/* Lzip - Data compressor based on the LZMA algorithm
Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include
#include
#include "lzip.h"
#include "encoder.h"
Dis_slots dis_slots;
Prob_prices prob_prices;
bool Matchfinder_base::read_block()
{
if( !at_stream_end && stream_pos < buffer_size )
{
const int size = buffer_size - stream_pos;
const int rd = readblock( infd, buffer + stream_pos, size );
stream_pos += rd;
if( rd != size && errno ) throw Error( "Read error" );
if( rd < size ) { at_stream_end = true; pos_limit = buffer_size; }
}
return pos < stream_pos;
}
void Matchfinder_base::normalize_pos()
{
if( pos > stream_pos )
internal_error( "pos > stream_pos in Matchfinder_base::normalize_pos" );
if( !at_stream_end )
{
const int offset = pos - dictionary_size_ - before_size;
const int size = stream_pos - offset;
std::memmove( buffer, buffer + offset, size );
partial_data_pos += offset;
pos -= offset;
stream_pos -= offset;
for( int i = 0; i < num_prev_positions; ++i )
if( prev_positions[i] >= 0 ) prev_positions[i] -= offset;
for( int i = 0; i < pos_array_size; ++i )
if( pos_array[i] >= 0 ) pos_array[i] -= offset;
read_block();
}
}
Matchfinder_base::Matchfinder_base( const int before, const int dict_size,
const int after_size, const int dict_factor,
const int match_len_limit, const int num_prev_positions23,
const int pos_array_factor, const int ifd )
:
partial_data_pos( 0 ),
before_size( before ),
match_len_limit_( match_len_limit ),
pos( 0 ),
cyclic_pos( 0 ),
stream_pos( 0 ),
infd( ifd ),
at_stream_end( false )
{
const int buffer_size_limit =
( dict_factor * dict_size ) + before_size + after_size;
buffer_size = std::max( 65536, dict_size );
buffer = (uint8_t *)std::malloc( buffer_size );
if( !buffer ) throw std::bad_alloc();
if( read_block() && !at_stream_end && buffer_size < buffer_size_limit )
{
buffer_size = buffer_size_limit;
uint8_t * const tmp = (uint8_t *)std::realloc( buffer, buffer_size );
if( !tmp ) { std::free( buffer ); throw std::bad_alloc(); }
buffer = tmp;
read_block();
}
if( at_stream_end && stream_pos < dict_size )
dictionary_size_ = std::max( (int)min_dictionary_size, stream_pos );
else
dictionary_size_ = dict_size;
pos_limit = buffer_size;
if( !at_stream_end ) pos_limit -= after_size;
int size = 1 << std::max( 16, real_bits( dictionary_size_ - 1 ) - 2 );
if( dictionary_size_ > 1 << 26 )
size >>= 1;
key4_mask = size - 1;
size += num_prev_positions23;
num_prev_positions = size;
pos_array_size = pos_array_factor * ( dictionary_size_ + 1 );
size += pos_array_size;
prev_positions = new( std::nothrow ) int32_t[size];
if( !prev_positions ) { std::free( buffer ); throw std::bad_alloc(); }
pos_array = prev_positions + num_prev_positions;
for( int i = 0; i < num_prev_positions; ++i ) prev_positions[i] = -1;
}
void Matchfinder_base::reset()
{
const int size = stream_pos - pos;
if( size > 0 ) std::memmove( buffer, buffer + pos, size );
partial_data_pos = 0;
stream_pos -= pos;
pos = 0;
cyclic_pos = 0;
for( int i = 0; i < num_prev_positions; ++i ) prev_positions[i] = -1;
read_block();
}
int Matchfinder::get_match_pairs( struct Pair * pairs )
{
int len_limit = match_len_limit_;
if( len_limit > available_bytes() )
{
len_limit = available_bytes();
if( len_limit < 4 ) return 0;
}
int maxlen = min_match_len - 1;
int num_pairs = 0;
const int min_pos = (pos > dictionary_size_) ?
