/* Lzip - LZMA lossless data compressor
Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
enum { max_num_trials = 1 << 12,
price_shift_bits = 6,
price_step_bits = 2,
price_step = 1 << price_step_bits };
class Dis_slots
{
uint8_t data[1<<10];
public:
void init()
{
for( int slot = 0; slot < 4; ++slot ) data[slot] = slot;
for( int i = 4, size = 2, slot = 4; slot < 20; slot += 2 )
{
std::memset( &data[i], slot, size );
std::memset( &data[i+size], slot + 1, size );
size <<= 1;
i += size;
}
}
uint8_t operator[]( const int dis ) const { return data[dis]; }
};
extern Dis_slots dis_slots;
static inline uint8_t get_slot( const uint32_t dis )
{
if( dis < (1 << 10) ) return dis_slots[dis];
if( dis < (1 << 19) ) return dis_slots[dis>> 9] + 18;
if( dis < (1 << 28) ) return dis_slots[dis>>18] + 36;
return dis_slots[dis>>27] + 54;
}
class Prob_prices
{
short data[bit_model_total >> price_step_bits];
public:
void init()
{
for( int i = price_step / 2; i < bit_model_total; i += price_step )
{
unsigned val = i;
int bits = 0; // base 2 logarithm of val
for( int j = 0; j < price_shift_bits; ++j )
{
val = val * val;
bits <<= 1;
while( val >= 1 << 16 ) { val >>= 1; ++bits; }
}
bits += 15; // remaining bits in val
data[i >> price_step_bits] =
( bit_model_total_bits << price_shift_bits ) - bits;
}
}
int operator[]( const int probability ) const
{ return data[probability >> price_step_bits]; }
};
extern Prob_prices prob_prices;
inline int price0( const Bit_model bm )
{ return prob_prices[bm.probability]; }
inline int price1( const Bit_model bm )
{ return prob_prices[bit_model_total - bm.probability]; }
inline int price_bit( const Bit_model bm, const int bit )
{ if( bit ) return price1( bm ); else return price0( bm ); }
inline int price_symbol( const Bit_model bm[], int symbol, const int num_bits )
{
int price = 0;
symbol |= ( 1 << num_bits );
while( symbol > 1 )
{
const int bit = symbol & 1;
symbol >>= 1;
price += price_bit( bm[symbol], bit );
}
return price;
}
inline int price_symbol_reversed( const Bit_model bm[], int symbol,
const int num_bits )
{
int price = 0;
int model = 1;
for( int i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
price += price_bit( bm[model], bit );
model = ( model << 1 ) | bit;
symbol >>= 1;
}
return price;
}
inline int price_matched( const Bit_model bm[], unsigned symbol,
unsigned match_byte )
{
int price = 0;
unsigned mask = 0x100;
symbol |= 0x100;
do {
match_byte <<= 1;
const unsigned match_bit = match_byte & mask;
symbol <<= 1;
const unsigned bit = symbol & 0x100;
price += price_bit( bm[match_bit+(symbol>>9)+mask], bit );
mask &= ~(match_byte ^ symbol); // if( match_bit != bit ) mask = 0;
}
while( symbol < 0x10000 );
return price;
}
class Matchfinder_base
{
bool read_block();
void normalize_pos();
Matchfinder_base( const Matchfinder_base & ); // declared as private
void operator=( const Matchfinder_base & ); // declared as private
protected:
unsigned long long partial_data_pos;
uint8_t * buffer; // input buffer
int32_t * prev_positions; // last seen position of key
int32_t * pos_array; // may be tree or chain
const int before_size; // bytes to keep in buffer before dictionary
const int match_len_limit_;
int buffer_size;
int dictionary_size_; // bytes to keep in buffer before pos
int pos; // current pos in buffer
int cyclic_pos; // cycles through [0, dictionary_size]
int pos_limit; // when reached, a new block must be read
int stream_pos; // first byte not yet read from file
unsigned key4_mask;
int num_prev_positions; // size of prev_positions
int pos_array_size;
const int infd; // input file descriptor
bool at_stream_end; // stream_pos shows real end of file
Matchfinder_base( const int before, const int dict_size,
const int after_size, const int dict_factor,
const int match_len_limit, const int num_prev_positions23,
const int pos_array_factor, const int ifd );
~Matchfinder_base()
