/* Lzip - Data compressor based on the LZMA algorithm
Copyright (C) 2008, 2009, 2010, 2011, 2012 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
enum { max_num_trials = 1 << 12,
price_shift = 6 };
class Dis_slots
{
unsigned char data[1<<12];
public:
void init()
{
for( int slot = 0; slot < 4; ++slot ) data[slot] = slot;
for( int i = 4, size = 2, slot = 4; slot < 24; slot += 2 )
{
std::memset( &data[i], slot, size );
std::memset( &data[i+size], slot + 1, size );
size <<= 1;
i += size;
}
}
unsigned char table( const int dis ) const { return data[dis]; }
int operator[]( const uint32_t dis ) const
{
if( dis < (1 << 12) ) return data[dis];
if( dis < (1 << 23) ) return data[dis>>11] + 22;
return data[dis>>22] + 44;
}
};
extern Dis_slots dis_slots;
class Prob_prices
{
int data[bit_model_total >> 2];
public:
void init()
{
const int num_bits = ( bit_model_total_bits - 2 );
int j = 1, end = 2;
data[0] = bit_model_total_bits << price_shift;
for( int i = num_bits - 1; i >= 0; --i, end <<= 1 )
{
for( ; j < end; ++j )
data[j] = ( i << price_shift ) +
( ( (end - j) << price_shift ) >> ( num_bits - i - 1 ) );
}
}
int operator[]( const int probability ) const
{ return data[probability >> 2]; }
};
extern Prob_prices prob_prices;
inline int price0( const Bit_model & bm )
{ return prob_prices[bm.probability]; }
inline int price1( const Bit_model & bm )
{ return prob_prices[bit_model_total-bm.probability]; }
inline int price_bit( const Bit_model & bm, const int bit )
{ if( bit ) return price1( bm ); else return price0( bm ); }
inline int price_symbol( const Bit_model bm[], int symbol, const int num_bits )
{
int price = 0;
symbol |= ( 1 << num_bits );
while( symbol > 1 )
{
const int bit = symbol & 1;
symbol >>= 1;
price += price_bit( bm[symbol], bit );
}
return price;
}
inline int price_symbol_reversed( const Bit_model bm[], int symbol,
const int num_bits )
{
int price = 0;
int model = 1;
for( int i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
symbol >>= 1;
price += price_bit( bm[model], bit );
model = ( model << 1 ) | bit;
}
return price;
}
inline int price_matched( const Bit_model bm[], const int symbol,
const int match_byte )
{
int price = 0;
int model = 1;
for( int i = 7; i >= 0; --i )
{
const int match_bit = ( match_byte >> i ) & 1;
int bit = ( symbol >> i ) & 1;
price += price_bit( bm[(match_bit<<8)+model+0x100], bit );
model = ( model << 1 ) | bit;
if( match_bit != bit )
{
while( --i >= 0 )
{
bit = ( symbol >> i ) & 1;
price += price_bit( bm[model], bit );
model = ( model << 1 ) | bit;
}
break;
}
}
return price;
}
class Matchfinder_base
{
bool read_block();
void normalize_pos();
Matchfinder_base( const Matchfinder_base & ); // declared as private
void operator=( const Matchfinder_base & ); // declared as private
protected:
enum { after_size = max_match_len }; // bytes to keep in buffer after pos
long long partial_data_pos;
int32_t * const prev_positions; // last seen position of key
uint8_t * buffer; // input buffer
int32_t * pos_array; // may be tree or chain
const int num_prev_positions;
const int before_size; // bytes to keep in buffer before dictionary
const int match_len_limit_;
const int infd; // input file descriptor
int buffer_size;
int dictionary_size_; // bytes to keep in buffer before pos
int pos; // current pos in buffer
int cyclic_pos; // current pos in dictionary
int pos_limit; // when reached, a new block must be read
int stream_pos; // first byte not yet read from file
int pos_array_size;
bool at_stream_end; // stream_pos shows real end of file
Matchfinder_base( const int before, const int dict_size,
const int dict_factor, const int len_limit,