pos - dictionary_size_ : 0;
const uint8_t * const data = buffer + pos;
unsigned tmp = crc32[data[0]] ^ data[1];
const int key2 = tmp & ( num_prev_positions2 - 1 );
tmp ^= (uint32_t)data[2] << 8;
const int key3 = num_prev_positions2 + ( tmp & ( num_prev_positions3 - 1 ) );
const int key4 = num_prev_positions2 + num_prev_positions3 +
( ( tmp ^ ( crc32[data[3]] << 5 ) ) & key4_mask );
if( pairs )
{
int np2 = prev_positions[key2];
int np3 = prev_positions[key3];
if( np2 >= min_pos && buffer[np2] == data[0] )
{
pairs[0].dis = pos - np2 - 1;
pairs[0].len = maxlen = 2;
num_pairs = 1;
}
if( np2 != np3 && np3 >= min_pos && buffer[np3] == data[0] )
{
maxlen = 3;
pairs[num_pairs].dis = pos - np3 - 1;
++num_pairs;
np2 = np3;
}
if( num_pairs > 0 )
{
const int delta = pos - np2;
while( maxlen < len_limit && data[maxlen-delta] == data[maxlen] )
++maxlen;
pairs[num_pairs-1].len = maxlen;
if( maxlen >= len_limit ) pairs = 0;
}
if( maxlen < 3 ) maxlen = 3;
}
prev_positions[key2] = pos;
prev_positions[key3] = pos;
int newpos = prev_positions[key4];
prev_positions[key4] = pos;
int32_t * ptr0 = pos_array + ( cyclic_pos << 1 );
int32_t * ptr1 = ptr0 + 1;
int len = 0, len0 = 0, len1 = 0;
for( int count = cycles; ; )
{
if( newpos < min_pos || --count < 0 ) { *ptr0 = *ptr1 = -1; break; }
const int delta = pos - newpos;
int32_t * const newptr = pos_array +
( ( cyclic_pos - delta +
( ( cyclic_pos >= delta ) ? 0 : dictionary_size_ + 1 ) ) << 1 );
if( data[len-delta] == data[len] )
{
while( ++len < len_limit && data[len-delta] == data[len] ) {}
if( pairs && maxlen < len )
{
pairs[num_pairs].dis = delta - 1;
pairs[num_pairs].len = maxlen = len;
++num_pairs;
}
if( len >= len_limit )
{
*ptr0 = newptr[0];
*ptr1 = newptr[1];
break;
}
}
if( data[len-delta] < data[len] )
{
*ptr0 = newpos;
ptr0 = newptr + 1;
newpos = *ptr0;
len0 = len; if( len1 < len ) len = len1;
}
else
{
*ptr1 = newpos;
ptr1 = newptr;
newpos = *ptr1;
len1 = len; if( len0 < len ) len = len0;
}
}
return num_pairs;
}
void Range_encoder::flush_data()
{
if( pos > 0 )
{
if( outfd >= 0 && writeblock( outfd, buffer, pos ) != pos )
throw Error( "Write error" );
partial_member_pos += pos;
pos = 0;
}
}
void Len_encoder::encode( Range_encoder & range_encoder, int symbol,
const int pos_state )
{
symbol -= min_match_len;
if( symbol < len_low_symbols )
{
range_encoder.encode_bit( choice1, 0 );
range_encoder.encode_tree( bm_low[pos_state], symbol, len_low_bits );
}
else
{
range_encoder.encode_bit( choice1, 1 );
if( symbol < len_low_symbols + len_mid_symbols )
{
range_encoder.encode_bit( choice2, 0 );
range_encoder.encode_tree( bm_mid[pos_state], symbol - len_low_symbols,
len_mid_bits );
}
else
{
range_encoder.encode_bit( choice2, 1 );
range_encoder.encode_tree( bm_high, symbol - len_low_symbols - len_mid_symbols,
len_high_bits );
}
}
if( --counters[pos_state] <= 0 ) update_prices( pos_state );
}
// End Of Stream mark => (dis == 0xFFFFFFFFU, len == min_match_len)
void LZ_encoder_base::full_flush( const unsigned long long data_position,
const State state )
{
const int pos_state = data_position & pos_state_mask;
range_encoder.encode_bit( bm_match[state()][pos_state], 1 );
range_encoder.encode_bit( bm_rep[state()], 0 );
encode_pair( 0xFFFFFFFFU, min_match_len, pos_state );
range_encoder.flush();
File_trailer trailer;
trailer.data_crc( crc() );
trailer.data_size( data_position );
trailer.member_size( range_encoder.member_position() + File_trailer::size() );