{ delete[] prev_positions; std::free( buffer ); }
public:
uint8_t operator[]( const int i ) const { return buffer[pos+i]; }
int available_bytes() const { return stream_pos - pos; }
unsigned long long data_position() const { return partial_data_pos + pos; }
int dictionary_size() const { return dictionary_size_; }
bool finished() const { return at_stream_end && pos >= stream_pos; }
int match_len_limit() const { return match_len_limit_; }
const uint8_t * ptr_to_current_pos() const { return buffer + pos; }
int true_match_len( const int index, const int distance, int len_limit ) const
{
if( index + len_limit > available_bytes() )
len_limit = available_bytes() - index;
const uint8_t * const data = buffer + pos + index;
int i = 0;
while( i < len_limit && data[i-distance] == data[i] ) ++i;
return i;
}
void move_pos()
{
if( ++cyclic_pos > dictionary_size_ ) cyclic_pos = 0;
if( ++pos >= pos_limit ) normalize_pos();
}
void reset();
};
struct Pair /* distance-length pair */
{
int dis;
int len;
};
class Matchfinder : public Matchfinder_base
{
enum { before_size = max_num_trials + 1,
// bytes to keep in buffer after pos
after_size = ( 2 * max_match_len ) + 1,
dict_factor = 2,
num_prev_positions3 = 1 << 16,
num_prev_positions2 = 1 << 10,
num_prev_positions23 = num_prev_positions2 + num_prev_positions3,
pos_array_factor = 2 };
const int cycles;
public:
Matchfinder( const int dict_size, const int match_len_limit, const int ifd )
:
Matchfinder_base( before_size, dict_size, after_size, dict_factor,
match_len_limit, num_prev_positions23, pos_array_factor, ifd ),
cycles( ( match_len_limit < max_match_len ) ?
16 + ( match_len_limit / 2 ) : 256 )
{}
bool dec_pos( const int ahead )
{
if( ahead < 0 || pos < ahead ) return false;
pos -= ahead;
cyclic_pos -= ahead;
if( cyclic_pos < 0 ) cyclic_pos += dictionary_size_ + 1;
return true;
}
int get_match_pairs( struct Pair * pairs = 0 );
};
class Range_encoder
{
enum { buffer_size = 65536 };
uint64_t low;
unsigned long long partial_member_pos;
uint8_t * const buffer; // output buffer
int pos; // current pos in buffer
uint32_t range;
int ff_count;
const int outfd; // output file descriptor
uint8_t cache;
void shift_low()
{
const bool carry = ( low > 0xFFFFFFFFU );
if( carry || low < 0xFF000000U )
{
put_byte( cache + carry );
for( ; ff_count > 0; --ff_count ) put_byte( 0xFF + carry );
cache = low >> 24;
}
else ++ff_count;
low = ( low & 0x00FFFFFFU ) << 8;
}
Range_encoder( const Range_encoder & ); // declared as private
void operator=( const Range_encoder & ); // declared as private
public:
explicit Range_encoder( const int ofd )
:
low( 0 ),
partial_member_pos( 0 ),
buffer( new uint8_t[buffer_size] ),
pos( 0 ),
range( 0xFFFFFFFFU ),
ff_count( 0 ),
outfd( ofd ),
cache( 0 )
{}
~Range_encoder() { delete[] buffer; }
unsigned long long member_position() const
{ return partial_member_pos + pos + ff_count; }
void flush() { for( int i = 0; i < 5; ++i ) shift_low(); }
void flush_data();
void put_byte( const uint8_t b )
{
buffer[pos] = b;
if( ++pos >= buffer_size ) flush_data();
}
void encode( const int symbol, const int num_bits )
{
for( int i = num_bits - 1; i >= 0; --i )
{
range >>= 1;
if( (symbol >> i) & 1 ) low += range;
if( range <= 0x00FFFFFFU ) { range <<= 8; shift_low(); }
}
}
void encode_bit( Bit_model & bm, const int bit )
{
const uint32_t bound = ( range >> bit_model_total_bits ) * bm.probability;
if( !bit )
{
range = bound;
bm.probability += (bit_model_total - bm.probability) >> bit_model_move_bits;
}
else
{
low += bound;
range -= bound;
bm.probability -= bm.probability >> bit_model_move_bits;
}
if( range <= 0x00FFFFFFU ) { range <<= 8; shift_low(); }
}
void encode_tree( Bit_model bm[], const int symbol, const int num_bits )
{
int mask = ( 1 << ( num_bits - 1 ) );
int model = 1;
for( int i = num_bits; i > 0; --i, mask >>= 1 )
{
const int bit = ( symbol & mask );
encode_bit( bm[model], bit );
