/* Lzip - Data compressor based on the LZMA algorithm
Copyright (C) 2008, 2009, 2010, 2011, 2012 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include
#include
#include "lzip.h"
#include "encoder.h"
Dis_slots dis_slots;
Prob_prices prob_prices;
bool Matchfinder_base::read_block()
{
if( !at_stream_end && stream_pos < buffer_size )
{
const int size = buffer_size - stream_pos;
const int rd = readblock( infd, buffer + stream_pos, size );
stream_pos += rd;
if( rd != size && errno ) throw Error( "Read error" );
if( rd < size ) { at_stream_end = true; pos_limit = buffer_size; }
}
return pos < stream_pos;
}
void Matchfinder_base::normalize_pos()
{
if( pos > stream_pos )
internal_error( "pos > stream_pos in Matchfinder_base::normalize_pos" );
if( !at_stream_end )
{
const int offset = pos - dictionary_size_ - before_size;
const int size = stream_pos - offset;
std::memmove( buffer, buffer + offset, size );
partial_data_pos += offset;
pos -= offset;
stream_pos -= offset;
for( int i = 0; i < num_prev_positions; ++i )
if( prev_positions[i] >= 0 ) prev_positions[i] -= offset;
for( int i = 0; i < pos_array_size; ++i )
if( pos_array[i] >= 0 ) pos_array[i] -= offset;
read_block();
}
}
Matchfinder_base::Matchfinder_base( const int before, const int dict_size,
const int dict_factor, const int len_limit,
const int num_prev_pos, const int ifd,
const int pos_array_factor )
:
partial_data_pos( 0 ),
prev_positions( new int32_t[num_prev_pos] ),
num_prev_positions( num_prev_pos ),
before_size( before ),
match_len_limit_( len_limit ),
infd( ifd ),
pos( 0 ),
cyclic_pos( 0 ),
stream_pos( 0 ),
at_stream_end( false )
{
for( int i = 0; i < num_prev_positions; ++i ) prev_positions[i] = -1;
const int buffer_size_limit =
( dict_size * dict_factor ) + before_size + after_size;
buffer_size = std::max( 65536, dict_size );
buffer = (uint8_t *)std::malloc( buffer_size );
if( !buffer ) { delete[] prev_positions; throw std::bad_alloc(); }
if( read_block() && !at_stream_end && buffer_size < buffer_size_limit )
{
buffer_size = buffer_size_limit;
uint8_t * const tmp = (uint8_t *)std::realloc( buffer, buffer_size );
if( !tmp )
{ std::free( buffer ); delete[] prev_positions; throw std::bad_alloc(); }
buffer = tmp;
read_block();
}
if( at_stream_end && stream_pos < dict_size )
dictionary_size_ = std::max( (int)min_dictionary_size, stream_pos );
else dictionary_size_ = dict_size;
pos_limit = buffer_size;
if( !at_stream_end ) pos_limit -= after_size;
pos_array_size = pos_array_factor * dictionary_size_;
pos_array = new( std::nothrow ) int32_t[pos_array_size];
if( !pos_array )
{ std::free( buffer ); delete[] prev_positions; throw std::bad_alloc(); }
}
void Matchfinder_base::reset()
{
const int size = stream_pos - pos;
if( size > 0 ) std::memmove( buffer, buffer + pos, size );
partial_data_pos = 0;
stream_pos -= pos;
pos = 0;
cyclic_pos = 0;
for( int i = 0; i < num_prev_positions; ++i ) prev_positions[i] = -1;
read_block();
}
int Matchfinder::longest_match_len( int * const distances )
{
int len_limit = match_len_limit_;
if( len_limit > available_bytes() )
{
len_limit = available_bytes();
if( len_limit < 4 ) return 0;
}
int maxlen = min_match_len - 1;
const int min_pos = (pos >= dictionary_size_) ?
