summaryrefslogtreecommitdiffstats
path: root/doc/lziprecover.info
blob: 17985d273e3b7ba62c1f68e22726930219a4aca1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
This is lziprecover.info, produced by makeinfo version 4.13+ from
lziprecover.texi.

INFO-DIR-SECTION Data Compression
START-INFO-DIR-ENTRY
* Lziprecover: (lziprecover).   Data recovery tool for the lzip format
END-INFO-DIR-ENTRY


File: lziprecover.info,  Node: Top,  Next: Introduction,  Up: (dir)

Lziprecover Manual
******************

This manual is for Lziprecover (version 1.18, 12 May 2016).

* Menu:

* Introduction::           Purpose and features of lziprecover
* Invoking lziprecover::   Command line interface
* Data safety::            Protecting data from accidental loss
* Repairing files::        Fixing bit-flip and similar errors
* Merging files::          Fixing several damaged copies
* File names::             Names of the files produced by lziprecover
* File format::            Detailed format of the compressed file
* Trailing data::          Extra data appended to the file
* Examples::               A small tutorial with examples
* Unzcrash::               Testing the robustness of decompressors
* Problems::               Reporting bugs
* Concept index::          Index of concepts


   Copyright (C) 2009-2016 Antonio Diaz Diaz.

   This manual is free documentation: you have unlimited permission to
copy, distribute and modify it.


File: lziprecover.info,  Node: Introduction,  Next: Invoking lziprecover,  Prev: Top,  Up: Top

1 Introduction
**************

Lziprecover is a data recovery tool and decompressor for files in the
lzip compressed data format (.lz), able to repair slightly damaged
files, produce a correct file by merging the good parts of two or more
damaged copies, extract data from damaged files, decompress files and
test integrity of files.

   Lziprecover is not a replacement for regular backups, but a last
line of defense for the case where the backups are also damaged.

   The lzip file format is designed for data sharing and long-term
archiving, taking into account both data integrity and decoder
availability:

   * The lzip format provides very safe integrity checking and some data
     recovery means. The lziprecover program can repair bit-flip errors
     (one of the most common forms of data corruption) in lzip files,
     and provides data recovery capabilities, including error-checked
     merging of damaged copies of a file. *Note Data safety::.

   * The lzip format is as simple as possible (but not simpler). The
     lzip manual provides the code of a simple decompressor along with
     a detailed explanation of how it works, so that with the only help
     of the lzip manual it would be possible for a digital
     archaeologist to extract the data from a lzip file long after
     quantum computers eventually render LZMA obsolete.

   * Additionally the lzip reference implementation is copylefted, which
     guarantees that it will remain free forever.

   A nice feature of the lzip format is that a corrupt byte is easier to
repair the nearer it is from the beginning of the file. Therefore, with
the help of lziprecover, losing an entire archive just because of a
corrupt byte near the beginning is a thing of the past.

   For compressible data, multiple lzip-compressed copies have a better
chance of surviving intact than one uncompressed copy using the same
amount of storage space.

   Lziprecover is able to recover or decompress files produced by any of
the compressors in the lzip family; lzip, plzip, minilzip/lzlib, clzip
and pdlzip.

   If the cause of file corruption is damaged media, the combination
GNU ddrescue + lziprecover is the best option for recovering data from
multiple damaged copies. *Note ddrescue-example::, for an example.

   If a file is too damaged for lziprecover to repair it, all the
recoverable data in all members of the file can be extracted with the
following command (the resulting file may contain errors and some
garbage data may be produced at the end of each member):

     lziprecover -D0 -i -o file -q file.lz

   Lziprecover provides random access to the data in multimember files;
it only decompresses the members containing the desired data.

   Lziprecover can print correct total file sizes and ratios even for
multimember files.

   When recovering data, lziprecover takes as arguments the names of the
damaged files and writes zero or more recovered files depending on the
operation selected and whether the recovery succeeded or not. The
damaged files themselves are never modified.

