/* Lzip - LZMA lossless data compressor Copyright (C) 2008-2014 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ enum { max_num_trials = 1 << 13, price_shift_bits = 6, price_step_bits = 2, price_step = 1 << price_step_bits }; class Dis_slots { uint8_t data[1<<10]; public: void init() { for( int slot = 0; slot < 4; ++slot ) data[slot] = slot; for( int i = 4, size = 2, slot = 4; slot < 20; slot += 2 ) { std::memset( &data[i], slot, size ); std::memset( &data[i+size], slot + 1, size ); size <<= 1; i += size; } } uint8_t operator[]( const int dis ) const { return data[dis]; } }; extern Dis_slots dis_slots; inline uint8_t get_slot( const unsigned dis ) { if( dis < (1 << 10) ) return dis_slots[dis]; if( dis < (1 << 19) ) return dis_slots[dis>> 9] + 18; if( dis < (1 << 28) ) return dis_slots[dis>>18] + 36; return dis_slots[dis>>27] + 54; } class Prob_prices { short data[bit_model_total >> price_step_bits]; public: void init() { for( int i = 0; i < bit_model_total >> price_step_bits; ++i ) { unsigned val = ( i * price_step ) + ( price_step / 2 ); int bits = 0; // base 2 logarithm of val for( int j = 0; j < price_shift_bits; ++j ) { val = val * val; bits <<= 1; while( val >= 1 << 16 ) { val >>= 1; ++bits; } } bits += 15; // remaining bits in val data[i] = ( bit_model_total_bits << price_shift_bits ) - bits; } } int operator[]( const int probability ) const { return data[probability >> price_step_bits]; } }; extern Prob_prices prob_prices; inline int price0( const Bit_model bm ) { return prob_prices[bm.probability]; } inline int price1( const Bit_model bm ) { return prob_prices[bit_model_total - bm.probability]; } inline int price_bit( const Bit_model bm, const int bit ) { if( bit ) return price1( bm ); else return price0( bm ); } inline int price_symbol3( const Bit_model bm[], int symbol ) { int bit = symbol & 1; symbol |= 8; symbol >>= 1; int price = price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); return price + price_bit( bm[1], symbol & 1 ); } inline int price_symbol6( const Bit_model bm[], int symbol ) { int bit = symbol & 1; symbol |= 64; symbol >>= 1; int price = price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); return price + price_bit( bm[1], symbol & 1 ); } inline int price_symbol8( const Bit_model bm[], int symbol ) { int bit = symbol & 1; symbol |= 0x100; symbol >>= 1; int price = price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); return price + price_bit( bm[1], symbol & 1 ); } inline int price_symbol_reversed( const Bit_model bm[], int symbol, const int num_bits ) { int price = 0; int model = 1; for( int i = num_bits; i > 0; --i ) { const int bit = symbol & 1; price += price_bit( bm[model], bit ); model = ( model << 1 ) | bit; symbol >>= 1; } return price; } inline int price_matched( const Bit_model bm[], int symbol, int match_byte ) { int price = 0; int mask = 0x100; symbol |= mask; do { match_byte <<= 1; const int match_bit = match_byte & mask; symbol <<= 1; const int bit = symbol & 0x100; price += price_bit( bm[match_bit+(symbol>>9)+mask], bit ); mask &= ~(match_byte ^ symbol); // if( match_bit != bit ) mask = 0; } while( symbol < 0x10000 ); return price; } class Matchfinder_base { bool read_block(); void normalize_pos(); Matchfinder_base( const Matchfinder_base & ); // declared as private void operator=( const Matchfinder_base & ); // declared as private protected: unsigned long long partial_data_pos; uint8_t * buffer; // input buffer int32_t * prev_positions; // 1 + last seen position of key. else 0 int32_t * pos_array; // may be tree or chain const int before_size; // bytes to keep in buffer before dictionary int buffer_size; int dictionary_size_; // bytes to keep in buffer before pos int pos; // current pos in buffer int cyclic_pos; // cycles through [0, dictionary_size] int stream_pos; // first byte not yet read from file int pos_limit; // when reached, a new block must be read int key4_mask; int num_prev_positions; // size of prev_positions int pos_array_size; const int infd; // input file descriptor bool at_stream_end; // stream_pos shows real end of file Matchfinder_base( const int before, const int dict_size, const int after_size, const int dict_factor, const int num_prev_positions23, const