for( int i = 0; i < File_trailer::size(); ++i )
range_encoder.put_byte( trailer.data[i] );
range_encoder.flush_data();
}
void LZ_encoder::fill_align_prices()
{
for( int i = 0; i < dis_align_size; ++i )
align_prices[i] = price_symbol_reversed( bm_align, i, dis_align_bits );
align_price_count = dis_align_size;
}
void LZ_encoder::fill_distance_prices()
{
for( int dis = start_dis_model; dis < modeled_distances; ++dis )
{
const int dis_slot = dis_slots[dis];
const int direct_bits = ( dis_slot >> 1 ) - 1;
const int base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const int price = price_symbol_reversed( bm_dis + base - dis_slot - 1,
dis - base, direct_bits );
for( int dis_state = 0; dis_state < max_dis_states; ++dis_state )
dis_prices[dis_state][dis] = price;
}
for( int dis_state = 0; dis_state < max_dis_states; ++dis_state )
{
int * const dsp = dis_slot_prices[dis_state];
const Bit_model * const bmds = bm_dis_slot[dis_state];
int slot = 0;
for( ; slot < end_dis_model && slot < num_dis_slots; ++slot )
dsp[slot] = price_symbol( bmds, slot, dis_slot_bits );
for( ; slot < num_dis_slots; ++slot )
dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ) +
(((( slot >> 1 ) - 1 ) - dis_align_bits ) << price_shift_bits );
int * const dp = dis_prices[dis_state];
int dis = 0;
for( ; dis < start_dis_model; ++dis )
dp[dis] = dsp[dis];
for( ; dis < modeled_distances; ++dis )
dp[dis] += dsp[dis_slots[dis]];
}
}
// Return value == number of bytes advanced (ahead).
// trials[0]..trials[retval-1] contain the steps to encode.
// ( trials[0].dis == -1 && trials[0].price == 1 ) means literal.
//
int LZ_encoder::sequence_optimizer( const int reps[num_rep_distances],
const State state )
{
int num_pairs, num_trials;
if( pending_num_pairs > 0 ) // from previous call
{
num_pairs = pending_num_pairs;
pending_num_pairs = 0;
}
else
num_pairs = read_match_distances();
const int main_len = ( num_pairs > 0 ) ? pairs[num_pairs-1].len : 0;
int replens[num_rep_distances];
int rep_index = 0;
for( int i = 0; i < num_rep_distances; ++i )
{
replens[i] = matchfinder.true_match_len( 0, reps[i] + 1, max_match_len );
if( replens[i] > replens[rep_index] ) rep_index = i;
}
if( replens[rep_index] >= matchfinder.match_len_limit() )
{
trials[0].dis = rep_index;
trials[0].price = replens[rep_index];
move_pos( replens[rep_index] );
return replens[rep_index];
}
if( main_len >= matchfinder.match_len_limit() )
{
trials[0].dis = pairs[num_pairs-1].dis + num_rep_distances;
trials[0].price = main_len;
move_pos( main_len );
return main_len;
}
const int pos_state = matchfinder.data_position() & pos_state_mask;
const uint8_t prev_byte = matchfinder[-1];
const uint8_t cur_byte = matchfinder[0];
const uint8_t match_byte = matchfinder[-reps[0]-1];
trials[0].state = state;
trials[1].dis = -1;
trials[1].price = price0( bm_match[state()][pos_state] );
if( state.is_char() )
trials[1].price += price_literal( prev_byte, cur_byte );
else
trials[1].price += price_matched( prev_byte, cur_byte, match_byte );
const int match_price = price1( bm_match[state()][pos_state] );
const int rep_match_price = match_price + price1( bm_rep[state()] );
if( match_byte == cur_byte )
trials[1].update( rep_match_price + price_rep_len1( state, pos_state ), 0, 0 );
num_trials = std::max( main_len, replens[rep_index] );
if( num_trials < min_match_len )
{
trials[0].dis = trials[1].dis;
trials[0].price = 1;
matchfinder.move_pos();
return 1;
}
for( int i = 0; i < num_rep_distances; ++i )