(pos - dictionary_size_ + 1) : 0;
const uint8_t * const data = buffer + pos;
const int key2 = num_prev_positions4 + num_prev_positions3 +
( ( (int)data[0] << 8 ) | data[1] );
const uint32_t tmp = crc32[data[0]] ^ data[1] ^ ( (uint32_t)data[2] << 8 );
const int key3 = num_prev_positions4 +
(int)( tmp & ( num_prev_positions3 - 1 ) );
const int key4 = (int)( ( tmp ^ ( crc32[data[3]] << 5 ) ) &
( num_prev_positions4 - 1 ) );
if( distances )
{
int np = prev_positions[key2];
if( np >= min_pos )
{ distances[2] = pos - np - 1; maxlen = 2; }
else distances[2] = 0x7FFFFFFF;
np = prev_positions[key3];
if( np >= min_pos && buffer[np] == data[0] )
{ distances[3] = pos - np - 1; maxlen = 3; }
else distances[3] = 0x7FFFFFFF;
distances[4] = 0x7FFFFFFF;
}
prev_positions[key2] = pos;
prev_positions[key3] = pos;
int newpos = prev_positions[key4];
prev_positions[key4] = pos;
int32_t * ptr0 = pos_array + ( cyclic_pos << 1 );
int32_t * ptr1 = ptr0 + 1;
int len = 0, len0 = 0, len1 = 0;
for( int count = cycles; ; )
{
if( newpos < min_pos || --count < 0 ) { *ptr0 = *ptr1 = -1; break; }
const uint8_t * const newdata = buffer + newpos;
while( len < len_limit && newdata[len] == data[len] ) ++len;
const int delta = pos - newpos;
if( distances ) while( maxlen < len ) distances[++maxlen] = delta - 1;
int32_t * const newptr = pos_array +
( ( cyclic_pos - delta +
( ( cyclic_pos >= delta ) ? 0 : dictionary_size_ ) ) << 1 );
if( len < len_limit )
{
if( newdata[len] < data[len] )
{
*ptr0 = newpos;
ptr0 = newptr + 1;
newpos = *ptr0;
len0 = len; if( len1 < len ) len = len1;
}
else
{
*ptr1 = newpos;
ptr1 = newptr;
newpos = *ptr1;
len1 = len; if( len0 < len ) len = len0;
}
}
else
{
*ptr0 = newptr[0];
*ptr1 = newptr[1];
break;
}
}
if( distances )
{
if( distances[3] > distances[4] ) distances[3] = distances[4];
if( distances[2] > distances[3] ) distances[2] = distances[3];
}
return maxlen;
}
void Range_encoder::flush_data()
{
if( pos > 0 )
{
if( outfd >= 0 && writeblock( outfd, buffer, pos ) != pos )
throw Error( "Write error" );
partial_member_pos += pos;
pos = 0;
}
}
void Len_encoder::encode( Range_encoder & range_encoder, int symbol,
const int pos_state )
{
symbol -= min_match_len;
if( symbol < len_low_symbols )
{
range_encoder.encode_bit( choice1, 0 );
range_encoder.encode_tree( bm_low[pos_state], symbol, len_low_bits );
}
else
{
range_encoder.encode_bit( choice1, 1 );
if( symbol < len_low_symbols + len_mid_symbols )
{
range_encoder.encode_bit( choice2, 0 );
range_encoder.encode_tree( bm_mid[pos_state], symbol - len_low_symbols, len_mid_bits );
}
else
{
range_encoder.encode_bit( choice2, 1 );
range_encoder.encode_tree( bm_high, symbol - len_low_symbols - len_mid_symbols, len_high_bits );
}
}
if( --counters[pos_state] <= 0 ) update_prices( pos_state );
}
// End Of Stream mark => (dis == 0xFFFFFFFFU, len == min_match_len)
void LZ_encoder_base::full_flush( const long long data_position,
const State state )
{
const int pos_state = data_position & pos_state_mask;
range_encoder.encode_bit( bm_match[state()][pos_state], 1 );
range_encoder.encode_bit( bm_rep[state()], 0 );
encode_pair( 0xFFFFFFFFU, min_match_len, pos_state );
range_encoder.flush();
File_trailer trailer;
trailer.data_crc( crc() );
trailer.data_size( data_position );
trailer.member_size( range_encoder.member_position() + File_trailer::size() );
for( int i = 0; i < File_trailer::size(); ++i )
range_encoder.put_byte( trailer.data[i] );
range_encoder.flush_data();
}
