/* Lziprecover - Data recovery tool for the lzip format
Copyright (C) 2023-2024 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include
#include "lzip.h"
#include "md5.h"
#include "fec.h"
namespace {
struct Galois8_table // addition/subtraction is exclusive or
{
enum { size = 1 << 8, poly = 0x11D }; // generator polynomial
uint8_t * log, * ilog, * mul_table;
Galois8_table() : log( 0 ), ilog( 0 ), mul_table( 0 ) {}
// ~Galois8_table() { delete[] mul_table; delete[] ilog; delete[] log; }
void init() // fill log, inverse log, and multiplication tables
{
if( log ) return;
log = new uint8_t[size]; ilog = new uint8_t[size];
mul_table = new uint8_t[size * size];
for( unsigned b = 1, i = 0; i < size - 1; ++i )
{
log[b] = i;
ilog[i] = b;
b <<= 1;
if( b & size ) b ^= poly;
}
log[0] = size - 1; // log(0) is not defined, so use a special value
ilog[size-1] = 1;
for( int i = 1; i < size; ++i )
{
uint8_t * const mul_row = mul_table + i * size;
for( int j = 1; j < size; ++j )
mul_row[j] = ilog[(log[i] + log[j]) % (size - 1)];
}
for( int i = 0; i < size; ++i )
mul_table[0 * size + i] = mul_table[i * size + 0] = 0;
}
uint8_t inverse( const uint8_t a ) const { return ilog[size-1-log[a]]; }
} gf;
// check that A * B = I (A, B, I are square matrices of size k * k)
bool check_inverse( const uint8_t * const A, const uint8_t * const B,
const unsigned k )
{
for( unsigned row = 0; row < k; ++row ) // multiply A * B
for( unsigned col = 0; col < k; ++col )
{
const uint8_t * pa = A + row * k;
const uint8_t * pb = B + col;
uint8_t sum = 0;
for( unsigned i = 0; i < k; ++i, ++pa, pb += k )
sum ^= gf.mul_table[*pa * gf.size + *pb];
if( sum != ( row == col ) ) return false; // A * B != I
}
return true;
}
/* Invert in place a matrix of size k * k.
This is like Gaussian elimination with a virtual identity matrix:
A --some_changes--> I, I --same_changes--> A^-1
Galois arithmetic is exact. Swapping rows or columns is not needed. */
bool invert_matrix( uint8_t * const matrix, const unsigned k )
{
for( unsigned row = 0; row < k; ++row )
{
uint8_t * const pivot_row = matrix + row * k;
const uint8_t pivot = pivot_row[row];
if( pivot == 0 ) return false;
if( pivot != 1 ) // scale the pivot_row
{
const uint8_t * const mul_row =
gf.mul_table + gf.inverse( pivot ) * gf.size;
pivot_row[row] = 1;
for( unsigned col = 0; col < k; ++col )
pivot_row[col] = mul_row[pivot_row[col]];
}
// subtract pivot_row from the other rows
for( unsigned row2 = 0; row2 < k; ++row2 )
if( row2 != row )
{
uint8_t * const dst_row = matrix + row2 * k;
const uint8_t c = dst_row[row]; dst_row[row] = 0;
const uint8_t * const mul_row = gf.mul_table + c * gf.size;
for( unsigned col = 0; col < k; ++col )
dst_row[col] ^= mul_row[pivot_row[col]];
}
}
return true;
}
// create dec_matrix containing only the rows needed and invert it in place
const uint8_t * init_dec_matrix( const std::vector< unsigned > & bb_vector,
const std::vector< unsigned > & fbn_vector )
{
const unsigned bad_blocks = bb_vector.size();
uint8_t * const dec_matrix = new uint8_t[bad_blocks * bad_blocks];
// one row for each missing data block
for( unsigned row = 0; row < bad_blocks; ++row )
{
uint8_t * const dec_row = dec_matrix + row * bad_blocks;
const unsigned fbn = fbn_vector[row] | 0x80;
for( unsigned col = 0; col < bad_blocks; ++col )
dec_row[col] = gf.inverse( fbn ^ bb_vector[col] );
}
if( !invert_matrix( dec_matrix, bad_blocks ) )
internal_error( "GF(2^8) matrix not invertible." );
return dec_matrix;
}