const int num_prev_pos, const int ifd,
const int pos_array_factor );
~Matchfinder_base()
{ delete[] pos_array; std::free( buffer ); delete[] prev_positions; }
public:
uint8_t operator[]( const int i ) const { return buffer[pos+i]; }
int available_bytes() const { return stream_pos - pos; }
long long data_position() const { return partial_data_pos + pos; }
int dictionary_size() const { return dictionary_size_; }
bool finished() const { return at_stream_end && pos >= stream_pos; }
int match_len_limit() const { return match_len_limit_; }
const uint8_t * ptr_to_current_pos() const { return buffer + pos; }
int true_match_len( const int index, const int distance, int len_limit ) const
{
if( index + len_limit > available_bytes() )
len_limit = available_bytes() - index;
const uint8_t * const data = buffer + pos + index;
int i = 0;
while( i < len_limit && data[i-distance] == data[i] ) ++i;
return i;
}
void reset();
void move_pos()
{
if( ++cyclic_pos >= dictionary_size_ ) cyclic_pos = 0;
if( ++pos >= pos_limit ) normalize_pos();
}
};
class Matchfinder : public Matchfinder_base
{
enum { before = max_num_trials + 1,
dict_factor = 2,
num_prev_positions4 = 1 << 20,
num_prev_positions3 = 1 << 18,
num_prev_positions2 = 1 << 16,
num_prev_pos = num_prev_positions4 + num_prev_positions3 +
num_prev_positions2,
pos_array_factor = 2 };
const int cycles;
public:
Matchfinder( const int dict_size, const int len_limit, const int ifd )
:
Matchfinder_base( before, dict_size, dict_factor, len_limit,
num_prev_pos, ifd, pos_array_factor ),
cycles( ( len_limit < max_match_len ) ? 16 + ( len_limit / 2 ) : 256 )
{}
bool dec_pos( const int ahead )
{
if( ahead < 0 || pos < ahead ) return false;
pos -= ahead;
cyclic_pos -= ahead;
if( cyclic_pos < 0 ) cyclic_pos += dictionary_size_;
return true;
}
int longest_match_len( int * const distances = 0 );
};
class Range_encoder
{
enum { buffer_size = 65536 };
uint64_t low;
long long partial_member_pos;
uint8_t * const buffer; // output buffer
int pos; // current pos in buffer
uint32_t range;
int ff_count;
const int outfd; // output file descriptor
uint8_t cache;
void shift_low()
{
const bool carry = ( low > 0xFFFFFFFFU );
if( carry || low < 0xFF000000U )
{
put_byte( cache + carry );
for( ; ff_count > 0; --ff_count ) put_byte( 0xFF + carry );
cache = low >> 24;
}
else ++ff_count;
low = ( low & 0x00FFFFFFU ) << 8;
}
Range_encoder( const Range_encoder & ); // declared as private
void operator=( const Range_encoder & ); // declared as private
public:
explicit Range_encoder( const int ofd )
:
low( 0 ),
partial_member_pos( 0 ),
buffer( new uint8_t[buffer_size] ),
pos( 0 ),
range( 0xFFFFFFFFU ),
ff_count( 0 ),
outfd( ofd ),
cache( 0 )
{}
~Range_encoder() { delete[] buffer; }
long long member_position() const
{ return partial_member_pos + pos + ff_count; }
void flush() { for( int i = 0; i < 5; ++i ) shift_low(); }
void flush_data();
void put_byte( const uint8_t b )
{
buffer[pos] = b;
if( ++pos >= buffer_size ) flush_data();
}
void encode( const int symbol, const int num_bits )
{
for( int i = num_bits - 1; i >= 0; --i )
{
range >>= 1;
if( (symbol >> i) & 1 ) low += range;
if( range <= 0x00FFFFFFU ) { range <<= 8; shift_low(); }
}
}
void encode_bit( Bit_model & bm, const int bit )
{
const uint32_t bound = ( range >> bit_model_total_bits ) * bm.probability;
if( !bit )
{
range = bound;
bm.probability += (bit_model_total - bm.probability) >> bit_model_move_bits;
}
else
{
low += bound;
range -= bound;
bm.probability -= bm.probability >> bit_model_move_bits;
}
if( range <= 0x00FFFFFFU ) { range <<= 8; shift_low(); }
}
void encode_tree( Bit_model bm[], const int symbol, const int num_bits )
{
