bit ) symbol |= i; } return symbol; } int decode_matched( Bit_model bm[], const int match_byte ) { int symbol = 1; for( int i = 7; i >= 0; --i ) { const int match_bit = ( match_byte >> i ) & 1; const int bit = decode_bit( bm[(match_bit<<8)+symbol+0xFF] ); symbol = ( symbol << 1 ) | bit; if( match_bit != bit ) break; } while( symbol < 0x100 ) symbol = ( symbol << 1 ) | decode_bit( bm[symbol-1] ); return symbol & 0xFF; } }; class Len_decoder { Bit_model choice1; Bit_model choice2; Bit_model bm_low[pos_states][len_low_symbols]; Bit_model bm_mid[pos_states][len_mid_symbols]; Bit_model bm_high[len_high_symbols]; public: int decode( Range_decoder & range_decoder, const int pos_state ) { if( range_decoder.decode_bit( choice1 ) == 0 ) return range_decoder.decode_tree( bm_low[pos_state], len_low_bits ); if( range_decoder.decode_bit( choice2 ) == 0 ) return len_low_symbols + range_decoder.decode_tree( bm_mid[pos_state], len_mid_bits ); return len_low_symbols + len_mid_symbols + range_decoder.decode_tree( bm_high, len_high_bits ); } }; class Literal_decoder { Bit_model bm_literal[1<> ( 8 - literal_context_bits ) ); } public: uint8_t decode( Range_decoder & range_decoder, const int prev_byte ) { return range_decoder.decode_tree( bm_literal[state(prev_byte)], 8 ); } uint8_t decode_matched( Range_decoder & range_decoder, const int prev_byte, const int match_byte ) { return range_decoder.decode_matched( bm_literal[state(prev_byte)], match_byte ); } }; class LZ_decoder { long long partial_data_pos; const int format_version; const int buffer_size; uint8_t * const buffer; int pos; uint32_t crc_; const int odes_; bool member_finished; Bit_model bm_match[State::states][pos_states]; Bit_model bm_rep[State::states]; Bit_model bm_rep0[State::states]; Bit_model bm_rep1[State::states]; Bit_model bm_rep2[State::states]; Bit_model bm_len[State::states][pos_states]; Bit_model bm_dis_slot[max_dis_states][1<= buffer_size ) flush_data(); } bool copy_block( const int distance, int len ) { if( distance < 0 || distance >= buffer_size || len <= 0 || len > max_match_len ) return false; int newpos = pos - distance - 1; if( newpos < 0 ) newpos += buffer_size; for( ; len > 0 ; --len ) { crc32.update( crc_, buffer[newpos] ); buffer[pos] = buffer[newpos]; if( ++pos >= buffer_size ) flush_data(); if( ++newpos >= buffer_size ) newpos = 0; } return true; } void flush_data(); bool verify_trailer( const Pretty_print & pp ) const; public: LZ_decoder( const File_header & header, Input_buffer & ibuf, const int odes ) : partial_data_pos( 0 ), format_version( header.version ), buffer_size( header.dictionary_size() ), buffer( new uint8_t[buffer_size] ), pos( 0 ), crc_( 0xFFFFFFFF ), odes_( odes ), member_finished( false ), range_decoder( sizeof header, ibuf ), literal_decoder() {} ~LZ_decoder() { delete[] buffer; } uint32_t crc() const throw() { return crc_ ^ 0xFFFFFFFF; } int decode_member( const Pretty_print & pp ); long long member_position() const throw() { return range_decoder.member_position(); } long long data_position() const throw() { return partial_data_pos + pos; } };