model <<= 1;
if( bit ) model |= 1;
}
}
void encode_tree_reversed( Bit_model bm[], int symbol, const int num_bits )
{
int model = 1;
for( int i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
encode_bit( bm[model], bit );
model = ( model << 1 ) | bit;
symbol >>= 1;
}
}
void encode_matched( Bit_model bm[], unsigned symbol, unsigned match_byte )
{
unsigned mask = 0x100;
symbol |= 0x100;
do {
match_byte <<= 1;
const unsigned match_bit = match_byte & mask;
symbol <<= 1;
const unsigned bit = symbol & 0x100;
encode_bit( bm[match_bit+(symbol>>9)+mask], bit );
mask &= ~(match_byte ^ symbol); // if( match_bit != bit ) mask = 0;
}
while( symbol < 0x10000 );
}
};
class Len_encoder : public Len_model
{
int prices[pos_states][max_len_symbols];
const int len_symbols;
int counters[pos_states];
void update_prices( const int pos_state )
{
int * const pps = prices[pos_state];
int tmp = price0( choice1 );
int len = 0;
for( ; len < len_low_symbols && len < len_symbols; ++len )
pps[len] = tmp +
price_symbol( bm_low[pos_state], len, len_low_bits );
tmp = price1( choice1 );
for( ; len < len_low_symbols + len_mid_symbols && len < len_symbols; ++len )
pps[len] = tmp + price0( choice2 ) +
price_symbol( bm_mid[pos_state], len - len_low_symbols, len_mid_bits );
for( ; len < len_symbols; ++len )
// using 4 slots per value makes "price" faster
prices[3][len] = prices[2][len] = prices[1][len] = prices[0][len] =
tmp + price1( choice2 ) +
price_symbol( bm_high, len - len_low_symbols - len_mid_symbols, len_high_bits );
counters[pos_state] = len_symbols;
}
public:
explicit Len_encoder( const int match_len_limit )
: len_symbols( match_len_limit + 1 - min_match_len )
{
for( int i = 0; i < pos_states; ++i ) update_prices( i );
}
void encode( Range_encoder & renc, int symbol, const int pos_state );
int price( const int symbol, const int pos_state ) const
{ return prices[pos_state][symbol - min_match_len]; }
};
class LZ_encoder_base
{
protected:
enum { max_marker_size = 16,
num_rep_distances = 4 }; // must be 4
uint32_t crc_;
Bit_model bm_literal[1<= num_rep_distances )
{
for( int i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = dis - num_rep_distances;
}
else if( dis > 0 )
{
const int distance = reps[dis];
for( int i = dis; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = distance;
}
}
int price_literal( const uint8_t prev_byte, const uint8_t symbol ) const
{ return price_symbol( bm_literal[get_lit_state(prev_byte)], symbol, 8 ); }
int price_matched( const uint8_t prev_byte, const uint8_t symbol,
const uint8_t match_byte ) const
{ return ::price_matched( bm_literal[get_lit_state(prev_byte)],
symbol, match_byte ); }
void encode_literal( const uint8_t prev_byte, const uint8_t symbol )
{ renc.encode_tree( bm_literal[get_lit_state(prev_byte)], symbol, 8 ); }
void encode_matched( const uint8_t prev_byte, const uint8_t symbol,
const uint8_t match_byte )
{ renc.encode_matched( bm_literal[get_lit_state(prev_byte)], symbol,
match_byte ); }
void encode_pair( const uint32_t dis, const int len, const int pos_state )
{
match_len_encoder.encode( renc, len, pos_state );
const int dis_slot = get_slot( dis );
renc.encode_tree( bm_dis_slot[get_dis_state(len)], dis_slot, dis_slot_bits );
if( dis_slot >= start_dis_model )
{
const int direct_bits = ( dis_slot >> 1 ) - 1;
const uint32_t base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const uint32_t direct_dis = dis - base;
if( dis_slot < end_dis_model )
renc.encode_tree_reversed( bm_dis + base - dis_slot - 1, direct_dis,
direct_bits );
else
{
renc.encode( direct_dis >> dis_align_bits, direct_bits - dis_align_bits );
renc.encode_tree_reversed( bm_align, direct_dis, dis_align_bits );
}
}
}
void full_flush( const unsigned long long data_position, const State state );
public:
unsigned long long member_position() const { return renc.member_position(); }
};
class LZ_encoder : public LZ_encoder_base