int mask = ( 1 << ( num_bits - 1 ) );
int model = 1;
for( int i = num_bits; i > 0; --i, mask >>= 1 )
{
const int bit = ( symbol & mask );
encode_bit( bm[model], bit );
model <<= 1;
if( bit ) model |= 1;
}
}
void encode_tree_reversed( Bit_model bm[], int symbol, const int num_bits )
{
int model = 1;
for( int i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
encode_bit( bm[model], bit );
model = ( model << 1 ) | bit;
symbol >>= 1;
}
}
void encode_matched( Bit_model bm[], int symbol, int match_byte )
{
int model = 1;
for( int i = 7; i >= 0; --i )
{
const int match_bit = ( match_byte >> i ) & 1;
int bit = ( symbol >> i ) & 1;
encode_bit( bm[(match_bit<<8)+model+0x100], bit );
model = ( model << 1 ) | bit;
if( match_bit != bit )
{
while( --i >= 0 )
{
bit = ( symbol >> i ) & 1;
encode_bit( bm[model], bit );
model = ( model << 1 ) | bit;
}
break;
}
}
}
};
class Len_encoder
{
Bit_model choice1;
Bit_model choice2;
Bit_model bm_low[pos_states][len_low_symbols];
Bit_model bm_mid[pos_states][len_mid_symbols];
Bit_model bm_high[len_high_symbols];
int prices[pos_states][max_len_symbols];
const int len_symbols;
int counters[pos_states];
void update_prices( const int pos_state )
{
int * const pps = prices[pos_state];
int tmp = price0( choice1 );
int len = 0;
for( ; len < len_low_symbols && len < len_symbols; ++len )
pps[len] = tmp +
price_symbol( bm_low[pos_state], len, len_low_bits );
tmp = price1( choice1 );
for( ; len < len_low_symbols + len_mid_symbols && len < len_symbols; ++len )
pps[len] = tmp + price0( choice2 ) +
price_symbol( bm_mid[pos_state], len - len_low_symbols, len_mid_bits );
for( ; len < len_symbols; ++len )
// using 4 slots per value makes "price" faster
prices[3][len] = prices[2][len] = prices[1][len] = prices[0][len] =
tmp + price1( choice2 ) +
price_symbol( bm_high, len - len_low_symbols - len_mid_symbols, len_high_bits );
counters[pos_state] = len_symbols;
}
public:
explicit Len_encoder( const int len_limit )
: len_symbols( len_limit + 1 - min_match_len )
{
for( int i = 0; i < pos_states; ++i ) update_prices( i );
}
void encode( Range_encoder & range_encoder, int symbol,
const int pos_state );
int price( const int symbol, const int pos_state ) const
{ return prices[pos_state][symbol - min_match_len]; }
};
class Literal_encoder
{
Bit_model bm_literal[1<> ( 8 - literal_context_bits ) ); }
public:
void encode( Range_encoder & range_encoder,
uint8_t prev_byte, uint8_t symbol )
{ range_encoder.encode_tree( bm_literal[lstate(prev_byte)], symbol, 8 ); }
void encode_matched( Range_encoder & range_encoder,
uint8_t prev_byte, uint8_t symbol, uint8_t match_byte )
{ range_encoder.encode_matched( bm_literal[lstate(prev_byte)],
symbol, match_byte ); }
int price_symbol( uint8_t prev_byte, uint8_t symbol ) const
{ return ::price_symbol( bm_literal[lstate(prev_byte)], symbol, 8 ); }
int price_matched( uint8_t prev_byte, uint8_t symbol,
uint8_t match_byte ) const
{ return ::price_matched( bm_literal[lstate(prev_byte)],
symbol, match_byte ); }
};
class LZ_encoder_base
{
protected:
enum { max_marker_size = 16,
num_rep_distances = 4 }; // must be 4
uint32_t crc_;
Bit_model bm_match[State::states][pos_states];
Bit_model bm_rep[State::states];
Bit_model bm_rep0[State::states];
Bit_model bm_rep1[State::states];
Bit_model bm_rep2[State::states];
Bit_model bm_len[State::states][pos_states];
Bit_model bm_dis_slot[max_dis_states][1<= num_rep_distances )
{
for( int i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = dis - num_rep_distances;
}
else if( dis > 0 )
{
const int distance = reps[dis];
for( int i = dis; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = distance;
}
}