void LZ_encoder::fill_align_prices()
{
for( int i = 0; i < dis_align_size; ++i )
align_prices[i] = price_symbol_reversed( bm_align, i, dis_align_bits );
align_price_count = dis_align_size;
}
void LZ_encoder::fill_distance_prices()
{
for( int dis = start_dis_model; dis < modeled_distances; ++dis )
{
const int dis_slot = dis_slots.table( dis );
const int direct_bits = ( dis_slot >> 1 ) - 1;
const int base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const int price =
price_symbol_reversed( bm_dis + base - dis_slot, dis - base, direct_bits );
for( int dis_state = 0; dis_state < max_dis_states; ++dis_state )
dis_prices[dis_state][dis] = price;
}
for( int dis_state = 0; dis_state < max_dis_states; ++dis_state )
{
int * const dsp = dis_slot_prices[dis_state];
const Bit_model * const bmds = bm_dis_slot[dis_state];
int slot = 0;
for( ; slot < end_dis_model && slot < num_dis_slots; ++slot )
dsp[slot] = price_symbol( bmds, slot, dis_slot_bits );
for( ; slot < num_dis_slots; ++slot )
dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ) +
(((( slot >> 1 ) - 1 ) - dis_align_bits ) << price_shift );
int * const dp = dis_prices[dis_state];
int dis = 0;
for( ; dis < start_dis_model; ++dis )
dp[dis] = dsp[dis];
for( ; dis < modeled_distances; ++dis )
dp[dis] += dsp[dis_slots.table( dis )];
}
}
// Return value == number of bytes advanced (ahead).
// trials[0]..trials[retval-1] contain the steps to encode.
// ( trials[0].dis == -1 && trials[0].price == 1 ) means literal.
int LZ_encoder::sequence_optimizer( const int reps[num_rep_distances],
const State state )
{
int main_len;
if( longest_match_found > 0 ) // from previous call
{
main_len = longest_match_found;
longest_match_found = 0;
}
else main_len = read_match_distances();
int replens[num_rep_distances];
int rep_index = 0;
for( int i = 0; i < num_rep_distances; ++i )
{
replens[i] = matchfinder.true_match_len( 0, reps[i] + 1, max_match_len );
if( replens[i] > replens[rep_index] ) rep_index = i;
}
if( replens[rep_index] >= matchfinder.match_len_limit() )
{
trials[0].dis = rep_index;
trials[0].price = replens[rep_index];
move_pos( replens[rep_index] );
return replens[rep_index];
}
if( main_len >= matchfinder.match_len_limit() )
{
trials[0].dis = match_distances[matchfinder.match_len_limit()] +
num_rep_distances;
trials[0].price = main_len;
move_pos( main_len );
return main_len;
}
{
const int pos_state = matchfinder.data_position() & pos_state_mask;
const uint8_t prev_byte = matchfinder[-1];
const uint8_t cur_byte = matchfinder[0];
const uint8_t match_byte = matchfinder[-reps[0]-1];
trials[0].state = state;
for( int i = 0; i < num_rep_distances; ++i ) trials[0].reps[i] = reps[i];
trials[1].dis = -1;
trials[1].prev_index = 0;
trials[1].price = price0( bm_match[state()][pos_state] );
if( state.is_char() )
trials[1].price += literal_encoder.price_symbol( prev_byte, cur_byte );
else
trials[1].price += literal_encoder.price_matched( prev_byte, cur_byte, match_byte );
const int match_price = price1( bm_match[state()][pos_state] );
const int rep_match_price = match_price + price1( bm_rep[state()] );
if( match_byte == cur_byte )
trials[1].update( 0, 0, rep_match_price + price_rep_len1( pos_state, state ) );
if( main_len < min_match_len )
{
trials[0].dis = trials[1].dis;
trials[0].price = 1;
matchfinder.move_pos();
return 1;
}
if( main_len <= replens[rep_index] )
{
main_len = replens[rep_index];
for( int len = min_match_len; len <= main_len; ++len )
trials[len].price = infinite_price;
