diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-10-07 08:14:58 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-10-07 08:14:58 +0000 |
commit | c0f0f7eb32c314973c36f3f6afd375f80544311f (patch) | |
tree | 77cba6ec8b0c87b257239db470e2b55ebe922a93 /gf8.cc | |
parent | Adding upstream version 1.24. (diff) | |
download | lziprecover-c0f0f7eb32c314973c36f3f6afd375f80544311f.tar.xz lziprecover-c0f0f7eb32c314973c36f3f6afd375f80544311f.zip |
Adding upstream version 1.25~pre1.upstream/1.25_pre1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gf8.cc')
-rw-r--r-- | gf8.cc | 244 |
1 files changed, 244 insertions, 0 deletions
@@ -0,0 +1,244 @@ +/* Lziprecover - Data recovery tool for the lzip format + Copyright (C) 2023-2024 Antonio Diaz Diaz. + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. +*/ + +#define _FILE_OFFSET_BITS 64 + +#include <cstdio> +#include <cstring> +#include <list> +#include <string> +#include <vector> +#include <stdint.h> + +#include "lzip.h" +#include "md5.h" +#include "fec.h" + +namespace { + +struct Galois8_table // addition/subtraction is exclusive or + { + enum { size = 1 << 8, poly = 0x11D }; // generator polynomial + uint8_t * log, * ilog, * mul_table; + + Galois8_table() : log( 0 ), ilog( 0 ), mul_table( 0 ) {} +// ~Galois8_table() { delete[] mul_table; delete[] ilog; delete[] log; } + + void init() // fill log, inverse log, and multiplication tables + { + if( log ) return; + log = new uint8_t[size]; ilog = new uint8_t[size]; + mul_table = new uint8_t[size * size]; + for( unsigned b = 1, i = 0; i < size - 1; ++i ) + { + log[b] = i; + ilog[i] = b; + b <<= 1; + if( b & size ) b ^= poly; + } + log[0] = size - 1; // log(0) is not defined, so use a special value + ilog[size-1] = 1; + + for( int i = 1; i < size; ++i ) + { + uint8_t * const mul_row = mul_table + i * size; + for( int j = 1; j < size; ++j ) + mul_row[j] = ilog[(log[i] + log[j]) % (size - 1)]; + } + for( int i = 0; i < size; ++i ) + mul_table[0 * size + i] = mul_table[i * size + 0] = 0; + } + + uint8_t inverse( const uint8_t a ) const { return ilog[size-1-log[a]]; } + } gf; + + +// check that A * B = I (A, B, I are square matrices of size k * k) +bool check_inverse( const uint8_t * const A, const uint8_t * const B, + const unsigned k ) + { + for( unsigned row = 0; row < k; ++row ) // multiply A * B + for( unsigned col = 0; col < k; ++col ) + { + const uint8_t * pa = A + row * k; + const uint8_t * pb = B + col; + uint8_t sum = 0; + for( unsigned i = 0; i < k; ++i, ++pa, pb += k ) + sum ^= gf.mul_table[*pa * gf.size + *pb]; + if( sum != ( row == col ) ) return false; // A * B != I + } + return true; + } + + +/* Invert in place a matrix of size k * k. + This is like Gaussian elimination with a virtual identity matrix: + A --some_changes--> I, I --same_changes--> A^-1 + Galois arithmetic is exact. Swapping rows or columns is not needed. */ +bool invert_matrix( uint8_t * const matrix, const unsigned k ) + { + for( unsigned row = 0; row < k; ++row ) + { + uint8_t * const pivot_row = matrix + row * k; + const uint8_t pivot = pivot_row[row]; + if( pivot == 0 ) return false; + if( pivot != 1 ) // scale the pivot_row + { + const uint8_t * const mul_row = + gf.mul_table + gf.inverse( pivot ) * gf.size; + pivot_row[row] = 1; + for( unsigned col = 0; col < k; ++col ) + pivot_row[col] = mul_row[pivot_row[col]]; + } + // subtract pivot_row from the other rows + for( unsigned row2 = 0; row2 < k; ++row2 ) + if( row2 != row ) + { + uint8_t * const dst_row = matrix + row2 * k; + const uint8_t c = dst_row[row]; dst_row[row] = 0; + const uint8_t * const mul_row = gf.mul_table + c * gf.size; + for( unsigned col = 0; col < k; ++col ) + dst_row[col] ^= mul_row[pivot_row[col]]; + } + } + return true; + } + + +// create dec_matrix containing only the rows needed and invert it in place +const uint8_t * init_dec_matrix( const std::vector< unsigned > & bb_vector, + const std::vector< unsigned > & fbn_vector ) + { + const unsigned bad_blocks = bb_vector.size(); + uint8_t * const dec_matrix = new uint8_t[bad_blocks * bad_blocks]; + + // one row for each