/* Lzip - Data compressor based on the LZMA algorithm Copyright (C) 2008, 2009, 2010 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include #include "lzip.h" #include "encoder.h" #include "fast_encoder.h" bool Fmatchfinder::read_block() { if( !at_stream_end && stream_pos < buffer_size ) { const int size = buffer_size - stream_pos; const int rd = readblock( infd, buffer + stream_pos, size ); stream_pos += rd; if( rd != size && errno ) throw Error( "Read error" ); at_stream_end = ( rd < size ); } return pos < stream_pos; } Fmatchfinder::Fmatchfinder( const int ifd ) : partial_data_pos( 0 ), prev_positions( new int32_t[num_prev_positions] ), pos( 0 ), cyclic_pos( 0 ), key4( 0 ), stream_pos( 0 ), match_len_limit_( 16 ), infd( ifd ), at_stream_end( false ) { const int dict_size = 65536; const int buffer_size_limit = ( 16 * dict_size ) + before_size + after_size; buffer_size = dict_size; buffer = (uint8_t *)std::malloc( buffer_size ); if( !buffer ) throw std::bad_alloc(); if( read_block() && !at_stream_end && buffer_size < buffer_size_limit ) { buffer_size = buffer_size_limit; buffer = (uint8_t *)std::realloc( buffer, buffer_size ); if( !buffer ) throw std::bad_alloc(); read_block(); } if( at_stream_end && stream_pos < dict_size ) dictionary_size_ = std::max( (int)min_dictionary_size, stream_pos ); else dictionary_size_ = dict_size; pos_limit = buffer_size; if( !at_stream_end ) pos_limit -= after_size; prev_pos_chain = new int32_t[dictionary_size_]; for( int i = 0; i < num_prev_positions; ++i ) prev_positions[i] = -1; } void Fmatchfinder::reset() { const int size = stream_pos - pos; if( size > 0 ) std::memmove( buffer, buffer + pos, size ); partial_data_pos = 0; stream_pos -= pos; pos = 0; cyclic_pos = 0; key4 = 0; for( int i = 0; i < num_prev_positions; ++i ) prev_positions[i] = -1; read_block(); } void Fmatchfinder::move_pos() { if( ++cyclic_pos >= dictionary_size_ ) cyclic_pos = 0; if( ++pos >= pos_limit ) { if( pos > stream_pos ) internal_error( "pos > stream_pos in Fmatchfinder::move_pos" ); if( !at_stream_end ) { const int offset = pos - dictionary_size_ - before_size; const int size = stream_pos - offset; std::memmove( buffer, buffer + offset, size ); partial_data_pos += offset; pos -= offset; stream_pos -= offset; for( int i = 0; i < num_prev_positions; ++i ) if( prev_positions[i] >= 0 ) prev_positions[i] -= offset; for( int i = 0; i < dictionary_size_; ++i ) if( prev_pos_chain[i] >= 0 ) prev_pos_chain[i] -= offset; read_block(); } } } int Fmatchfinder::longest_match_len( int * const distance ) throw() { int len_limit = match_len_limit_; if( len_limit > available_bytes() ) { len_limit = available_bytes(); if( len_limit < 4 ) return 0; } int maxlen = min_match_len - 1; const int min_pos = (pos >= dictionary_size_) ? (pos - dictionary_size_ + 1) : 0; const uint8_t * const data = buffer + pos; key4 = ( ( key4 << 4 ) ^ data[3] ) & ( num_prev_positions - 1 ); int newpos = prev_positions[key4]; prev_positions[key4] = pos; int32_t * ptr0 = prev_pos_chain + cyclic_pos; for( int count = 4; ; ) { if( newpos < min_pos || --count < 0 ) { *ptr0 = -1; break; } const uint8_t * const newdata = buffer + newpos; int len = 0; while( len < len_limit && newdata[len] == data[len] ) ++len; const int delta = pos - newpos; if( maxlen < len ) { maxlen = len; *distance = delta - 1; } int32_t * const newptr = prev_pos_chain + ( cyclic_pos - delta + ( ( cyclic_pos >= delta ) ? 0 : dictionary_size_ ) ); if( len < len_limit ) { *ptr0 = newpos; ptr0 = newptr; newpos = *ptr0; } else { *ptr0 = *newptr; break; } } return maxlen; } void Fmatchfinder::longest_match_len() throw() { int len_limit = match_len_limit_; if( len_limit > available_bytes() ) { len_limit = available_bytes(); if( len_limit < 4 ) return; } const int min_pos = (pos >= dictionary_size_) ? (pos - dictionary_size_ + 1) : 0; const uint8_t * const data = buffer + pos; key4 = ( ( key4 << 4 ) ^ data[3] ) & ( num_prev_positions - 1 ); const int newpos = prev_positions[key4]; prev_positions[key4] = pos; int32_t * const ptr0 = prev_pos_chain + cyclic_pos; if( newpos < min_pos ) *ptr0 = -1; else { const uint8_t * const newdata = buffer + newpos; if( newdata[len_limit-1] != data[len_limit-1] || std::memcmp( newdata, data, len_limit - 1 ) ) *ptr0 = newpos; else { const int delta = pos - newpos; int idx = cyclic_pos - delta; if( idx < 0 ) idx += dictionary_size_; *ptr0 = prev_pos_chain[idx]; } } } // Return value == number of bytes advanced (len). // *disp returns the distance to encode. // ( *disp == -1 && len == 1 ) means literal. int FLZ_encoder::sequence_optimizer( const int reps[num_rep_distances], int * const disp, const