/* Lzip - Data compressor based on the LZMA algorithm Copyright (C) 2008, 2009, 2010, 2011, 2012 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ enum { max_num_trials = 1 << 12, price_shift = 6 }; class Dis_slots { unsigned char data[1<<12]; public: void init() { for( int slot = 0; slot < 4; ++slot ) data[slot] = slot; for( int i = 4, size = 2, slot = 4; slot < 24; slot += 2 ) { std::memset( &data[i], slot, size ); std::memset( &data[i+size], slot + 1, size ); size <<= 1; i += size; } } unsigned char table( const int dis ) const { return data[dis]; } int operator[]( const uint32_t dis ) const { if( dis < (1 << 12) ) return data[dis]; if( dis < (1 << 23) ) return data[dis>>11] + 22; return data[dis>>22] + 44; } }; extern Dis_slots dis_slots; class Prob_prices { int data[bit_model_total >> 2]; public: void init() { const int num_bits = ( bit_model_total_bits - 2 ); int j = 1, end = 2; data[0] = bit_model_total_bits << price_shift; for( int i = num_bits - 1; i >= 0; --i, end <<= 1 ) { for( ; j < end; ++j ) data[j] = ( i << price_shift ) + ( ( (end - j) << price_shift ) >> ( num_bits - i - 1 ) ); } } int operator[]( const int probability ) const { return data[probability >> 2]; } }; extern Prob_prices prob_prices; inline int price0( const Bit_model & bm ) { return prob_prices[bm.probability]; } inline int price1( const Bit_model & bm ) { return prob_prices[bit_model_total-bm.probability]; } inline int price_bit( const Bit_model & bm, const int bit ) { if( bit ) return price1( bm ); else return price0( bm ); } inline int price_symbol( const Bit_model bm[], int symbol, const int num_bits ) { int price = 0; symbol |= ( 1 << num_bits ); while( symbol > 1 ) { const int bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); } return price; } inline int price_symbol_reversed( const Bit_model bm[], int symbol, const int num_bits ) { int price = 0; int model = 1; for( int i = num_bits; i > 0; --i ) { const int bit = symbol & 1; symbol >>= 1; price += price_bit( bm[model], bit ); model = ( model << 1 ) | bit; } return price; } inline int price_matched( const Bit_model bm[], const int symbol, const int match_byte ) { int price = 0; int model = 1; for( int i = 7; i >= 0; --i ) { const int match_bit = ( match_byte >> i ) & 1; int bit = ( symbol >> i ) & 1; price += price_bit( bm[(match_bit<<8)+model+0x100], bit ); model = ( model << 1 ) | bit; if( match_bit != bit ) { while( --i >= 0 ) { bit = ( symbol >> i ) & 1; price += price_bit( bm[model], bit ); model = ( model << 1 ) | bit; } break; } } return price; } class Matchfinder_base { bool read_block(); void normalize_pos(); Matchfinder_base( const Matchfinder_base & ); // declared as private void operator=( const Matchfinder_base & ); // declared as private protected: enum { after_size = max_match_len }; // bytes to keep in buffer after pos long long partial_data_pos; int32_t * const prev_positions; // last seen position of key uint8_t * buffer; // input buffer int32_t * pos_array; // may be tree or chain const int num_prev_positions; const int before_size; // bytes to keep in buffer before dictionary const int match_len_limit_; const int infd; // input file descriptor int buffer_size; int dictionary_size_; // bytes to keep in buffer before pos int pos; // current pos in buffer int cyclic_pos; // current pos in dictionary int pos_limit; // when reached, a new block must be read int stream_pos; // first byte not yet read from file int pos_array_size; bool at_stream_end; // stream_pos shows real end of file Matchfinder_base( const int before, const int dict_size, const int dict_factor, const int len_limit, const int num_prev_pos, const