/* compute dst[] += c * src[]
treat the buffers as arrays of quadruples of 8-bit Galois values */
inline void mul_add( const uint8_t * const src, uint8_t * const dst,
const unsigned long fbs, const uint8_t c )
{
if( c == 0 ) return; // nothing to add
const uint8_t * const mul_row = gf.mul_table + c * gf.size;
const uint32_t * const src32 = (const uint32_t *)src;
uint32_t * const dst32 = (uint32_t *)dst;
for( unsigned long i = 0; i < fbs / 4; ++i )
{ const uint32_t s = src32[i];
dst32[i] ^= mul_row[s & 0xFF] ^ mul_row[s >> 8 & 0xFF] << 8 ^
mul_row[s >> 16 & 0xFF] << 16 ^ mul_row[s >> 24] << 24; }
}
} // end namespace
void gf8_init() { gf.init(); }
bool gf8_check( const std::vector< unsigned > & fbn_vector, const unsigned k )
{
if( k == 0 ) return true;
gf.init();
bool good = true;
for( unsigned a = 1; a < gf.size; ++a )
if( gf.mul_table[a * gf.size + gf.inverse( a )] != 1 )
{ good = false;
std::fprintf( stderr, "%u * ( 1/%u ) != 1 in GF(2^8)\n", a, a ); }
uint8_t * const enc_matrix = new uint8_t[k * k];
uint8_t * const dec_matrix = new uint8_t[k * k];
const bool random = fbn_vector.size() == k;
for( unsigned row = 0; row < k; ++row )
{
const unsigned fbn = ( random ? fbn_vector[row] : row ) | 0x80;
uint8_t * const enc_row = enc_matrix + row * k;
for( unsigned col = 0; col < k; ++col )
enc_row[col] = gf.inverse( fbn ^ col );
}
std::memcpy( dec_matrix, enc_matrix, k * k );
if( !invert_matrix( dec_matrix, k ) )
{ good = false; show_error( "GF(2^8) matrix not invertible." ); }
else if( !check_inverse( enc_matrix, dec_matrix, k ) )
{ good = false; show_error( "GF(2^8) matrix A * A^-1 != I" ); }
delete[] dec_matrix;
delete[] enc_matrix;
return good;
}
void rs8_encode( const uint8_t * const buffer, const uint8_t * const lastbuf,
uint8_t * const fec_block, const unsigned long fbs,
const unsigned fbn, const unsigned k )
{
if( !gf.log ) internal_error( "GF(2^8) tables not initialized." );
/* The encode matrix is a Hilbert matrix of size k * k with one row per
fec block and one column per data block.
The value of each element is computed on the fly with inverse. */
const unsigned row = fbn | 0x80;
std::memset( fec_block, 0, fbs );
for( unsigned col = 0; col < k; ++col )
{
const uint8_t * const src =
( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf;
mul_add( src, fec_block, fbs, gf.inverse( row ^ col ) );
}
}
void rs8_decode( uint8_t * const buffer, uint8_t * const lastbuf,
const std::vector< unsigned > & bb_vector,
const std::vector< unsigned > & fbn_vector,
uint8_t * const fecbuf, const unsigned long fbs,
const unsigned k )
{
gf.init();
const unsigned bad_blocks = bb_vector.size();
for( unsigned col = 0, bi = 0; col < k; ++col ) // reduce
{
if( bi < bad_blocks && col == bb_vector[bi] ) { ++bi; continue; }
const uint8_t * const src =
( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf;
for( unsigned row = 0; row < bad_blocks; ++row )
{
const unsigned fbn = fbn_vector[row] | 0x80;
mul_add( src, fecbuf + row * fbs, fbs, gf.inverse( fbn ^ col ) );
}
}
const uint8_t * const dec_matrix = init_dec_matrix( bb_vector, fbn_vector );
for( unsigned col = 0; col < bad_blocks; ++col ) // solve
{
const unsigned di = bb_vector[col];
uint8_t * const dst =
( di < k - (lastbuf != 0) ) ? buffer + di * fbs : lastbuf;
std::memset( dst, 0, fbs );
const uint8_t * const dec_row = dec_matrix + col * bad_blocks;
for( unsigned row = 0; row < bad_blocks; ++row )
mul_add( fecbuf + row * fbs, dst, fbs, dec_row[row] );
}
delete[] dec_matrix;
}