trials[0].reps[i] = reps[i];
trials[1].prev_index = 0;
trials[1].prev_index2 = single_step_trial;
for( int len = min_match_len; len <= num_trials; ++len )
trials[len].price = infinite_price;
for( int rep = 0; rep < num_rep_distances; ++rep )
{
if( replens[rep] < min_match_len ) continue;
const int price = rep_match_price + price_rep( rep, state, pos_state );
for( int len = min_match_len; len <= replens[rep]; ++len )
trials[len].update( price + rep_len_encoder.price( len, pos_state ),
rep, 0 );
}
if( main_len > replens[0] )
{
const int normal_match_price = match_price + price0( bm_rep[state()] );
int i = 0, len = std::max( replens[0] + 1, (int)min_match_len );
while( len > pairs[i].len ) ++i;
while( true )
{
const int dis = pairs[i].dis;
trials[len].update( normal_match_price + price_pair( dis, len, pos_state ),
dis + num_rep_distances, 0 );
if( ++len > pairs[i].len && ++i >= num_pairs ) break;
}
}
int cur = 0;
matchfinder.move_pos();
while( true ) // price optimization loop
{
if( ++cur >= num_trials ) // no more initialized trials
{
backward( cur );
return cur;
}
const int num_pairs = read_match_distances();
const int newlen = ( num_pairs > 0 ) ? pairs[num_pairs-1].len : 0;
if( newlen >= matchfinder.match_len_limit() )
{
pending_num_pairs = num_pairs;
backward( cur );
return cur;
}
// give final values to current trial
Trial & cur_trial = trials[cur];
int prev_index = cur_trial.prev_index;
const int prev_index2 = cur_trial.prev_index2;
State cur_state;
if( prev_index2 != single_step_trial )
{
--prev_index;
if( prev_index2 >= 0 )
{
cur_state = trials[prev_index2].state;
if( cur_trial.dis2 < num_rep_distances )
cur_state.set_rep();
else
cur_state.set_match();
}
else
cur_state = trials[prev_index].state;
cur_state.set_char();
}
else
cur_state = trials[prev_index].state;
if( prev_index == cur - 1 )
{
if( cur_trial.dis == 0 ) cur_state.set_short_rep();
else cur_state.set_char();
for( int i = 0; i < num_rep_distances; ++i )
cur_trial.reps[i] = trials[prev_index].reps[i];
}
else
{
int dis;
if( prev_index2 >= 0 )
{
dis = cur_trial.dis2;
prev_index = prev_index2;
cur_state.set_rep();
}
else
{
dis = cur_trial.dis;
if( dis < num_rep_distances ) cur_state.set_rep();
else cur_state.set_match();
}
for( int i = 0; i < num_rep_distances; ++i )
cur_trial.reps[i] = trials[prev_index].reps[i];
mtf_reps( dis, cur_trial.reps );
}
cur_trial.state = cur_state;
const int pos_state = matchfinder.data_position() & pos_state_mask;
const uint8_t prev_byte = matchfinder[-1];
const uint8_t cur_byte = matchfinder[0];
const uint8_t match_byte = matchfinder[-cur_trial.reps[0]-1];
int next_price = cur_trial.price +
price0( bm_match[cur_state()][pos_state] );
if( cur_state.is_char() )
next_price += price_literal( prev_byte, cur_byte );
else
next_price += price_matched( prev_byte, cur_byte, match_byte );
matchfinder.move_pos();
// try last updates to next trial
Trial & next_trial = trials[cur+1];
next_trial.update( next_price, -1, cur );
const int match_price = cur_trial.price + price1( bm_match[cur_state()][pos_state] );
const int rep_match_price = match_price + price1( bm_rep[cur_state()] );
if( match_byte == cur_byte && next_trial.dis != 0 )
{
const int price = rep_match_price +
price_rep_len1( cur_state, pos_state );
if( price <= next_trial.price )
{
next_trial.price = price;
next_trial.dis = 0;
next_trial.prev_index = cur;
next_trial.prev_index2 = single_step_trial;
}
}