int ifd, const int pos_array_factor ); ~Matchfinder_base() { delete[] pos_array; std::free( buffer ); delete[] prev_positions; } public: uint8_t operator[]( const int i ) const { return buffer[pos+i]; } int available_bytes() const { return stream_pos - pos; } long long data_position() const { return partial_data_pos + pos; } int dictionary_size() const { return dictionary_size_; } bool finished() const { return at_stream_end && pos >= stream_pos; } int match_len_limit() const { return match_len_limit_; } const uint8_t * ptr_to_current_pos() const { return buffer + pos; } int true_match_len( const int index, const int distance, int len_limit ) const { if( index + len_limit > available_bytes() ) len_limit = available_bytes() - index; const uint8_t * const data = buffer + pos + index; int i = 0; while( i < len_limit && data[i-distance] == data[i] ) ++i; return i; } void reset(); void move_pos() { if( ++cyclic_pos >= dictionary_size_ ) cyclic_pos = 0; if( ++pos >= pos_limit ) normalize_pos(); } }; class Matchfinder : public Matchfinder_base { enum { before = max_num_trials + 1, dict_factor = 2, num_prev_positions4 = 1 << 20, num_prev_positions3 = 1 << 18, num_prev_positions2 = 1 << 16, num_prev_pos = num_prev_positions4 + num_prev_positions3 + num_prev_positions2, pos_array_factor = 2 }; const int cycles; public: Matchfinder( const int dict_size, const int len_limit, const int ifd ) : Matchfinder_base( before, dict_size, dict_factor, len_limit, num_prev_pos, ifd, pos_array_factor ), cycles( ( len_limit < max_match_len ) ? 16 + ( len_limit / 2 ) : 256 ) {} bool dec_pos( const int ahead ) { if( ahead < 0 || pos < ahead ) return false; pos -= ahead; cyclic_pos -= ahead; if( cyclic_pos < 0 ) cyclic_pos += dictionary_size_; return true; } int longest_match_len( int * const distances = 0 ); }; class Range_encoder { enum { buffer_size = 65536 }; uint64_t low; long long partial_member_pos; uint8_t * const buffer; // output buffer int pos; // current pos in buffer uint32_t range; int ff_count; const int outfd; // output file descriptor uint8_t cache; void shift_low() { const bool carry = ( low > 0xFFFFFFFFU ); if( carry || low < 0xFF000000U ) { put_byte( cache + carry ); for( ; ff_count > 0; --ff_count ) put_byte( 0xFF + carry ); cache = low >> 24; } else ++ff_count; low = ( low & 0x00FFFFFFU ) << 8; } Range_encoder( const Range_encoder & ); // declared as private void operator=( const Range_encoder & ); // declared as private public: explicit Range_encoder( const int ofd ) : low( 0 ), partial_member_pos( 0 ), buffer( new uint8_t[buffer_size] ), pos( 0 ), range( 0xFFFFFFFFU ), ff_count( 0 ), outfd( ofd ), cache( 0 ) {} ~Range_encoder() { delete[] buffer; } long long member_position() const { return partial_member_pos + pos + ff_count; } void flush() { for( int i = 0; i < 5; ++i ) shift_low(); } void flush_data(); void put_byte( const uint8_t b ) { buffer[pos] = b; if( ++pos >= buffer_size ) flush_data(); } void encode( const int symbol, const int num_bits ) { for( int i = num_bits - 1; i >= 0; --i ) { range >>= 1; if( (symbol >> i) & 1 ) low += range; if( range <= 0x00FFFFFFU ) { range <<= 8; shift_low(); } } } void encode_bit( Bit_model & bm, const int bit ) { const uint32_t bound = ( range >> bit_model_total_bits ) * bm.probability; if( !bit ) { range = bound; bm.probability += (bit_model_total - bm.probability) >> bit_model_move_bits; } else { low += bound; range -= bound; bm.probability -= bm.probability >> bit_model_move_bits; } if( range <= 0x00FFFFFFU ) { range <<= 8; shift_low(); } } void encode_tree( Bit_model bm[], const int symbol, const int num_bits ) { int mask = ( 1 << ( num_bits - 1 ) ); int model = 1; for( int i = num_bits; i > 0; --i, mask >>= 1 ) { const int bit = ( symbol & mask ); encode_bit( bm[model], bit ); model <<= 1; if( bit ) model |= 1; } } void encode_tree_reversed( Bit_model bm[], int symbol, const int num_bits ) { int model = 1; for( int i = num_bits; i > 0; --i ) { const int bit = symbol & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; symbol >>= 1; } } void encode_matched( Bit_model bm[], int symbol, int match_byte ) { int model = 1; for( int i = 7; i >= 0; --i ) { const int match_bit = ( match_byte >> i ) & 1; int bit = ( symbol >> i ) & 1; encode_bit( bm[(match_bit<<8)+model+0x100], bit ); model = ( model << 1 ) | bit; if( match_bit != bit ) { while( --i >= 0 ) { bit = ( symbol >> i ) & 1; encode_bit( bm[model], bit ); model = ( model << 1 ) | bit; } break; } } } }; class Len_encoder { Bit_model choice1; Bit_model choice2; Bit_model bm_low[pos_states][len_low_symbols]; Bit_model bm_mid[pos_states][len_mid_symbols]; Bit_model bm_high[len_high_symbols]; int prices[pos_states][max_len_symbols]; const int len_symbols; int counters[pos_states]; void update_prices( const int pos_state ) { int * const pps = prices[pos_state]; int tmp = price0( choice1 ); int len = 0; for( ; len < len_low_symbols && len < len_symbols; ++len ) pps[len] = tmp + price_symbol( bm_low[pos_state], len, len_low_bits ); tmp = price1( choice1 ); for( ; len < len_low_symbols + len_mid_symbols && len < len_symbols; ++len ) pps[len] = tmp + price0( choice2 ) + price_symbol( bm_mid[pos_state], len - len_low_symbols, len_mid_bits ); for( ; len < len_symbols; ++len ) // using 4 slots per value makes "price" faster prices[3][len] = prices[2][len] = prices[1][len] = prices[0][len] = tmp + price1( choice2 ) + price_symbol( bm_high, len - len_low_symbols - len_mid_symbols, len_high_bits ); counters[pos_state] = len_symbols; } public: explicit Len_encoder( const int len_limit ) : len_symbols( len_limit + 1 - min_match_len ) { for( int i = 0; i < pos_states; ++i ) update_prices( i ); } void encode( Range_encoder & range_encoder, int symbol, const int pos_state ); int price( const int symbol, const int pos_state ) const { return prices[pos_state][symbol - min_match_len]; } }; class Literal_encoder { Bit_model bm_literal[1<> ( 8 - literal_context_bits ) ); } public: void encode( Range_encoder & range_encoder, uint8_t prev_byte, uint8_t symbol ) { range_encoder.encode_tree( bm_literal[lstate(prev_byte)], symbol, 8 ); } void encode_matched( Range_encoder & range_encoder, uint8_t prev_byte, uint8_t symbol, uint8_t match_byte ) { range_encoder.encode_matched( bm_literal[lstate(prev_byte)], symbol, match_byte ); } int price_symbol( uint8_t prev_byte, uint8_t symbol ) const { return ::price_symbol( bm_literal[lstate(prev_byte)], symbol, 8 ); } int price_matched( uint8_t prev_byte, uint8_t symbol, uint8_t match_byte ) const { return ::price_matched( bm_literal[lstate(prev_byte)], symbol, match_byte ); } }; class LZ_encoder_base { protected: enum { max_marker_size = 16, num_rep_distances = 4 }; // must be 4 uint32_t crc_; Bit_model bm_match[State::states][pos_states]; Bit_model bm_rep[State::states]; Bit_model bm_rep0[State::states]; Bit_model bm_rep1[State::states]; Bit_model bm_rep2[State::states]; Bit_model bm_len[State::states][pos_states]; Bit_model bm_dis_slot[max_dis_states][1<= num_rep_distances ) { for( int i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1]; reps[0] = dis - num_rep_distances; } else if( dis > 0 ) { const int distance = reps[dis]; for( int i = dis; i > 0; --i ) reps[i] = reps[i-1]; reps[0] = distance; } } void encode_pair( const