}
else
{
const int normal_match_price = match_price + price0( bm_rep[state()] );
for( int len = min_match_len; len <= main_len; ++len )
{
trials[len].dis = match_distances[len] + num_rep_distances;
trials[len].prev_index = 0;
trials[len].price = normal_match_price +
price_pair( match_distances[len], len, pos_state );
}
}
for( int rep = 0; rep < num_rep_distances; ++rep )
{
const int price = rep_match_price + price_rep( rep, pos_state, state );
for( int len = min_match_len; len <= replens[rep]; ++len )
trials[len].update( rep, 0, price +
rep_match_len_encoder.price( len, pos_state ) );
}
}
int cur = 0;
int num_trials = main_len;
matchfinder.move_pos();
while( true )
{
if( ++cur >= num_trials ) // no more initialized trials
{
backward( cur );
return cur;
}
const int newlen = read_match_distances();
if( newlen >= matchfinder.match_len_limit() )
{
longest_match_found = newlen;
backward( cur );
return cur;
}
Trial & cur_trial = trials[cur];
const int prev_index = cur_trial.prev_index;
cur_trial.state = trials[prev_index].state;
for( int i = 0; i < num_rep_distances; ++i )
cur_trial.reps[i] = trials[prev_index].reps[i];
if( prev_index == cur - 1 )
{
if( cur_trial.dis == 0 ) cur_trial.state.set_short_rep();
else cur_trial.state.set_char();
}
else
{
if( cur_trial.dis < num_rep_distances ) cur_trial.state.set_rep();
else cur_trial.state.set_match();
mtf_reps( cur_trial.dis, cur_trial.reps );
}
const int pos_state = matchfinder.data_position() & pos_state_mask;
const uint8_t prev_byte = matchfinder[-1];
const uint8_t cur_byte = matchfinder[0];
const uint8_t match_byte = matchfinder[-cur_trial.reps[0]-1];
int next_price = cur_trial.price +
price0( bm_match[cur_trial.state()][pos_state] );
if( cur_trial.state.is_char() )
next_price += literal_encoder.price_symbol( prev_byte, cur_byte );
else
next_price += literal_encoder.price_matched( prev_byte, cur_byte, match_byte );
matchfinder.move_pos();
Trial & next_trial = trials[cur+1];
next_trial.update( -1, cur, next_price );
const int match_price = cur_trial.price + price1( bm_match[cur_trial.state()][pos_state] );
const int rep_match_price = match_price + price1( bm_rep[cur_trial.state()] );
if( match_byte == cur_byte && next_trial.dis != 0 )
next_trial.update( 0, cur, rep_match_price +
price_rep_len1( pos_state, cur_trial.state ) );
const int len_limit = std::min( std::min( max_num_trials - 1 - cur,
matchfinder.available_bytes() ), matchfinder.match_len_limit() );
if( len_limit < min_match_len ) continue;
for( int rep = 0; rep < num_rep_distances; ++rep )
{
const int dis = cur_trial.reps[rep] + 1;
int len = 0;
const uint8_t * const data = matchfinder.ptr_to_current_pos() - 1;
while( len < len_limit && data[len] == data[len-dis] ) ++len;
if( len >= min_match_len )
{
const int price = rep_match_price +
price_rep( rep, pos_state, cur_trial.state );
while( num_trials < cur + len )
trials[++num_trials].price = infinite_price;
for( ; len >= min_match_len; --len )
trials[cur+len].update( rep, cur, price +
rep_match_len_encoder.price( len, pos_state ) );
}
}
if( newlen <= len_limit &&
( newlen > min_match_len ||
( newlen == min_match_len &&
match_distances[min_match_len] < modeled_distances ) ) )
{
const int normal_match_price = match_price +
price0( bm_rep[cur_trial.state()] );
while( num_trials < cur + newlen )
trials[++num_trials].price = infinite_price;
int dis = match_distances[min_match_len];
int dis_state = get_dis_state( min_match_len );
int dis_price = infinite_price;
