/* Lziprecover - Data recovery tool for the lzip format Copyright (C) 2023-2024 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include "lzip.h" #include "md5.h" #include "fec.h" namespace { struct Galois8_table // addition/subtraction is exclusive or { enum { size = 1 << 8, poly = 0x11D }; // generator polynomial uint8_t * log, * ilog, * mul_table; Galois8_table() : log( 0 ), ilog( 0 ), mul_table( 0 ) {} // ~Galois8_table() { delete[] mul_table; delete[] ilog; delete[] log; } void init() // fill log, inverse log, and multiplication tables { if( log ) return; log = new uint8_t[size]; ilog = new uint8_t[size]; mul_table = new uint8_t[size * size]; for( unsigned b = 1, i = 0; i < size - 1; ++i ) { log[b] = i; ilog[i] = b; b <<= 1; if( b & size ) b ^= poly; } log[0] = size - 1; // log(0) is not defined, so use a special value ilog[size-1] = 1; for( int i = 1; i < size; ++i ) { uint8_t * const mul_row = mul_table + i * size; for( int j = 1; j < size; ++j ) mul_row[j] = ilog[(log[i] + log[j]) % (size - 1)]; } for( int i = 0; i < size; ++i ) mul_table[0 * size + i] = mul_table[i * size + 0] = 0; } uint8_t inverse( const uint8_t a ) const { return ilog[size-1-log[a]]; } } gf; // check that A * B = I (A, B, I are square matrices of size k * k) bool check_inverse( const uint8_t * const A, const uint8_t * const B, const unsigned k ) { for( unsigned row = 0; row < k; ++row ) // multiply A * B for( unsigned col = 0; col < k; ++col ) { const uint8_t * pa = A + row * k; const uint8_t * pb = B + col; uint8_t sum = 0; for( unsigned i = 0; i < k; ++i, ++pa, pb += k ) sum ^= gf.mul_table[*pa * gf.size + *pb]; if( sum != ( row == col ) ) return false; // A * B != I } return true; } /* Invert in place a matrix of size k * k. This is like Gaussian elimination with a virtual identity matrix: A --some_changes--> I, I --same_changes--> A^-1 Galois arithmetic is exact. Swapping rows or columns is not needed. */ bool invert_matrix( uint8_t * const matrix, const unsigned k ) { for( unsigned row = 0; row < k; ++row ) { uint8_t * const pivot_row = matrix + row * k; const uint8_t pivot = pivot_row[row]; if( pivot == 0 ) return false; if( pivot != 1 ) // scale the pivot_row { const uint8_t * const mul_row = gf.mul_table + gf.inverse( pivot ) * gf.size; pivot_row[row] = 1; for( unsigned col = 0; col < k; ++col ) pivot_row[col] = mul_row[pivot_row[col]]; } // subtract pivot_row from the other rows for( unsigned row2 = 0; row2 < k; ++row2 ) if( row2 != row ) { uint8_t * const dst_row = matrix + row2 * k; const uint8_t c = dst_row[row]; dst_row[row] = 0; const uint8_t * const mul_row = gf.mul_table + c * gf.size; for( unsigned col = 0; col < k; ++col ) dst_row[col] ^= mul_row[pivot_row[col]]; } } return true; } // create dec_matrix containing only the rows needed and invert it in place const uint8_t * init_dec_matrix( const std::vector< unsigned > & bb_vector, const std::vector< unsigned > & fbn_vector ) { const unsigned bad_blocks = bb_vector.size(); uint8_t * const dec_matrix = new uint8_t[bad_blocks * bad_blocks]; // one row for each missing data block for( unsigned row = 0; row < bad_blocks; ++row ) { uint8_t * const dec_row = dec_matrix + row * bad_blocks; const unsigned fbn = fbn_vector[row] | 0x80; for( unsigned col = 0; col < bad_blocks; ++col ) dec_row[col] = gf.inverse( fbn ^ bb_vector[col] ); } if( !invert_matrix( dec_matrix, bad_blocks ) ) internal_error( "GF(2^8) matrix not invertible." ); return dec_matrix; } /* compute