missing data block + for( unsigned row = 0; row < bad_blocks; ++row ) + { + uint8_t * const dec_row = dec_matrix + row * bad_blocks; + const unsigned fbn = fbn_vector[row] | 0x80; + for( unsigned col = 0; col < bad_blocks; ++col ) + dec_row[col] = gf.inverse( fbn ^ bb_vector[col] ); + } + if( !invert_matrix( dec_matrix, bad_blocks ) ) + internal_error( "GF(2^8) matrix not invertible." ); + return dec_matrix; + } + + +/* compute dst[] += c * src[] + treat the buffers as arrays of quadruples of 8-bit Galois values */ +inline void mul_add( const uint8_t * const src, uint8_t * const dst, + const unsigned long fbs, const uint8_t c ) + { + if( c == 0 ) return; // nothing to add + const uint8_t * const mul_row = gf.mul_table + c * gf.size; + const uint32_t * const src32 = (const uint32_t *)src; + uint32_t * const dst32 = (uint32_t *)dst; + + for( unsigned long i = 0; i < fbs / 4; ++i ) + { const uint32_t s = src32[i]; + dst32[i] ^= mul_row[s & 0xFF] ^ mul_row[s >> 8 & 0xFF] << 8 ^ + mul_row[s >> 16 & 0xFF] << 16 ^ mul_row[s >> 24] << 24; } + } + +} // end namespace + + +void gf8_init() { gf.init(); } + +bool gf8_check( const std::vector< unsigned > & fbn_vector, const unsigned k ) + { + if( k == 0 ) return true; + gf.init(); + bool good = true; + for( unsigned a = 1; a < gf.size; ++a ) + if( gf.mul_table[a * gf.size + gf.inverse( a )] != 1 ) + { good = false; + std::fprintf( stderr, "%u * ( 1/%u ) != 1 in GF(2^8)\n", a, a ); } + uint8_t * const enc_matrix = new uint8_t[k * k]; + uint8_t * const dec_matrix = new uint8_t[k * k]; + const bool random = fbn_vector.size() == k; + for( unsigned row = 0; row < k; ++row ) + { + const unsigned fbn = ( random ? fbn_vector[row] : row ) | 0x80; + uint8_t * const enc_row = enc_matrix + row * k; + for( unsigned col = 0; col < k; ++col ) + enc_row[col] = gf.inverse( fbn ^ col ); + } + std::memcpy( dec_matrix, enc_matrix, k * k ); + if( !invert_matrix( dec_matrix, k ) ) + { good = false; show_error( "GF(2^8) matrix not invertible." ); } + else if( !check_inverse( enc_matrix, dec_matrix, k ) ) + { good = false; show_error( "GF(2^8) matrix A * A^-1 != I" ); } + delete[] dec_matrix; + delete[] enc_matrix; + return good; + } + + +void rs8_encode( const uint8_t * const buffer, const uint8_t * const lastbuf, + uint8_t * const fec_block, const unsigned long fbs, + const unsigned fbn, const unsigned k ) + { + if( !gf.log ) internal_error( "GF(2^8) tables not initialized." ); + /* The encode matrix is a Hilbert matrix of size k * k with one row per + fec block and one column per data block. + The value of each element is computed on the fly with inverse. */ + const unsigned row = fbn | 0x80; + std::memset( fec_block, 0, fbs ); + for( unsigned col = 0; col < k; ++col ) + { + const uint8_t * const src = + ( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf; + mul_add( src, fec_block, fbs, gf.inverse( row ^ col ) ); + } + } + + +void rs8_decode( uint8_t * const buffer, uint8_t * const lastbuf, + const std::vector< unsigned > & bb_vector, + const std::vector< unsigned > & fbn_vector, + uint8_t * const fecbuf, const unsigned long fbs, + const unsigned k ) + { + gf.init(); + const unsigned bad_blocks = bb_vector.size(); + for( unsigned col = 0, bi = 0; col < k; ++col ) // reduce + { + if( bi < bad_blocks && col == bb_vector[bi] ) { ++bi; continue; } + const uint8_t * const src = + ( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf; + for( unsigned row = 0; row < bad_blocks; ++row ) + { + const unsigned fbn = fbn_vector[row] | 0x80; + mul_add( src, fecbuf + row * fbs, fbs, gf.inverse( fbn ^ col ) ); + } + } + const uint8_t * const dec_matrix = init_dec_matrix( bb_vector, fbn_vector ); + for( unsigned col = 0; col < bad_blocks; ++col ) // solve + { + const unsigned di = bb_vector[col]; + uint8_t * const dst = + ( di < k - (lastbuf != 0) ) ? buffer + di * fbs : lastbuf; + std::memset( dst, 0, fbs ); + const uint8_t * const dec_row = dec_matrix + col * bad_blocks; + for( unsigned row = 0; row < bad_blocks; ++row ) + mul_add( fecbuf + row * fbs, dst, fbs, dec_row[row] ); + } + delete[] dec_matrix; + } |