/* Lziprecover - Data recovery tool for the lzip format Copyright (C) 2023-2025 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ struct le32 { enum { size = 4 }; uint8_t data[size]; le32 & operator=( unsigned n ) { for( int i = 0; i < size; ++i ) { data[i] = (uint8_t)n; n >>= 8; } return *this; } unsigned val() const { unsigned n = 0; for( int i = size - 1; i >= 0; --i ) { n <<= 8; n += data[i]; } return n; } bool operator==( const le32 & b ) const { return std::memcmp( data, b.data, size ) == 0; } bool operator!=( const le32 & b ) const { return !( *this == b ); } }; inline unsigned long long get_le( const uint8_t * const buf, int size ) { unsigned long long n = 0; while( --size >= 0 ) { n <<= 8; n += buf[size]; } return n; } inline unsigned long long ceil_divide( const unsigned long long size, const unsigned long block_size ) { return size / block_size + ( size % block_size > 0 ); } inline unsigned long ceil_divide( const unsigned long size, const unsigned long block_size ) { return size / block_size + ( size % block_size > 0 ); } inline uint8_t * set_lastbuf( const uint8_t * const prodata, const unsigned long prodata_size, const unsigned long fbs, const bool last_is_missing = false ) { const unsigned long rest = prodata_size % fbs; if( rest == 0 ) return 0; // last data block is complete uint8_t * const lastbuf = new uint8_t[fbs]; if( last_is_missing ) return lastbuf; // uninitialized buffer std::memcpy( lastbuf, prodata + ( prodata_size - rest ), rest ); std::memset( lastbuf + rest, 0, fbs - rest ); return lastbuf; // copy of last data block padded to fbs bytes } enum { min_fbs = 512, max_unit_fbs = 1 << 30 }; // 1 GiB const unsigned long long max_fbs = 1ULL << 47; // 128 TiB inline bool isvalid_fbs( const unsigned long long fbs ) { return fbs >= min_fbs && fbs <= max_fbs && fbs % min_fbs == 0; } struct Coded_fbs // fec_block_size { enum { size = 2 }; uint8_t data[size]; // 11-bit mantissa, 5-bit exponent Coded_fbs() {} // default constructor Coded_fbs( const unsigned long long fbs, const unsigned unit_fbs ) { unsigned long long m = fbs; int e = 0; while( m > 2047 || ( m > 1 && e < 9 ) ) { m >>= 1; ++e; } if( m << e < fbs && ++m > 2047 ) { m >>= 1; ++e; } while( ( m << e ) % unit_fbs != 0 ) if( ++m > 2047 ) { m >>= 1; ++e; } if( m == 0 || m > 2047 || e < 9 || e > 40 || m << e < fbs || !isvalid_fbs( m << e ) || !isvalid_fbs( fbs ) ) internal_error( "Coded_fbs: can't fit fec_block_size in packet." ); data[0] = m; data[1] = ( e - 9 ) << 3 | m >> 8; } void copy( uint8_t * const buf ) const { buf[0] = data[0]; buf[1] = data[1]; } unsigned long long val() const { unsigned long long m = ( ( data[1] & 7 ) << 8 ) | data[0]; const int e = ( data[1] >> 3 ) + 9; return m << e; } }; enum { fec_magic_l = 4, crc32_l = le32::size }; const uint8_t fec_magic[4] = { 0xB3, 0xA5, 0xB6, 0xAF }; // ~"LZIP" const uint8_t fec_packet_magic[4] = { fec_magic[0], 'F', 'E', 'C' }; inline bool check_fec_magic( const uint8_t * const image_buffer ) { return std::memcmp( image_buffer, fec_magic, 4 ) == 0; } class Packet_base { protected: // the packet trailer contains the CRC32 of the payload enum Lengths { trailer_size = crc32_l }; // header_size must be a multiple of 4 for uint32_t alignment in mul_add const uint8_t * image_; // header + payload + trailer bool image_is_external; Packet_base() : image_is_external( false ) {} explicit Packet_base( const uint8_t * const image_buffer ) : image_( image_buffer ), image_is_external( true ) {} ~Packet_base() { if( !image_is_external ) delete[] image_; } public: const uint8_t * image() const { return image_; } }; class Chksum_packet : public Packet_base { enum { current_version = 0 }; enum Lengths { version_l = 1, flags_l = 1, prodata_size_l = 8, prodata_md5_l = 16 }; enum Offsets { version_o = fec_magic_l, flags_o = version_o + version_l, fbs_o = flags_o + flags_l, prodata_size_o = fbs_o + Coded_fbs::size, prodata_md5_o = prodata_size_o + prodata_size_l, header_crc_o = prodata_md5_o + prodata_md5_l, header_size = header_crc_o + crc32_l, crc_array_o = header_size }; static unsigned compute_header_crc( const uint8_t * const image_buffer ) { return crc32.compute_crc( image_buffer, header_crc_o ); } public: // check image_buffer with check_image before calling this constructor explicit Chksum_packet( const uint8_t * const image_buffer ) : Packet_base( image_buffer ) {} Chksum_packet( const uint8_t * const prodata, const unsigned long prodata_size, const md5_type & prodata_md5, const Coded_fbs coded_fbs, const bool gf16_, const bool is_crc_c_ ); unsigned long long packet_size() const { return ceil_divide( prodata_size(), fec_block_size() ) * sizeof crc_array()[0] + header_size + trailer_size; } unsigned long long prodata_size() const { return get_le( image_ + prodata_size_o, prodata_size_l ); } const md5_type & prodata_md5() const { return *(md5_type *)(image_ + prodata_md5_o); } unsigned long long fec_block_size() const { return ((Coded_fbs *)(image_ + fbs_o))->val(); } static bool check_flags( const uint8_t * const image_buffer ) { return image_buffer[flags_o] <= 3; } bool gf16() const { return image_[flags_o] & 2; } bool is_crc_c() const { return image_[flags_o] & 1; } // crc_array contains one CRC32 or one CRC32-C per protected data block const le32 * crc_array() const { return (const le32 *)(image_ + crc_array_o); } static unsigned min_packet_size() { return header_size + le32::size + trailer_size; } static uint8_t version( const uint8_t * const image_buffer ) { return image_buffer[version_o]; } static bool check_version( const uint8_t * const image_buffer ) { return image_buffer[version_o] == current_version; } static unsigned check_image( const uint8_t * const image_buffer, const unsigned long max_size ); bool check_payload_crc() const { const unsigned paysize = packet_size() - header_size - trailer_size; const unsigned payload_crc_o = crc_array_o + paysize; const unsigned payload_crc = get_le( image_ + payload_crc_o, crc32_l ); return crc32.compute_crc( image_ + crc_array_o, paysize ) == payload_crc; } }; class Fec_packet : public Packet_base { enum Lengths { fbn_l = 2 }; enum Offsets { fbn_o = fec_magic_l, fbs_o = fbn_o + fbn_l, header_crc_o = fbs_o + Coded_fbs::size, header_size = header_crc_o + crc32_l, fec_block_o = header_size }; static unsigned compute_header_crc( const uint8_t * const image_buffer ) { return crc32.compute_crc( image_buffer, header_crc_o ); } public: // check image_buffer with check_image before calling this constructor explicit Fec_packet( const uint8_t * const image_buffer ) : Packet_base( image_buffer ) {} Fec_packet( const uint8_t * const prodata, const uint8_t * const lastbuf, const unsigned fbn, const unsigned k, const Coded_fbs coded_fbs, const bool gf16 ); unsigned long long packet_size() const { return header_size + fec_block_size() + trailer_size; } unsigned fec_block_number() const { return get_le( image_ + fbn_o, fbn_l ); } unsigned long long fec_block_size() const // number of fec bytes { return ((Coded_fbs *)(image_ + fbs_o))->val(); } const uint8_t * fec_block() const { return image_ + fec_block_o; } static unsigned min_packet_size() { return header_size + min_fbs + trailer_size; } static unsigned long check_image( const uint8_t * const image_buffer, const unsigned long max_size ); }; enum { max_k8 = 128, max_k16 = 32768, max_nk16 = 2048 }; const char * const fec_extension = ".fec"; inline void prot_stdin() { show_file_error( "(stdin)", "Can't read protected data from standard input." ); } // defined in fec_create.cc enum { fc_percent, fc_blocks, fc_bytes }; void cleanup_mutex_lock(); int gf_check( const unsigned k, const bool cl_gf16, const bool fec_random ); void extract_dirname( const std::string & name, std::string & srcdir ); void replace_dirname( const std::string & name, const std::string & srcdir, const std::string & destdir, std::string & outname ); bool has_fec_extension( const std::string & name ); int fec_create( const std::vector< std::string > & filenames, const std::string & default_output_filename, const unsigned long fb_or_pct, const unsigned cl_block_size, const unsigned num_workers, const char debug_level, const char fctype, const char fec_level, const char recursive, const bool cl_gf16, const bool fec_random, const bool force, const bool to_stdout ); // defined in fec_repair.cc int fec_test( const std::vector< std::string > & filenames, const std::string & cl_fec_filename, const std::string & default_output_filename, const char recursive, const bool force, const bool ignore_errors, const bool repair, const bool to_stdout ); int fec_list( const std::vector< std::string > & filenames, const bool ignore_errors ); int fec_dc( const std::string & input_filename, const std::string & cl_fec_filename, const unsigned cblocks ); int fec_dz( const std::string & input_filename, const std::string & cl_fec_filename, std::vector< Block > & range_vector ); int fec_dZ( const std::string & input_filename, const std::string & cl_fec_filename, const unsigned delta, const int sector_size ); // defined in recursive.cc bool next_filename( std::list< std::string > & filelist, std::string & input_filename, int & retval, const char recursive ); // defined in gf8.cc, gf16.cc void gf8_init(); void gf16_init(); bool gf8_check( const std::vector< unsigned > & fbn_vector, const unsigned k ); bool gf16_check( const std::vector< unsigned > & fbn_vector, const unsigned k ); /* buffer, lastbuf: k blocks of input data, last one possibly padded to fbs. fbn: number of the fec block to be created (fbn < max_k). */ void rs8_encode( const uint8_t * const buffer, const uint8_t * const lastbuf, uint8_t * const fec_block, const unsigned long fbs, const unsigned fbn, const unsigned k ); void rs16_encode( const uint8_t * const buffer, const uint8_t * const lastbuf, uint8_t * const fec_block, const unsigned long fbs, const unsigned fbn, const unsigned k ); /* buffer, lastbuf: k data blocks, those in bb_vector are missing. fecbuf: as many fec blocks as missing data blocks in the order of fbn_vector. The repaired data blocks are written in their place in buffer and lastbuf. */ void rs8_decode( uint8_t * const buffer, uint8_t * const lastbuf, const std::vector< unsigned > & bb_vector, const std::vector< unsigned > & fbn_vector, uint8_t * const fecbuf, const unsigned long fbs, const unsigned k ); void rs16_decode( uint8_t * const buffer, uint8_t * const lastbuf, const std::vector< unsigned > & bb_vector, const std::vector< unsigned > & fbn_vector, uint8_t * const fecbuf, const unsigned long fbs, const unsigned k );