/* Lzip - Data compressor based on the LZMA algorithm Copyright (C) 2008, 2009, 2010, 2011, 2012 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include #include "lzip.h" #include "encoder.h" Dis_slots dis_slots; Prob_prices prob_prices; bool Matchfinder_base::read_block() { if( !at_stream_end && stream_pos < buffer_size ) { const int size = buffer_size - stream_pos; const int rd = readblock( infd, buffer + stream_pos, size ); stream_pos += rd; if( rd != size && errno ) throw Error( "Read error" ); if( rd < size ) { at_stream_end = true; pos_limit = buffer_size; } } return pos < stream_pos; } void Matchfinder_base::normalize_pos() { if( pos > stream_pos ) internal_error( "pos > stream_pos in Matchfinder_base::normalize_pos" ); if( !at_stream_end ) { const int offset = pos - dictionary_size_ - before_size; const int size = stream_pos - offset; std::memmove( buffer, buffer + offset, size ); partial_data_pos += offset; pos -= offset; stream_pos -= offset; for( int i = 0; i < num_prev_positions; ++i ) if( prev_positions[i] >= 0 ) prev_positions[i] -= offset; for( int i = 0; i < pos_array_size; ++i ) if( pos_array[i] >= 0 ) pos_array[i] -= offset; read_block(); } } Matchfinder_base::Matchfinder_base( const int before, const int dict_size, const int dict_factor, const int len_limit, const int num_prev_pos, const int ifd, const int pos_array_factor ) : partial_data_pos( 0 ), prev_positions( new int32_t[num_prev_pos] ), num_prev_positions( num_prev_pos ), before_size( before ), match_len_limit_( len_limit ), infd( ifd ), pos( 0 ), cyclic_pos( 0 ), stream_pos( 0 ), at_stream_end( false ) { for( int i = 0; i < num_prev_positions; ++i ) prev_positions[i] = -1; const int buffer_size_limit = ( dict_size * dict_factor ) + before_size + after_size; buffer_size = std::max( 65536, dict_size ); buffer = (uint8_t *)std::malloc( buffer_size ); if( !buffer ) { delete[] prev_positions; throw std::bad_alloc(); } if( read_block() && !at_stream_end && buffer_size < buffer_size_limit ) { buffer_size = buffer_size_limit; uint8_t * const tmp = (uint8_t *)std::realloc( buffer, buffer_size ); if( !tmp ) { std::free( buffer ); delete[] prev_positions; throw std::bad_alloc(); } buffer = tmp; read_block(); } if( at_stream_end && stream_pos < dict_size ) dictionary_size_ = std::max( (int)min_dictionary_size, stream_pos ); else dictionary_size_ = dict_size; pos_limit = buffer_size; if( !at_stream_end ) pos_limit -= after_size; pos_array_size = pos_array_factor * dictionary_size_; pos_array = new( std::nothrow ) int32_t[pos_array_size]; if( !pos_array ) { std::free( buffer ); delete[] prev_positions; throw std::bad_alloc(); } } void Matchfinder_base::reset() { const int size = stream_pos - pos; if( size > 0 ) std::memmove( buffer, buffer + pos, size ); partial_data_pos = 0; stream_pos -= pos; pos = 0; cyclic_pos = 0; for( int i = 0; i < num_prev_positions; ++i ) prev_positions[i] = -1; read_block(); } int Matchfinder::longest_match_len( int * const distances ) { int len_limit = match_len_limit_; if( len_limit > available_bytes() ) { len_limit = available_bytes(); if( len_limit < 4 ) return 0; } int maxlen = min_match_len - 1; const int min_pos = (pos >= dictionary_size_) ? (pos - dictionary_size_ + 1) : 0; const uint8_t * const data = buffer + pos; const int key2 = num_prev_positions4 + num_prev_positions3 + ( ( (int)data[0] << 8 ) | data[1] ); const uint32_t tmp = crc32[data[0]] ^ data[1] ^ ( (uint32_t)data[2] << 8 ); const int key3 = num_prev_positions4 + (int)( tmp & ( num_prev_positions3 - 1 ) ); const int key4 = (int)( ( tmp ^ ( crc32[data[3]] << 5 ) ) & ( num_prev_positions4 - 1 ) ); if( distances ) { int np = prev_positions[key2]; if( np >= min_pos ) { distances[2] = pos - np - 1; maxlen = 2; } else distances[2] = 0x7FFFFFFF; np = prev_positions[key3]; if( np >= min_pos && buffer[np] == data[0] ) { distances[3] = pos - np - 1; maxlen = 3; } else distances[3] = 0x7FFFFFFF; distances[4] = 0x7FFFFFFF; } prev_positions[key2] = pos; prev_positions[key3] = pos; int newpos = prev_positions[key4]; prev_positions[key4] = pos; int32_t * ptr0 = pos_array + ( cyclic_pos << 1 ); int32_t * ptr1 = ptr0 + 1; int len = 0, len0 = 0, len1 = 0; for( int count = cycles; ; ) { if( newpos < min_pos || --count < 0 ) { *ptr0 = *ptr1 = -1; break; } const uint8_t * const newdata = buffer + newpos; while( len < len_limit && newdata[len] == data[len] ) ++len; const int delta = pos - newpos; if( distances ) while( maxlen < len ) distances[++maxlen] = delta - 1; int32_t * const newptr = pos_array + ( ( cyclic_pos - delta + ( ( cyclic_pos >= delta ) ? 0 : dictionary_size_ ) ) << 1 ); if( len < len_limit ) { if( newdata[len] < data[len] ) { *ptr0 = newpos; ptr0 = newptr + 1; newpos = *ptr0; len0 = len; if( len1 < len ) len = len1; } else { *ptr1 = newpos; ptr1 = newptr; newpos = *ptr1; len1 = len; if( len0 < len ) len = len0; } } else { *ptr0 = newptr[0]; *ptr1 = newptr[1]; break; } } if( distances ) { if( distances[3] > distances[4] ) distances[3] = distances[4]; if( distances[2] > distances[3] ) distances[2] = distances[3]; } return maxlen; } void Range_encoder::flush_data() { if( pos > 0 ) { if( outfd >= 0 && writeblock( outfd, buffer, pos ) != pos ) throw Error( "Write error" ); partial_member_pos += pos; pos = 0; } } void Len_encoder::encode( Range_encoder & range_encoder, int symbol, const int pos_state ) { symbol -= min_match_len; if( symbol < len_low_symbols ) { range_encoder.encode_bit( choice1, 0 ); range_encoder.encode_tree( bm_low[pos_state], symbol, len_low_bits ); } else { range_encoder.encode_bit( choice1, 1 ); if( symbol < len_low_symbols + len_mid_symbols ) { range_encoder.encode_bit( choice2, 0 ); range_encoder.encode_tree( bm_mid[pos_state], symbol - len_low_symbols, len_mid_bits ); } else { range_encoder.encode_bit( choice2, 1 ); range_encoder.encode_tree( bm_high, symbol - len_low_symbols - len_mid_symbols, len_high_bits ); } } if( --counters[pos_state] <= 0 ) update_prices( pos_state ); } // End Of Stream mark => (dis == 0xFFFFFFFFU, len == min_match_len) void LZ_encoder_base::full_flush( const long long data_position, const State state ) { const int pos_state = data_position & pos_state_mask; range_encoder.encode_bit( bm_match[state()][pos_state], 1 ); range_encoder.encode_bit( bm_rep[state()], 0 ); encode_pair( 0xFFFFFFFFU, min_match_len, pos_state ); range_encoder.flush(); File_trailer trailer; trailer.data_crc( crc() ); trailer.data_size( data_position ); trailer.member_size( range_encoder.member_position() + File_trailer::size() ); for( int i = 0; i < File_trailer::size(); ++i ) range_encoder.put_byte( trailer.data[i] ); range_encoder.flush_data(); } void LZ_encoder::fill_align_prices() { for( int i = 0; i < dis_align_size; ++i ) align_prices[i] = price_symbol_reversed( bm_align, i, dis_align_bits ); align_price_count = dis_align_size; } void LZ_encoder::fill_distance_prices() { for( int dis = start_dis_model; dis < modeled_distances; ++dis ) { const int dis_slot = dis_slots.table( dis ); const int direct_bits = ( dis_slot >> 1 ) - 1; const int base = ( 2 | ( dis_slot & 1 ) ) << direct_bits; const int price = price_symbol_reversed( bm_dis + base - dis_slot, dis - base, direct_bits ); for( int dis_state = 0; dis_state < max_dis_states; ++dis_state ) dis_prices[dis_state][dis] = price; } for( int dis_state = 0; dis_state < max_dis_states; ++dis_state ) { int * const dsp = dis_slot_prices[dis_state]; const Bit_model * const bmds = bm_dis_slot[dis_state]; int slot = 0; for( ; slot < end_dis_model && slot < num_dis_slots; ++slot ) dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ); for( ; slot < num_dis_slots; ++slot ) dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ) + (((( slot >> 1 ) - 1 ) - dis_align_bits ) << price_shift ); int * const dp = dis_prices[dis_state]; int dis = 0; for( ; dis < start_dis_model; ++dis ) dp[dis] = dsp[dis]; for( ; dis < modeled_distances; ++dis ) dp[dis] += dsp[dis_slots.table( dis )]; } } // Return value == number of bytes advanced (ahead). // trials[0]..trials[retval-1] contain the steps to encode. // ( trials[0].dis == -1 && trials[0].price == 1 ) means literal. int LZ_encoder::sequence_optimizer( const int reps[num_rep_distances], const State state ) { int main_len; if( longest_match_found > 0 ) // from previous call { main_len = longest_match_found; longest_match_found = 0; } else main_len = read_match_distances(); int replens[num_rep_distances]; int rep_index = 0; for( int i = 0; i < num_rep_distances; ++i ) { replens[i] = matchfinder.true_match_len( 0, reps[i] + 1, max_match_len ); if( replens[i] > replens[rep_index] ) rep_index = i; } if( replens[rep_index] >= matchfinder.match_len_limit() ) { trials[0].dis = rep_index; trials[0].price = replens[rep_index]; move_pos( replens[rep_index] ); return replens[rep_index]; } if( main_len >= matchfinder.match_len_limit() ) { trials[0].dis = match_distances[matchfinder.match_len_limit()] + num_rep_distances; trials[0].price = main_len; move_pos( main_len ); return main_len; } { const int pos_state = matchfinder.data_position() & pos_state_mask; const uint8_t prev_byte = matchfinder[-1]; const uint8_t cur_byte = matchfinder[0]; const uint8_t match_byte = matchfinder[-reps[0]-1]; trials[0].state = state; for( int i = 0; i < num_rep_distances; ++i ) trials[0].reps[i] = reps[i]; trials[1].dis = -1; trials[1].prev_index = 0; trials[1].price = price0( bm_match[state()][pos_state] ); if( state.is_char() ) trials[1].price += literal_encoder.price_symbol( prev_byte, cur_byte ); else trials[1].price += literal_encoder.price_matched( prev_byte, cur_byte, match_byte ); const int match_price = price1( bm_match[state()][pos_state] ); const int rep_match_price = match_price + price1( bm_rep[state()] ); if( match_byte == cur_byte ) trials[1].update( 0, 0, rep_match_price + price_rep_len1( pos_state, state ) ); if( main_len < min_match_len ) { trials[0].dis = trials[1].dis; trials[0].price = 1; matchfinder.move_pos(); return 1; } if( main_len <= replens[rep_index] ) { main_len = replens[rep_index]; for( int len = min_match_len; len <= main_len; ++len ) trials[len].price = infinite_price; } else { const int normal_match_price = match_price + price0( bm_rep[state()] ); for( int len = min_match_len; len <= main_len; ++len ) { trials[len].dis = match_distances[len] + num_rep_distances; trials[len].prev_index = 0; trials[len].price = normal_match_price + price_pair( match_distances[len], len, pos_state ); } } for( int rep = 0; rep < num_rep_distances; ++rep ) { const int price = rep_match_price + price_rep( rep, pos_state, state ); for( int len = min_match_len; len <= replens[rep]; ++len ) trials[len].update( rep, 0, price + rep_match_len_encoder.price( len, pos_state ) ); } } int cur = 0; int num_trials = main_len; matchfinder.move_pos(); while( true ) { if( ++cur >= num_trials ) // no more initialized trials { backward( cur ); return cur; } const int newlen = read_match_distances(); if( newlen >= matchfinder.match_len_limit() ) { longest_match_found = newlen; backward( cur ); return cur; } Trial & cur_trial = trials[cur]; const int prev_index = cur_trial.prev_index; cur_trial.state = trials[prev_index].state; for( int i = 0; i < num_rep_distances; ++i ) cur_trial.reps[i] = trials[prev_index].reps[i]; if( prev_index == cur - 1 ) { if( cur_trial.dis == 0 ) cur_trial.state.set_short_rep(); else cur_trial.state.set_char(); } else { if( cur_trial.dis < num_rep_distances ) cur_trial.state.set_rep(); else cur_trial.state.set_match(); mtf_reps( cur_trial.dis, cur_trial.reps ); } const int pos_state = matchfinder.data_position() & pos_state_mask; const uint8_t prev_byte = matchfinder[-1]; const uint8_t cur_byte = matchfinder[0]; const uint8_t match_byte = matchfinder[-cur_trial.reps[0]-1]; int next_price = cur_trial.price + price0( bm_match[cur_trial.state()][pos_state] ); if( cur_trial.state.is_char() ) next_price += literal_encoder.price_symbol( prev_byte, cur_byte ); else next_price += literal_encoder.price_matched( prev_byte, cur_byte, match_byte ); matchfinder.move_pos(); Trial & next_trial = trials[cur+1]; next_trial.update( -1, cur, next_price ); const int match_price = cur_trial.price + price1( bm_match[cur_trial.state()][pos_state] ); const int rep_match_price = match_price + price1( bm_rep[cur_trial.state()] ); if( match_byte == cur_byte && next_trial.dis != 0 ) next_trial.update( 0, cur, rep_match_price + price_rep_len1( pos_state, cur_trial.state ) ); const int len_limit = std::min( std::min( max_num_trials - 1 - cur, matchfinder.available_bytes() ), matchfinder.match_len_limit() ); if( len_limit < min_match_len ) continue; for( int rep = 0; rep < num_rep_distances; ++rep ) { const int dis = cur_trial.reps[rep] + 1; int len = 0; const uint8_t * const data = matchfinder.ptr_to_current_pos() - 1; while( len < len_limit && data[len] == data[len-dis] ) ++len; if( len >= min_match_len ) { const int price = rep_match_price + price_rep( rep, pos_state, cur_trial.state ); while( num_trials < cur + len ) trials[++num_trials].price = infinite_price; for( ; len >= min_match_len; --len ) trials[cur+len].update( rep, cur, price + rep_match_len_encoder.price( len, pos_state ) ); } } if( newlen <= len_limit && ( newlen > min_match_len || ( newlen == min_match_len && match_distances[min_match_len] < modeled_distances ) ) ) { const int normal_match_price = match_price + price0( bm_rep[cur_trial.state()] ); while( num_trials < cur + newlen ) trials[++num_trials].price = infinite_price; int dis = match_distances[min_match_len]; int dis_state = get_dis_state( min_match_len ); int dis_price = infinite_price; if( dis < modeled_distances ) trials[cur+min_match_len].update( dis + num_rep_distances, cur, normal_match_price + dis_prices[dis_state][dis] + len_encoder.price( min_match_len, pos_state ) ); for( int len = min_match_len + 1; len <= newlen; ++len ) { if( dis != match_distances[len] || dis_state < max_dis_states - 1 ) { dis = match_distances[len]; dis_state = get_dis_state( len ); dis_price = price_dis( dis, dis_state ); } trials[cur+len].update( dis + num_rep_distances, cur, normal_match_price + dis_price + len_encoder.price( len, pos_state ) ); } } } } bool LZ_encoder::encode_member( const long long member_size ) { const long long member_size_limit = member_size - File_trailer::size() - max_marker_size; const int fill_count = ( matchfinder.match_len_limit() > 12 ) ? 512 : 2048; int fill_counter = 0; int rep_distances[num_rep_distances]; State state; for( int i = 0; i < num_rep_distances; ++i ) rep_distances[i] = 0; if( matchfinder.data_position() != 0 || range_encoder.member_position() != File_header::size ) return false; // can be called only once if( !matchfinder.finished() ) // encode first byte { const uint8_t prev_byte = 0; const uint8_t cur_byte = matchfinder[0]; range_encoder.encode_bit( bm_match[state()][0], 0 ); literal_encoder.encode( range_encoder, prev_byte, cur_byte ); crc32.update( crc_, cur_byte ); matchfinder.longest_match_len(); matchfinder.move_pos(); } while( !matchfinder.finished() ) { if( fill_counter <= 0 ) { fill_distance_prices(); fill_counter = fill_count; } int ahead = sequence_optimizer( rep_distances, state ); if( ahead <= 0 ) return false; // can't happen fill_counter -= ahead; for( int i = 0; ; ) { const int pos_state = ( matchfinder.data_position() - ahead ) & pos_state_mask; const int dis = trials[i].dis; const int len = trials[i].price; bool bit = ( dis < 0 && len == 1 ); range_encoder.encode_bit( bm_match[state()][pos_state], !bit ); if( bit ) // literal byte { const uint8_t prev_byte = matchfinder[-ahead-1]; const uint8_t cur_byte = matchfinder[-ahead]; crc32.update( crc_, cur_byte ); if( state.is_char() ) literal_encoder.encode( range_encoder, prev_byte, cur_byte ); else { const uint8_t match_byte = matchfinder[-ahead-rep_distances[0]-1]; literal_encoder.encode_matched( range_encoder, prev_byte, cur_byte, match_byte ); } state.set_char(); } else // match or repeated match { crc32.update( crc_, matchfinder.ptr_to_current_pos() - ahead, len ); mtf_reps( dis, rep_distances ); bit = ( dis < num_rep_distances ); range_encoder.encode_bit( bm_rep[state()], bit ); if( bit ) { bit = ( dis == 0 ); range_encoder.encode_bit( bm_rep0[state()], !bit ); if( bit ) range_encoder.encode_bit( bm_len[state()][pos_state], len > 1 ); else { range_encoder.encode_bit( bm_rep1[state()], dis > 1 ); if( dis > 1 ) range_encoder.encode_bit( bm_rep2[state()], dis > 2 ); } if( len == 1 ) state.set_short_rep(); else { rep_match_len_encoder.encode( range_encoder, len, pos_state ); state.set_rep(); } } else { encode_pair( dis - num_rep_distances, len, pos_state ); if( dis_slots[dis - num_rep_distances] >= end_dis_model && --align_price_count <= 0 ) fill_align_prices(); state.set_match(); } } ahead -= len; i += len; if( range_encoder.member_position() >= member_size_limit ) { if( !matchfinder.dec_pos( ahead ) ) return false; full_flush( matchfinder.data_position(), state ); return true; } if( ahead <= 0 ) break; } } full_flush( matchfinder.data_position(), state ); return true; }