   When decompressing or testing file integrity, lziprecover behaves
like lzip or lunzip.


File: lziprecover.info,  Node: Invoking lziprecover,  Next: Data safety,  Prev: Introduction,  Up: Top

2 Invoking lziprecover
**********************

The format for running lziprecover is:

     lziprecover [OPTIONS] [FILES]

When decompressing or testing, '-' used as a FILE argument means
standard input. It can be mixed with other FILES and is read just once,
the first time it appears in the command line.

   Lziprecover supports the following options:

'-h'
'--help'
     Print an informative help message describing the options and exit.

'-V'
'--version'
     Print the version number of lziprecover on the standard output and
     exit.

'-a'
'--trailing-error'
     Exit with error status 2 if any remaining input is detected after
     decompressing the last member. Such remaining input is usually
     trailing garbage that can be safely ignored. *Note
     concat-example::.

'-A'
'--alone-to-lz'
     Convert lzma-alone files to lzip format without recompressing, just
     adding a lzip header and trailer. The conversion minimizes the
     dictionary size of the resulting file (and therefore the amount of
     memory required to decompress it). Only streamed files with
     default LZMA properties can be converted; non-streamed lzma-alone
     files lack the end of stream marker required in lzip files.

     The name of the converted lzip file is derived from that of the
     original lzma-alone file as follows:

     filename.lzma   becomes   filename.lz
     filename.tlz    becomes   filename.tar.lz
     anyothername    becomes   anyothername.lz

'-c'
'--stdout'
     Write decompressed data to standard output; keep input files
     unchanged.  This option is needed when reading from a named pipe
     (fifo) or from a device. Use it also to recover as much of the
     uncompressed data as possible when decompressing a corrupt file.

'-d'
'--decompress'
     Decompress the specified file(s). If a file does not exist or
     can't be opened, lziprecover continues decompressing the rest of
     the files. If a file fails to decompress, lziprecover exits
     immediately without decompressing the rest of the files.

'-D RANGE'
'--range-decompress=RANGE'
     Decompress only a range of bytes starting at decompressed byte
     position 'BEGIN' and up to byte position 'END - 1'.  This option
     provides random access to the data in multimember files; it only
     decompresses the members containing the desired data. In order to
     guarantee the correctness of the data produced, all members
     containing any part of the desired data are decompressed and their
     integrity is verified.

     Four formats of RANGE are recognized, 'BEGIN', 'BEGIN-END',
     'BEGIN,SIZE', and ',SIZE'. If only BEGIN is specified, END is taken
     as the end of the file. If only SIZE is specified, BEGIN is taken
     as the beginning of the file. The produced bytes are sent to
     standard output unless the '--output' option is used.

'-f'
'--force'
     Force overwrite of output files.

'-i'
'--ignore-errors'
     Make '--range-decompress' ignore data errors and continue
     decompressing the remaining members in the file. For example,
     'lziprecover -D0 -i file.lz > file' decompresses all the
     recoverable data in all members of 'file.lz' without having to
     split it first.

'-k'
'--keep'
     Keep (don't delete) input files during decompression.

'-l'
'--list'
     Print total file sizes and ratios. The values produced are correct
     even for multimember files. Use it together with '-v' to see
     information about the members in the file.

'-m'
'--merge'
     Try to produce a correct file by merging the good parts of two or
     more damaged copies. If successful, a repaired copy is written to
     the file 'FILE_fixed.lz'. The exit status is 0 if a correct file
     could be produced, 2 otherwise. See the chapter 'Merging files'
     (*note Merging files::) for a complete description of the merge
     mode.

'-o FILE'
'--output=FILE'
     Place the output into 'FILE' instead of into 'FILE_fixed.lz'. If
     splitting, the names of the files produced are in the form
     'rec01FILE', 'rec02FILE', etc. If decompressing from standard
     input and '--stdout' has not been specified, use 'FILE' as the
     name of the decompressed file. If converting a lzma-alone file
     from standard input and '--stdout' has not been specified, use
     'FILE.lz' as the name of the converted file. (Or plain 'FILE' if
     it already ends in '.lz' or '.tlz').