dst[] += c * src[] treat the buffers as arrays of quadruples of 8-bit Galois values */ inline void mul_add( const uint8_t * const src, uint8_t * const dst, const unsigned long fbs, const uint8_t c ) { if( c == 0 ) return; // nothing to add const uint8_t * const mul_row = gf.mul_table + c * gf.size; const uint32_t * const src32 = (const uint32_t *)src; uint32_t * const dst32 = (uint32_t *)dst; for( unsigned long i = 0; i < fbs / 4; ++i ) { const uint32_t s = src32[i]; dst32[i] ^= mul_row[s & 0xFF] ^ mul_row[s >> 8 & 0xFF] << 8 ^ mul_row[s >> 16 & 0xFF] << 16 ^ mul_row[s >> 24] << 24; } } } // end namespace void gf8_init() { gf.init(); } bool gf8_check( const std::vector< unsigned > & fbn_vector, const unsigned k ) { if( k == 0 ) return true; gf.init(); bool good = true; for( unsigned a = 1; a < gf.size; ++a ) if( gf.mul_table[a * gf.size + gf.inverse( a )] != 1 ) { good = false; std::fprintf( stderr, "%u * ( 1/%u ) != 1 in GF(2^8)\n", a, a ); } uint8_t * const enc_matrix = new uint8_t[k * k]; uint8_t * const dec_matrix = new uint8_t[k * k]; const bool random = fbn_vector.size() == k; for( unsigned row = 0; row < k; ++row ) { const unsigned fbn = ( random ? fbn_vector[row] : row ) | 0x80; uint8_t * const enc_row = enc_matrix + row * k; for( unsigned col = 0; col < k; ++col ) enc_row[col] = gf.inverse( fbn ^ col ); } std::memcpy( dec_matrix, enc_matrix, k * k ); if( !invert_matrix( dec_matrix, k ) ) { good = false; show_error( "GF(2^8) matrix not invertible." ); } else if( !check_inverse( enc_matrix, dec_matrix, k ) ) { good = false; show_error( "GF(2^8) matrix A * A^-1 != I" ); } delete[] dec_matrix; delete[] enc_matrix; return good; } void rs8_encode( const uint8_t * const buffer, const uint8_t * const lastbuf, uint8_t * const fec_block, const unsigned long fbs, const unsigned fbn, const unsigned k ) { if( !gf.log ) internal_error( "GF(2^8) tables not initialized." ); /* The encode matrix is a Hilbert matrix of size k * k with one row per fec block and one column per data block. The value of each element is computed on the fly with inverse. */ const unsigned row = fbn | 0x80; std::memset( fec_block, 0, fbs ); for( unsigned col = 0; col < k; ++col ) { const uint8_t * const src = ( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf; mul_add( src, fec_block, fbs, gf.inverse( row ^ col ) ); } } void rs8_decode( uint8_t * const buffer, uint8_t * const lastbuf, const std::vector< unsigned > & bb_vector, const std::vector< unsigned > & fbn_vector, uint8_t * const fecbuf, const unsigned long fbs, const unsigned k ) { gf.init(); const unsigned bad_blocks = bb_vector.size(); for( unsigned col = 0, bi = 0; col < k; ++col ) // reduce { if( bi < bad_blocks && col == bb_vector[bi] ) { ++bi; continue; } const uint8_t * const src = ( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf; for( unsigned row = 0; row < bad_blocks; ++row ) { const unsigned fbn = fbn_vector[row] | 0x80; mul_add( src, fecbuf + row * fbs, fbs, gf.inverse( fbn ^ col ) ); } } const uint8_t * const dec_matrix = init_dec_matrix( bb_vector, fbn_vector ); for( unsigned col = 0; col < bad_blocks; ++col ) // solve { const unsigned di = bb_vector[col]; uint8_t * const dst = ( di < k - (lastbuf != 0) ) ? buffer + di * fbs : lastbuf; std::memset( dst, 0, fbs ); const uint8_t * const dec_row = dec_matrix + col * bad_blocks; for( unsigned row = 0; row < bad_blocks; ++row ) mul_add( fecbuf + row * fbs, dst, fbs, dec_row[row] ); } delete[] dec_matrix; }