{
enum { infinite_price = 0x0FFFFFFF,
single_step_trial = -2,
dual_step_trial = -1 };
struct Trial
{
State state;
int price; // dual use var; cumulative price, match length
int dis; // rep index or match distance
int prev_index; // index of prev trial in trials[]
int dis2;
int prev_index2; // -2 trial is single step
// -1 literal + rep0
// >= 0 rep or match + literal + rep0
int reps[num_rep_distances];
void update( const int pr, const int d, const int p_i )
{
if( pr < price )
{ price = pr; dis = d; prev_index = p_i;
prev_index2 = single_step_trial; }
}
void update2( const int pr, const int d, const int p_i )
{
if( pr < price )
{ price = pr; dis = d; prev_index = p_i;
prev_index2 = dual_step_trial; }
}
void update3( const int pr, const int d, const int p_i,
const int d2, const int p_i2 )
{
if( pr < price )
{ price = pr; dis = d; prev_index = p_i;
dis2 = d2; prev_index2 = p_i2; }
}
};
Matchfinder & matchfinder;
int pending_num_pairs;
struct Pair pairs[max_match_len+1];
Trial trials[max_num_trials];
int dis_slot_prices[max_dis_states][2*max_dictionary_bits];
int dis_prices[max_dis_states][modeled_distances];
int align_prices[dis_align_size];
int align_price_count;
void fill_align_prices();
void fill_distance_prices();
int price_rep_len1( const State state, const int pos_state ) const
{
return price0( bm_rep0[state()] ) + price0( bm_len[state()][pos_state] );
}
int price_rep( const int rep, const State state, const int pos_state ) const
{
if( rep == 0 ) return price0( bm_rep0[state()] ) +
price1( bm_len[state()][pos_state] );
int price = price1( bm_rep0[state()] );
if( rep == 1 )
price += price0( bm_rep1[state()] );
else
{
price += price1( bm_rep1[state()] );
price += price_bit( bm_rep2[state()], rep - 2 );
}
return price;
}
int price_rep0_len( const int len, const State state, const int pos_state ) const
{
return price_rep( 0, state, pos_state ) +
rep_len_encoder.price( len, pos_state );
}
int price_dis( const int dis, const int dis_state ) const
{
if( dis < modeled_distances )
return dis_prices[dis_state][dis];
else
return dis_slot_prices[dis_state][get_slot( dis )] +
align_prices[dis & (dis_align_size - 1)];
}
int price_pair( const int dis, const int len, const int pos_state ) const
{
return match_len_encoder.price( len, pos_state ) +
price_dis( dis, get_dis_state( len ) );
}
int read_match_distances()
{
const int num_pairs = matchfinder.get_match_pairs( pairs );
if( num_pairs > 0 )
{
int len = pairs[num_pairs-1].len;
if( len == matchfinder.match_len_limit() && len < max_match_len )
{
len += matchfinder.true_match_len( len, pairs[num_pairs-1].dis + 1,
max_match_len - len );
pairs[num_pairs-1].len = len;
}
}
return num_pairs;
}
void move_pos( int n )
{
if( --n >= 0 ) matchfinder.move_pos();
while( --n >= 0 )
{
matchfinder.get_match_pairs();
matchfinder.move_pos();
}
}
void backward( int cur )
{
int & dis = trials[cur].dis;
while( cur > 0 )
{
const int prev_index = trials[cur].prev_index;
Trial & prev_trial = trials[prev_index];
if( trials[cur].prev_index2 != single_step_trial )
{
prev_trial.dis = -1;
prev_trial.prev_index = prev_index - 1;
prev_trial.prev_index2 = single_step_trial;
if( trials[cur].prev_index2 >= 0 )
{
Trial & prev_trial2 = trials[prev_index-1];
prev_trial2.dis = trials[cur].dis2;
prev_trial2.prev_index = trials[cur].prev_index2;
prev_trial2.prev_index2 = single_step_trial;
}
}
prev_trial.price = cur - prev_index; // len
cur = dis; dis = prev_trial.dis; prev_trial.dis = cur;
cur = prev_index;
}
}
int sequence_optimizer( const int reps[num_rep_distances],
const State state );
public:
LZ_encoder( Matchfinder & mf, const File_header & header, const int outfd )
:
LZ_encoder_base( header, mf.dictionary_size(), mf.match_len_limit(), outfd ),
matchfinder( mf ),
pending_num_pairs( 0 ),
align_price_count( 0 )
{}
bool encode_member( const unsigned long long member_size );
};