'-q'
'--quiet'
     Quiet operation. Suppress all messages.

'-R'
'--repair'
     Try to repair a file with small errors (up to one byte error per
     member). If successful, a repaired copy is written to the file
     'FILE_fixed.lz'. 'FILE' is not modified at all.  The exit status
     is 0 if the file could be repaired, 2 otherwise. See the chapter
     'Repairing files' (*note Repairing files::) for a complete
     description of the repair mode.

'-s'
'--split'
     Search for members in 'FILE' and write each member in its own
     '.lz' file. You can then use 'lziprecover -t' to test the
     integrity of the resulting files, decompress those which are
     undamaged, and try to repair or partially decompress those which
     are damaged.

     The names of the files produced are in the form 'rec01FILE',
     'rec02FILE', etc, and are designed so that the use of wildcards in
     subsequent processing, for example,
     'lziprecover -cd rec*FILE > recovered_data', processes the files
     in the correct order. The number of digits used in the names
     varies depending on the number of members in 'FILE'.

'-t'
'--test'
     Check integrity of the specified file(s), but don't decompress
     them.  This really performs a trial decompression and throws away
     the result.  Use it together with '-v' to see information about
     the file(s). If a file fails the test, lziprecover continues
     checking the rest of the files.

'-v'
'--verbose'
     Verbose mode.
     When decompressing or testing, further -v's (up to 4) increase the
     verbosity level, showing status, compression ratio, dictionary
     size, trailer contents (CRC, data size, member size), and up to 6
     bytes of trailing data (if any).


   Numbers given as arguments to options may be followed by a multiplier
and an optional 'B' for "byte".

   Table of SI and binary prefixes (unit multipliers):

Prefix   Value                     |   Prefix   Value
k        kilobyte  (10^3 = 1000)   |   Ki       kibibyte (2^10 = 1024)
M        megabyte  (10^6)          |   Mi       mebibyte (2^20)
G        gigabyte  (10^9)          |   Gi       gibibyte (2^30)
T        terabyte  (10^12)         |   Ti       tebibyte (2^40)
P        petabyte  (10^15)         |   Pi       pebibyte (2^50)
E        exabyte   (10^18)         |   Ei       exbibyte (2^60)
Z        zettabyte (10^21)         |   Zi       zebibyte (2^70)
Y        yottabyte (10^24)         |   Yi       yobibyte (2^80)


   Exit status: 0 for a normal exit, 1 for environmental problems (file
not found, invalid flags, I/O errors, etc), 2 to indicate a corrupt or
invalid input file, 3 for an internal consistency error (eg, bug) which
caused lziprecover to panic.


File: lziprecover.info,  Node: Data safety,  Next: Repairing files,  Prev: Invoking lziprecover,  Up: Top

3 Protecting data from accidental loss
**************************************

There are 3 main types of data corruption that may cause data loss:
single-byte errors, multibyte errors (generally affecting a whole sector
in a block device), and total device failure.

   Lziprecover protects natively against single-byte errors (*note
Repairing files::), as long as file integrity is checked frequently
enough that a second single-byte error does not develop in the same
member before the first one is repaired.

   Lziprecover also protects against multibyte errors (*note Merging
files::), if at least one backup copy of the file is made.

   The only remedy for total device failure is storing backup copies in
separate media.

   How does lzip compare with gzip and bzip2 with respect to data
safety?  Lets suppose that you made a backup of your valuable
scientific data, compressed it, and stored two copies on separate
media. Years later you notice that both copies are corrupt.

   If you compressed with gzip and both copies suffer any damage in the
data stream, even if it is just one altered bit, the original data can't
be recovered.

   If you used bzip2, and if the file is large enough to contain more
than one compressed data block (usually larger than 900 kB
uncompressed), and if no block is damaged in both files, then the data
can be manually recovered by splitting the files with bzip2recover,
verifying every block and then copying the right blocks in the right
order into another file.