const int available_bytes = std::min( matchfinder.available_bytes() + 1,
max_num_trials - 1 - cur );
if( available_bytes < min_match_len ) continue;
const int len_limit = std::min( matchfinder.match_len_limit(),
available_bytes );
// try literal + rep0
if( match_byte != cur_byte && next_trial.prev_index != cur )
{
const uint8_t * const data = matchfinder.ptr_to_current_pos() - 1;
const int dis = cur_trial.reps[0] + 1;
const int limit = std::min( matchfinder.match_len_limit() + 1,
available_bytes );
int len = 1;
while( len < limit && data[len-dis] == data[len] ) ++len;
if( --len >= min_match_len )
{
const int pos_state2 = ( pos_state + 1 ) & pos_state_mask;
State state2 = cur_state; state2.set_char();
const int price = next_price +
price1( bm_match[state2()][pos_state2] ) +
price1( bm_rep[state2()] ) +
price_rep0_len( len, state2, pos_state2 );
while( num_trials < cur + 1 + len )
trials[++num_trials].price = infinite_price;
trials[cur+1+len].update2( price, 0, cur + 1 );
}
}
int start_len = min_match_len;
// try rep distances
for( int rep = 0; rep < num_rep_distances; ++rep )
{
const uint8_t * const data = matchfinder.ptr_to_current_pos() - 1;
int len;
const int dis = cur_trial.reps[rep] + 1;
if( data[-dis] != data[0] || data[1-dis] != data[1] ) continue;
for( len = min_match_len; len < len_limit; ++len )
if( data[len-dis] != data[len] ) break;
while( num_trials < cur + len )
trials[++num_trials].price = infinite_price;
int price = rep_match_price + price_rep( rep, cur_state, pos_state );
for( int i = min_match_len; i <= len; ++i )
trials[cur+i].update( price + rep_len_encoder.price( i, pos_state ),
rep, cur );
if( rep == 0 ) start_len = len + 1; // discard shorter matches
// try rep + literal + rep0
int len2 = len + 1;
const int limit = std::min( matchfinder.match_len_limit() + len2,
available_bytes );
while( len2 < limit && data[len2-dis] == data[len2] ) ++len2;
len2 -= len + 1;
if( len2 < min_match_len ) continue;
int pos_state2 = ( pos_state + len ) & pos_state_mask;
State state2 = cur_state; state2.set_rep();
price += rep_len_encoder.price( len, pos_state ) +
price0( bm_match[state2()][pos_state2] ) +
price_matched( data[len-1], data[len], data[len-dis] );
pos_state2 = ( pos_state2 + 1 ) & pos_state_mask;
state2.set_char();
price += price1( bm_match[state2()][pos_state2] ) +
price1( bm_rep[state2()] ) +
price_rep0_len( len2, state2, pos_state2 );
while( num_trials < cur + len + 1 + len2 )
trials[++num_trials].price = infinite_price;
trials[cur+len+1+len2].update3( price, 0, cur + len + 1, rep, cur );
}
// try matches
if( newlen >= start_len && newlen <= len_limit )
{
const int normal_match_price = match_price +
price0( bm_rep[cur_state()] );
while( num_trials < cur + newlen )
trials[++num_trials].price = infinite_price;
int i = 0;
while( start_len > pairs[i].len ) ++i;
int dis = pairs[i].dis;
for( int len = start_len; ; ++len )
{
int price = normal_match_price + price_pair( dis, len, pos_state );
trials[cur+len].update( price, dis + num_rep_distances, cur );
// try match + literal + rep0
if( len == pairs[i].len )
{
const uint8_t * const data = matchfinder.ptr_to_current_pos() - 1;
const int dis2 = dis + 1;
int len2 = len + 1;
const int limit = std::min( matchfinder.match_len_limit() + len2,
available_bytes );
while( len2 < limit && data[len2-dis2] == data[len2] ) ++len2;
len2 -= len + 1;
if( len2 >= min_match_len )
{
int pos_state2 = ( pos_state + len ) & pos_state_mask;