uint32_t dis, const int len, const int pos_state ) { len_encoder.encode( range_encoder, len, pos_state ); const int dis_slot = dis_slots[dis]; range_encoder.encode_tree( bm_dis_slot[get_dis_state(len)], dis_slot, dis_slot_bits ); if( dis_slot >= start_dis_model ) { const int direct_bits = ( dis_slot >> 1 ) - 1; const uint32_t base = ( 2 | ( dis_slot & 1 ) ) << direct_bits; const uint32_t direct_dis = dis - base; if( dis_slot < end_dis_model ) range_encoder.encode_tree_reversed( bm_dis + base - dis_slot, direct_dis, direct_bits ); else { range_encoder.encode( direct_dis >> dis_align_bits, direct_bits - dis_align_bits ); range_encoder.encode_tree_reversed( bm_align, direct_dis, dis_align_bits ); } } } void full_flush( const long long data_position, const State state ); public: long long member_position() const { return range_encoder.member_position(); } }; class LZ_encoder : public LZ_encoder_base { enum { infinite_price = 0x0FFFFFFF }; struct Trial { State state; int dis; int prev_index; // index of prev trial in trials[] int price; // dual use var; cumulative price, match length int reps[num_rep_distances]; void update( const int d, const int p_i, const int pr ) { if( pr < price ) { dis = d; prev_index = p_i; price = pr; } } }; Matchfinder & matchfinder; int longest_match_found; int match_distances[max_match_len+1]; Trial trials[max_num_trials]; int dis_slot_prices[max_dis_states][2*max_dictionary_bits]; int dis_prices[max_dis_states][modeled_distances]; int align_prices[dis_align_size]; int align_price_count; void fill_align_prices(); void fill_distance_prices(); int price_rep_len1( const int pos_state, const State state ) const { return price0( bm_rep0[state()] ) + price0( bm_len[state()][pos_state] ); } int price_rep( const int rep, const int pos_state, const State state ) const { if( rep == 0 ) return price0( bm_rep0[state()] ) + price1( bm_len[state()][pos_state] ); int price = price1( bm_rep0[state()] ); if( rep == 1 ) price += price0( bm_rep1[state()] ); else { price += price1( bm_rep1[state()] ); price += price_bit( bm_rep2[state()], rep - 2 ); } return price; } int price_dis( const int dis, const int dis_state ) const { if( dis < modeled_distances ) return dis_prices[dis_state][dis]; else return dis_slot_prices[dis_state][dis_slots[dis]] + align_prices[dis & (dis_align_size - 1)]; } int price_pair( const int dis, const int len, const int pos_state ) const { if( len <= min_match_len && dis >= modeled_distances ) return infinite_price; return len_encoder.price( len, pos_state ) + price_dis( dis, get_dis_state( len ) ); } int read_match_distances() { int len = matchfinder.longest_match_len( match_distances ); if( len == matchfinder.match_len_limit() && len < max_match_len ) len += matchfinder.true_match_len( len, match_distances[len] + 1, max_match_len - len ); return len; } void move_pos( int n ) { if( --n >= 0 ) matchfinder.move_pos(); while( --n >= 0 ) { matchfinder.longest_match_len(); matchfinder.move_pos(); } } void backward( int cur ) { int & dis = trials[cur].dis; while( cur > 0 ) { const int prev_index = trials[cur].prev_index; Trial & prev_trial = trials[prev_index]; prev_trial.price = cur - prev_index; // len cur = dis; dis = prev_trial.dis; prev_trial.dis = cur; cur = prev_index; } } int sequence_optimizer( const int reps[num_rep_distances], const State state ); public: LZ_encoder( Matchfinder & mf, const File_header & header, const int outfd ) : LZ_encoder_base( header, mf.dictionary_size(), mf.match_len_limit(), outfd ), matchfinder( mf ), longest_match_found( 0 ) { fill_align_prices(); } bool encode_member( const long long member_size ); };