if( dis < modeled_distances )
trials[cur+min_match_len].update( dis + num_rep_distances, cur,
normal_match_price + dis_prices[dis_state][dis] +
len_encoder.price( min_match_len, pos_state ) );
for( int len = min_match_len + 1; len <= newlen; ++len )
{
if( dis != match_distances[len] || dis_state < max_dis_states - 1 )
{
dis = match_distances[len];
dis_state = get_dis_state( len );
dis_price = price_dis( dis, dis_state );
}
trials[cur+len].update( dis + num_rep_distances, cur,
normal_match_price + dis_price +
len_encoder.price( len, pos_state ) );
}
}
}
}
bool LZ_encoder::encode_member( const long long member_size )
{
const long long member_size_limit =
member_size - File_trailer::size() - max_marker_size;
const int fill_count = ( matchfinder.match_len_limit() > 12 ) ? 512 : 2048;
int fill_counter = 0;
int rep_distances[num_rep_distances];
State state;
for( int i = 0; i < num_rep_distances; ++i ) rep_distances[i] = 0;
if( matchfinder.data_position() != 0 ||
range_encoder.member_position() != File_header::size )
return false; // can be called only once
if( !matchfinder.finished() ) // encode first byte
{
const uint8_t prev_byte = 0;
const uint8_t cur_byte = matchfinder[0];
range_encoder.encode_bit( bm_match[state()][0], 0 );
literal_encoder.encode( range_encoder, prev_byte, cur_byte );
crc32.update( crc_, cur_byte );
matchfinder.longest_match_len();
matchfinder.move_pos();
}
while( !matchfinder.finished() )
{
if( fill_counter <= 0 )
{ fill_distance_prices(); fill_counter = fill_count; }
int ahead = sequence_optimizer( rep_distances, state );
if( ahead <= 0 ) return false; // can't happen
fill_counter -= ahead;
for( int i = 0; ; )
{
const int pos_state =
( matchfinder.data_position() - ahead ) & pos_state_mask;
const int dis = trials[i].dis;
const int len = trials[i].price;
bool bit = ( dis < 0 && len == 1 );
range_encoder.encode_bit( bm_match[state()][pos_state], !bit );
if( bit ) // literal byte
{
const uint8_t prev_byte = matchfinder[-ahead-1];
const uint8_t cur_byte = matchfinder[-ahead];
crc32.update( crc_, cur_byte );
if( state.is_char() )
literal_encoder.encode( range_encoder, prev_byte, cur_byte );
else
{
const uint8_t match_byte = matchfinder[-ahead-rep_distances[0]-1];
literal_encoder.encode_matched( range_encoder,
prev_byte, cur_byte, match_byte );
}
state.set_char();
}
else // match or repeated match
{
crc32.update( crc_, matchfinder.ptr_to_current_pos() - ahead, len );
mtf_reps( dis, rep_distances );
bit = ( dis < num_rep_distances );
range_encoder.encode_bit( bm_rep[state()], bit );
if( bit )
{
bit = ( dis == 0 );
range_encoder.encode_bit( bm_rep0[state()], !bit );
if( bit )
range_encoder.encode_bit( bm_len[state()][pos_state], len > 1 );
else
{
range_encoder.encode_bit( bm_rep1[state()], dis > 1 );
if( dis > 1 )
range_encoder.encode_bit( bm_rep2[state()], dis > 2 );
}
if( len == 1 ) state.set_short_rep();
else
{
rep_match_len_encoder.encode( range_encoder, len, pos_state );
state.set_rep();
}
}
else
{
encode_pair( dis - num_rep_distances, len, pos_state );
if( dis_slots[dis - num_rep_distances] >= end_dis_model &&
--align_price_count <= 0 )
fill_align_prices();
state.set_match();
}
}
ahead -= len; i += len;
if( range_encoder.member_position() >= member_size_limit )
{
if( !matchfinder.dec_pos( ahead ) ) return false;
full_flush( matchfinder.data_position(), state );
return true;
}
if( ahead <= 0 ) break;
}
}
full_flush( matchfinder.data_position(), state );
return true;
}