State state2 = cur_state; state2.set_match();
price += price0( bm_match[state2()][pos_state2] ) +
price_matched( data[len-1], data[len], data[len-dis2] );
pos_state2 = ( pos_state2 + 1 ) & pos_state_mask;
state2.set_char();
price += price1( bm_match[state2()][pos_state2] ) +
price1( bm_rep[state2()] ) +
price_rep0_len( len2, state2, pos_state2 );
while( num_trials < cur + len + 1 + len2 )
trials[++num_trials].price = infinite_price;
trials[cur+len+1+len2].update3( price, 0, cur + len + 1,
dis + num_rep_distances, cur );
}
if( ++i >= num_pairs ) break;
dis = pairs[i].dis;
}
}
}
}
}
bool LZ_encoder::encode_member( const unsigned long long member_size )
{
const unsigned long long member_size_limit =
member_size - File_trailer::size() - max_marker_size;
const int fill_count = ( matchfinder.match_len_limit() > 12 ) ? 128 : 512;
int fill_counter = 0;
int rep_distances[num_rep_distances];
State state;
for( int i = 0; i < num_rep_distances; ++i ) rep_distances[i] = 0;
if( matchfinder.data_position() != 0 ||
range_encoder.member_position() != File_header::size )
return false; // can be called only once
if( !matchfinder.finished() ) // encode first byte
{
const uint8_t prev_byte = 0;
const uint8_t cur_byte = matchfinder[0];
range_encoder.encode_bit( bm_match[state()][0], 0 );
encode_literal( prev_byte, cur_byte );
crc32.update( crc_, cur_byte );
matchfinder.get_match_pairs();
matchfinder.move_pos();
}
while( !matchfinder.finished() )
{
if( pending_num_pairs == 0 )
{
if( fill_counter <= 0 )
{ fill_distance_prices(); fill_counter = fill_count; }
if( align_price_count <= 0 ) fill_align_prices();
}
int ahead = sequence_optimizer( rep_distances, state );
if( ahead <= 0 ) return false; // can't happen
for( int i = 0; ; )
{
const int pos_state =
( matchfinder.data_position() - ahead ) & pos_state_mask;
const int dis = trials[i].dis;
const int len = trials[i].price;
bool bit = ( dis < 0 && len == 1 );
range_encoder.encode_bit( bm_match[state()][pos_state], !bit );
if( bit ) // literal byte
{
const uint8_t prev_byte = matchfinder[-ahead-1];
const uint8_t cur_byte = matchfinder[-ahead];
crc32.update( crc_, cur_byte );
if( state.is_char() )
encode_literal( prev_byte, cur_byte );
else
{
const uint8_t match_byte = matchfinder[-ahead-rep_distances[0]-1];
encode_matched( prev_byte, cur_byte, match_byte );
}
state.set_char();
}
else // match or repeated match
{
crc32.update( crc_, matchfinder.ptr_to_current_pos() - ahead, len );
mtf_reps( dis, rep_distances );
bit = ( dis < num_rep_distances );
range_encoder.encode_bit( bm_rep[state()], bit );
if( bit )
{
bit = ( dis == 0 );
range_encoder.encode_bit( bm_rep0[state()], !bit );
if( bit )
range_encoder.encode_bit( bm_len[state()][pos_state], len > 1 );
else
{
range_encoder.encode_bit( bm_rep1[state()], dis > 1 );
if( dis > 1 )
range_encoder.encode_bit( bm_rep2[state()], dis > 2 );
}
if( len == 1 ) state.set_short_rep();
else
{
rep_len_encoder.encode( range_encoder, len, pos_state );
state.set_rep();
}
}
else
{
encode_pair( dis - num_rep_distances, len, pos_state );
if( get_slot( dis - num_rep_distances ) >= end_dis_model )
--align_price_count;
--fill_counter;
state.set_match();
}
}
ahead -= len; i += len;
if( range_encoder.member_position() >= member_size_limit )
{
if( !matchfinder.dec_pos( ahead ) ) return false;
full_flush( matchfinder.data_position(), state );
return true;
}
if( ahead <= 0 ) break;
}
}
full_flush( matchfinder.data_position(), state );
return true;
}