int pos_array_factor, const int ifd ); ~Matchfinder_base() { delete[] prev_positions; std::free( buffer ); } public: uint8_t operator[]( const int distance ) const { return buffer[pos-distance]; } int available_bytes() const { return stream_pos - pos; } unsigned long long data_position() const { return partial_data_pos + pos; } int dictionary_size() const { return dictionary_size_; } bool finished() const { return at_stream_end && pos >= stream_pos; } const uint8_t * ptr_to_current_pos() const { return buffer + pos; } int true_match_len( const int index, const int distance, int len_limit ) const { if( index + len_limit > available_bytes() ) len_limit = available_bytes() - index; const uint8_t * const data = buffer + pos + index; int i = 0; while( i < len_limit && data[i-distance] == data[i] ) ++i; return i; } void move_pos() { if( ++cyclic_pos > dictionary_size_ ) cyclic_pos = 0; if( ++pos >= pos_limit ) normalize_pos(); } void reset(); }; struct Pair /* distance-length pair */ { int dis; int len; }; class Matchfinder : public Matchfinder_base { enum { before_size = max_num_trials + 1, // bytes to keep in buffer after pos after_size = ( 2 * max_match_len ) + 1, dict_factor = 2, num_prev_positions3 = 1 << 16, num_prev_positions2 = 1 << 10, num_prev_positions23 = num_prev_positions2 + num_prev_positions3, pos_array_factor = 2 }; const int cycles; const int match_len_limit_; public: Matchfinder( const int dict_size, const int len_limit, const int ifd ) : Matchfinder_base( before_size, dict_size, after_size, dict_factor, num_prev_positions23, pos_array_factor, ifd ), cycles( ( len_limit < max_match_len ) ? 16 + ( len_limit / 2 ) : 256 ), match_len_limit_( len_limit ) {} bool dec_pos( const int ahead ) { if( ahead < 0 || pos < ahead ) return false; pos -= ahead; cyclic_pos -= ahead; if( cyclic_pos < 0 ) cyclic_pos += dictionary_size_ + 1; return true; } int match_len_limit() const { return match_len_limit_; } int get_match_pairs( Pair * pairs = 0 ); }; class Range_encoder { enum { buffer_size = 65536 }; uint64_t low; unsigned long long partial_member_pos; uint8_t * const buffer; // output buffer int pos; // current pos in buffer uint32_t range; unsigned ff_count; const int outfd; // output file descriptor uint8_t cache; void shift_low() { const bool carry = ( low > 0xFFFFFFFFU ); if( carry || low < 0xFF000000U ) { put_byte( cache + carry ); for( ; ff_count > 0; --ff_count ) put_byte( 0xFF + carry ); cache = low >> 24; } else ++ff_count; low = ( low & 0x00FFFFFFU ) << 8; } Range_encoder( const Range_encoder & ); // declared as private void operator=( const Range_encoder & ); // declared as private public: explicit Range_encoder( const int ofd ) : low( 0 ), partial_member_pos( 0 ), buffer( new uint8_t[buffer_size] ), pos( 0 ), range( 0xFFFFFFFFU ), ff_count( 0 ), outfd( ofd ), cache( 0 ) {} ~Range_encoder() { delete[] buffer; } unsigned long long member_position() const { return partial_member_pos + pos + ff_count; } void flush() { for( int i = 0; i < 5; ++i ) shift_low(); } void flush_data(); void put_byte( const uint8_t b ) { buffer[pos] = b; if( ++pos >= buffer_size ) flush_data(); } void encode( const int symbol, const int num_bits ) { for( int i = num_bits - 1; i >= 0; --i ) { range >>= 1; if( (symbol >> i) & 1 ) low += range; if( range <= 0x00FFFFFFU ) { range <<= 8; shift_low(); } } } void encode_bit( Bit_model & bm, const int bit ) { const uint32_t bound = ( range >> bit_model_total_bits ) * bm.probability; if( !bit ) { range = bound; bm.probability += (bit_model_total - bm.probability) >> bit_model_move_bits; } else { low += bound; range -= bound; bm.probability -= bm.probability >> bit_model_move_bits; } if( range <= 0x00FFFFFFU ) { range <<= 8; shift_low(); } } void encode_tree3( Bit_model bm[], const int symbol ) { int model = 1; int bit = ( symbol >> 2 ) & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; bit = ( symbol >> 1 ) & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; encode_bit( bm[model], symbol & 1 ); } void encode_tree6( Bit_model bm[], const int symbol ) { int model = 1; int bit = ( symbol >> 5 ) & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; bit = ( symbol >> 4 ) & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; bit = ( symbol >> 3 ) & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; bit = ( symbol >> 2 ) & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; bit = ( symbol >> 1 ) & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; encode_bit( bm[model], symbol & 1 ); } void encode_tree8( Bit_model bm[], const int symbol ) { int model = 1; int mask = ( 1 << 7 ); do { const int bit = ( symbol & mask ); encode_bit( bm[model], bit ); model <<= 1; if( bit ) ++model; } while( mask >>= 1 ); } void encode_tree_reversed( Bit_model bm[], int symbol, const int num_bits ) { int model = 1; for( int i = num_bits; i > 0; --i ) { const int bit = symbol & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; symbol >>= 1; } } void encode_matched( Bit_model bm[], int symbol, int match_byte ) { int mask = 0x100; symbol |= mask; do { match_byte <<= 1; const int match_bit = match_byte & mask; symbol <<= 1; const int bit = symbol & 0x100; encode_bit( bm[match_bit+(symbol>>9)+mask], bit ); mask &= ~(match_byte ^ symbol); // if( match_bit != bit ) mask = 0; } while( symbol < 0x10000 ); } void encode_len( Len_model & lm, int symbol, const int pos_state ) { symbol -= min_match_len; bool bit = ( symbol >= len_low_symbols ); encode_bit( lm.choice1, bit ); if( !bit ) encode_tree3( lm.bm_low[pos_state], symbol ); else { bit = ( symbol >= len_low_symbols + len_mid_symbols ); encode_bit( lm.choice2, bit ); if( !bit ) encode_tree3( lm.bm_mid[pos_state], symbol - len_low_symbols ); else encode_tree8( lm.bm_high, symbol - len_low_symbols - len_mid_symbols ); } } }; class Len_prices { const Len_model & lm; const int len_symbols; const int count; int prices[pos_states][max_len_symbols]; int counters[pos_states]; void update_low_mid_prices( const int pos_state ) { counters[pos_state] = count; int * const pps = prices[pos_state]; int tmp = price0( lm.choice1 ); int len = 0; for( ; len < len_low_symbols && len < len_symbols; ++len ) pps[len] = tmp + price_symbol3( lm.bm_low[pos_state], len ); if( len >= len_symbols ) return; tmp = price1( lm.choice1 ) + price0( lm.choice2 ); for( ; len < len_low_symbols + len_mid_symbols && len < len_symbols; ++len ) pps[len] = tmp + price_symbol3( lm.bm_mid[pos_state], len - len_low_symbols ); } void update_high_prices() { const int tmp = price1( lm.choice1 ) + price1( lm.choice2 ); for( int len = len_low_symbols + len_mid_symbols; len < len_symbols; ++len ) // using 4 slots per value makes "price" faster prices[3][len] = prices[2][len] = prices[1][len] = prices[0][len] = tmp + price_symbol8( lm.bm_high, len - len_low_symbols - len_mid_symbols ); } public: Len_prices( const Len_model & m, const int match_len_limit ) : lm( m ), len_symbols( match_len_limit + 1 - min_match_len ), count( ( match_len_limit > 12 ) ? 1 : len_symbols ) { for( int i = 0; i < pos_states; ++i ) counters[i] = 0; } void decrement_counter( const int pos_state ) { --counters[pos_state]; } void update_prices() { bool high_pending = false; for( int pos_state = 0; pos_state < pos_states; ++pos_state ) if( counters[pos_state] <= 0 ) { update_low_mid_prices( pos_state ); high_pending = true; } if( high_pending && len_symbols > len_low_symbols + len_mid_symbols ) update_high_prices(); } int price( const int symbol, const int pos_state ) const { return prices[pos_state][symbol - min_match_len]; } }; class LZ_encoder_base { protected: enum { max_marker_size = 16, num_rep_distances = 4 }; // must be 4 uint32_t crc_; Bit_model bm_literal[1<= start_dis_model ) { const int direct_bits = ( dis_slot >> 1 ) - 1; const unsigned base = ( 2 | ( dis_slot & 1 ) ) << direct_bits; const unsigned direct_dis = dis - base; if( dis_slot < end_dis_model ) renc.encode_tree_reversed( bm_dis + base - dis_slot - 1, direct_dis, direct_bits ); else { renc.encode( direct_dis >> dis_align_bits, direct_bits - dis_align_bits ); renc.encode_tree_reversed( bm_align, direct_dis, dis_align_bits ); } } } void full_flush( const unsigned long long data_position, const State state ); public: unsigned long long member_position() const { return renc.member_position(); } }; class LZ_encoder : public LZ_encoder_base { enum { infinite_price = 0x0FFFFFFF, single_step_trial = -2, dual_step_trial = -1 }; struct Trial { State state; int price; // dual use var; cumulative price, match length int dis; // rep index or match distance. (-1 for literal) int prev_index; // index of prev trial in trials[] int prev_index2; // -2 trial is single step // -1 literal + rep0 // >= 0 ( rep or match ) + literal + rep0 int reps[num_rep_distances]; void update( const int pr, const int distance, const int p_i ) { if( pr < price ) { price = pr; dis = distance; prev_index = p_i; prev_index2 = single_step_trial; } } void update2( const int pr, const int p_i ) { if( pr < price ) { price = pr; dis = 0; prev_index = p_i; prev_index2 = dual_step_trial; } } void update3( const int pr, const int distance, const int p_i, const int p_i2 ) { if( pr < price ) { price = pr; dis = distance; prev_index = p_i; prev_index2 = p_i2; } } }; Matchfinder & matchfinder; Len_prices match_len_prices; Len_prices rep_len_prices; int pending_num_pairs; Pair pairs[max_match_len+1]; Trial trials[max_num_trials]; int dis_slot_prices[len_states][2*max_dictionary_bits]; int dis_prices[len_states][modeled_distances]; int align_prices[dis_align_size]; const int num_dis_slots; void update_distance_prices(); // move-to-front dis in/into reps if( dis > 0 ) static void mtf_reps( const int dis, int reps[num_rep_distances] ) { if( dis >= num_rep_distances ) { for( int i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1]; reps[0] = dis - num_rep_distances; } else if( dis > 0 ) { const int distance = reps[dis]; for( int i = dis; i > 0; --i ) reps[i] = reps[i-1]; reps[0] = distance; } } int price_shortrep( const State state, const int pos_state ) const { return price0( bm_rep0[state()] ) + price0( bm_len[state()][pos_state] ); } int price_rep( const int rep, const State state, const int pos_state ) const { if( rep == 0 ) return price0( bm_rep0[state()] ) + price1( bm_len[state()][pos_state] ); int price = price1( bm_rep0[state()] ); if( rep == 1 ) price += price0( bm_rep1[state()] ); else { price += price1( bm_rep1[state()] ); price += price_bit( bm_rep2[state()], rep - 2 ); } return price; } int price_rep0_len( const int len, const State state, const int pos_state ) const { return price_rep( 0, state, pos_state ) + rep_len_prices.price( len, pos_state ); } int price_pair( const int dis, const int len, const int pos_state ) const { const int price = match_len_prices.price( len, pos_state ); const int len_state = get_len_state( len ); if( dis < modeled_distances ) return price + dis_prices[len_state][dis]; else return price + dis_slot_prices[len_state][get_slot( dis )] + align_prices[dis & (dis_align_size - 1)]; } int read_match_distances() { const int num_pairs = matchfinder.get_match_pairs( pairs ); if( num_pairs > 0 ) { int len = pairs[num_pairs-1].len; if( len == matchfinder.match_len_limit() && len < max_match_len ) { len += matchfinder.true_match_len( len, pairs[num_pairs-1].dis + 1, max_match_len - len ); pairs[num_pairs-1].len = len; } } return num_pairs; } void move_pos( int n ) { while( true ) { matchfinder.move_pos(); if( --n <= 0 ) break; matchfinder.get_match_pairs(); } } void backward( int cur ) { int & dis = trials[cur].dis; while( cur > 0 ) { const int prev_index = trials[cur].prev_index; Trial & prev_trial = trials[prev_index]; if( trials[cur].prev_index2 != single_step_trial ) { prev_trial.dis = -1; prev_trial.prev_index = prev_index - 1; prev_trial.prev_index2 = single_step_trial; if( trials[cur].prev_index2 >= 0 ) { Trial & prev_trial2 = trials[prev_index-1]; prev_trial2.dis = dis; dis = 0; prev_trial2.prev_index = trials[cur].prev_index2; prev_trial2.prev_index2 = single_step_trial; } } prev_trial.price = cur - prev_index; // len cur = dis; dis = prev_trial.dis; prev_trial.dis = cur; cur = prev_index; } } int sequence_optimizer( const int reps[num_rep_distances], const State state ); public: LZ_encoder( Matchfinder & mf, const File_header & header, const int outfd ) : LZ_encoder_base( header, outfd ), matchfinder( mf ), match_len_prices( match_len_model, mf.match_len_limit() ), rep_len_prices( rep_len_model, mf.match_len_limit() ), pending_num_pairs( 0 ), num_dis_slots( 2 * real_bits( mf.dictionary_size() - 1 ) ) {} bool encode_member( const unsigned long long member_size ); };