State & state ) { const int main_len = read_match_distances(); int replen = 0; int rep_index = 0; for( int i = 0; i < num_rep_distances; ++i ) { const int len = fmatchfinder.true_match_len( 0, reps[i] + 1, max_match_len ); if( len > replen ) { replen = len; rep_index = i; } } if( replen > min_match_len ) { *disp = rep_index; move_pos( replen, true ); return replen; } if( main_len > min_match_len || ( main_len == min_match_len && match_distance < modeled_distances ) ) { *disp = num_rep_distances + match_distance; move_pos( main_len, true ); return main_len; } const uint8_t cur_byte = fmatchfinder[0]; const uint8_t match_byte = fmatchfinder[-reps[0]-1]; *disp = -1; if( match_byte == cur_byte ) { const uint8_t prev_byte = fmatchfinder[-1]; const int pos_state = fmatchfinder.data_position() & pos_state_mask; int price = price0( bm_match[state()][pos_state] ); if( state.is_char() ) price += literal_encoder.price_symbol( prev_byte, cur_byte ); else price += literal_encoder.price_matched( prev_byte, cur_byte, match_byte ); const int short_rep_price = price1( bm_match[state()][pos_state] ) + price1( bm_rep[state()] ) + price_rep_len1( state, pos_state ); if( short_rep_price < price ) *disp = 0; } fmatchfinder.move_pos(); return 1; } // End Of Stream mark => (dis == 0xFFFFFFFFU, len == min_match_len) void FLZ_encoder::full_flush( const State & state ) { const int pos_state = fmatchfinder.data_position() & pos_state_mask; range_encoder.encode_bit( bm_match[state()][pos_state], 1 ); range_encoder.encode_bit( bm_rep[state()], 0 ); encode_pair( 0xFFFFFFFFU, min_match_len, pos_state ); range_encoder.flush(); File_trailer trailer; trailer.data_crc( crc() ); trailer.data_size( fmatchfinder.data_position() ); trailer.member_size( range_encoder.member_position() + File_trailer::size() ); for( int i = 0; i < File_trailer::size(); ++i ) range_encoder.put_byte( trailer.data[i] ); range_encoder.flush_data(); } FLZ_encoder::FLZ_encoder( Fmatchfinder & mf, const File_header & header, const int outfd ) : crc_( 0xFFFFFFFFU ), fmatchfinder( mf ), range_encoder( outfd ), len_encoder( fmatchfinder.match_len_limit() ), rep_match_len_encoder( fmatchfinder.match_len_limit() ), num_dis_slots( 2 * real_bits( fmatchfinder.dictionary_size() - 1 ) ) { for( int i = 0; i < File_header::size; ++i ) range_encoder.put_byte( header.data[i] ); } bool FLZ_encoder::encode_member( const long long member_size ) { const long long member_size_limit = member_size - File_trailer::size() - max_marker_size; int rep_distances[num_rep_distances]; State state; for( int i = 0; i < num_rep_distances; ++i ) rep_distances[i] = 0; if( fmatchfinder.data_position() != 0 || range_encoder.member_position() != File_header::size ) return false; // can be called only once if( !fmatchfinder.finished() ) // encode first byte { const uint8_t prev_byte = 0; const uint8_t cur_byte = fmatchfinder[0]; range_encoder.encode_bit( bm_match[state()][0], 0 ); literal_encoder.encode( range_encoder, prev_byte, cur_byte ); crc32.update( crc_, cur_byte ); move_pos( 1 ); } while( true ) { if( fmatchfinder.finished() ) { full_flush( state ); return true; } const int pos_state = fmatchfinder.data_position() & pos_state_mask; int dis; const int len = sequence_optimizer( rep_distances, &dis, state ); if( len <= 0 ) return false; bool bit = ( dis < 0 && len == 1 ); range_encoder.encode_bit( bm_match[state()][pos_state], !bit ); if( bit ) // literal byte { const uint8_t prev_byte = fmatchfinder[-len-1]; const uint8_t cur_byte = fmatchfinder[-len]; crc32.update( crc_, cur_byte ); if( state.is_char() ) literal_encoder.encode( range_encoder, prev_byte, cur_byte ); else { const uint8_t match_byte = fmatchfinder[-len-rep_distances[0]-1]; literal_encoder.encode_matched( range_encoder, prev_byte, cur_byte, match_byte ); } state.set_char(); } else // match or repeated match { crc32.update( crc_, fmatchfinder.ptr_to_current_pos() - len, len ); mtf_reps( dis, rep_distances ); bit = ( dis < num_rep_distances ); range_encoder.encode_bit( bm_rep[state()], bit ); if( bit ) { bit = ( dis == 0 ); range_encoder.encode_bit( bm_rep0[state()], !bit ); if( bit ) range_encoder.encode_bit( bm_len[state()][pos_state], len > 1 ); else { range_encoder.encode_bit( bm_rep1[state()], dis > 1 ); if( dis > 1 ) range_encoder.encode_bit( bm_rep2[state()], dis > 2 ); } if( len == 1 ) state.set_short_rep(); else { rep_match_len_encoder.encode( range_encoder, len, pos_state ); state.set_rep(); } } else { encode_pair( dis - num_rep_distances, len, pos_state ); state.set_match(); } } if( range_encoder.member_position() >= member_size_limit ) { full_flush( state ); return true; } } }