void encode_pair( const uint32_t dis, const int len, const int pos_state )
{
len_encoder.encode( range_encoder, len, pos_state );
const int dis_slot = dis_slots[dis];
range_encoder.encode_tree( bm_dis_slot[get_dis_state(len)], dis_slot, dis_slot_bits );
if( dis_slot >= start_dis_model )
{
const int direct_bits = ( dis_slot >> 1 ) - 1;
const uint32_t base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const uint32_t direct_dis = dis - base;
if( dis_slot < end_dis_model )
range_encoder.encode_tree_reversed( bm_dis + base - dis_slot,
direct_dis, direct_bits );
else
{
range_encoder.encode( direct_dis >> dis_align_bits, direct_bits - dis_align_bits );
range_encoder.encode_tree_reversed( bm_align, direct_dis, dis_align_bits );
}
}
}
void full_flush( const long long data_position, const State state );
public:
long long member_position() const { return range_encoder.member_position(); }
};
class LZ_encoder : public LZ_encoder_base
{
enum { infinite_price = 0x0FFFFFFF };
struct Trial
{
State state;
int dis;
int prev_index; // index of prev trial in trials[]
int price; // dual use var; cumulative price, match length
int reps[num_rep_distances];
void update( const int d, const int p_i, const int pr )
{ if( pr < price ) { dis = d; prev_index = p_i; price = pr; } }
};
Matchfinder & matchfinder;
int longest_match_found;
int match_distances[max_match_len+1];
Trial trials[max_num_trials];
int dis_slot_prices[max_dis_states][2*max_dictionary_bits];
int dis_prices[max_dis_states][modeled_distances];
int align_prices[dis_align_size];
int align_price_count;
void fill_align_prices();
void fill_distance_prices();
int price_rep_len1( const int pos_state, const State state ) const
{
return price0( bm_rep0[state()] ) + price0( bm_len[state()][pos_state] );
}
int price_rep( const int rep, const int pos_state, const State state ) const
{
if( rep == 0 ) return price0( bm_rep0[state()] ) +
price1( bm_len[state()][pos_state] );
int price = price1( bm_rep0[state()] );
if( rep == 1 )
price += price0( bm_rep1[state()] );
else
{
price += price1( bm_rep1[state()] );
price += price_bit( bm_rep2[state()], rep - 2 );
}
return price;
}
int price_dis( const int dis, const int dis_state ) const
{
if( dis < modeled_distances )
return dis_prices[dis_state][dis];
else
return dis_slot_prices[dis_state][dis_slots[dis]] +
align_prices[dis & (dis_align_size - 1)];
}
int price_pair( const int dis, const int len, const int pos_state ) const
{
if( len <= min_match_len && dis >= modeled_distances )
return infinite_price;
return len_encoder.price( len, pos_state ) +
price_dis( dis, get_dis_state( len ) );
}
int read_match_distances()
{
int len = matchfinder.longest_match_len( match_distances );
if( len == matchfinder.match_len_limit() && len < max_match_len )
len += matchfinder.true_match_len( len, match_distances[len] + 1,
max_match_len - len );
return len;
}
void move_pos( int n )
{
if( --n >= 0 ) matchfinder.move_pos();
while( --n >= 0 )
{
matchfinder.longest_match_len();
matchfinder.move_pos();
}
}
void backward( int cur )
{
int & dis = trials[cur].dis;
while( cur > 0 )
{
const int prev_index = trials[cur].prev_index;
Trial & prev_trial = trials[prev_index];
prev_trial.price = cur - prev_index; // len
cur = dis; dis = prev_trial.dis; prev_trial.dis = cur;
cur = prev_index;
}
}
int sequence_optimizer( const int reps[num_rep_distances],
const State state );
public:
LZ_encoder( Matchfinder & mf, const File_header & header, const int outfd )
:
LZ_encoder_base( header, mf.dictionary_size(), mf.match_len_limit(), outfd ),
matchfinder( mf ),
longest_match_found( 0 )
{ fill_align_prices(); }
bool encode_member( const long long member_size );
};