   But if you used lzip, the data can be automatically recovered as
long as the damaged areas don't overlap.

   Note that each error in a bzip2 file makes a whole block unusable,
but each error in a lzip file only affects the damaged bytes, making it
possible to recover a file with thousands of errors.


File: lziprecover.info,  Node: Repairing files,  Next: Merging files,  Prev: Data safety,  Up: Top

4 Repairing files
*****************

Lziprecover can repair perfectly most files with small errors (up to one
single-byte error per member), without the need of any extra redundance
at all. If the reparation is successful, the repaired file will be
identical bit for bit to the original. This makes lzip files resistant
to bit-flip, one of the most common forms of data corruption.

   The error may be located anywhere in the file except in the first 5
bytes of each member header or in the 'Member size' field of the
trailer (last 8 bytes of each member). If the error is in the header it
can be easily repaired with a text editor like GNU Moe (*note File
format::). If the error is in the member size, it is enough to ignore
the message about 'bad member size' when decompressing.

   Bit-flip happens when one bit in the file is changed from 0 to 1 or
vice versa. It may be caused by bad RAM or even by natural radiation. I
have seen a case of bit-flip in a file stored on an USB flash drive.

   One byte may seem small, but most file corruptions not produced by
I/O errors just affect one byte, or even one bit, of the file. Also,
unlike magnetic media, where errors usually affect a whole sector,
solid-state storage devices tend to produce single-byte errors, making
of lzip the perfect format for data stored on such devices.

   Repairing a file can take some time. Small files or files with the
error located near the beginning can be repaired in a few seconds. But
repairing a large file compressed with a large dictionary size and with
the error located far from the beginning, can take hours.

   On the other hand, errors located near the beginning of the file
cause much more loss of data than errors located near the end. So
lziprecover repairs more efficiently the worst errors.


File: lziprecover.info,  Node: Merging files,  Next: File names,  Prev: Repairing files,  Up: Top

5 Merging files
***************

If you have several copies of a file but all of them are too damaged to
repair them (*note Repairing files::), lziprecover can try to produce a
correct file by merging the good parts of the damaged copies.

   The merge may succeed even if some copies of the file have all the
headers and trailers damaged, as long as there is at least one copy of
every header and trailer intact, even if they are in different copies of
the file.

   The merge will fail if the damaged areas overlap (at least one byte
is damaged in all copies), or are adjacent and the boundary can't be
determined, or if the copies have too many damaged areas.

   All the copies must have the same size. If any of them is larger or
smaller than it should, either because it has been truncated or because
it got some garbage data appended at the end, it can be brought to the
correct size with the following command before merging it with the other
copies:

     ddrescue -s<correct_size> -x<correct_size> file.lz correct_size_file.lz

   To give you an idea of its possibilities, when merging two copies,
each of them with one damaged area affecting 1 percent of the copy, the
probability of obtaining a correct file is about 98 percent. With three
such copies the probability rises to 99.97 percent. For large files (a
few MB) with small errors (one sector damaged per copy), the probability
approaches 100 percent even with only two copies. (Supposing that the
errors are randomly located inside each copy).


File: lziprecover.info,  Node: File names,  Next: File format,  Prev: Merging files,  Up: Top

6 Names of the files produced by lziprecover
********************************************

The name of the fixed file produced by '--merge' and '--repair' is made
by appending the string '_fixed.lz' to the original file name. If the
original file name ends with one of the extensions '.tar.lz', '.lz' or
'.tlz', the string '_fixed' is inserted before the extension.


File: lziprecover.info,  Node: File format,  Next: Trailing data,  Prev: File names,  Up: Top

7 File format
*************

Perfection is reached, not when there is no longer anything to add, but
when there is no longer anything to take away.
-- Antoine de Saint-Exupery


   In the diagram below, a box like this:
+---+
|   | <-- the vertical bars might be missing
+---+

   represents one byte; a box like this:
+==============+
|              |
+==============+

   represents a variable number of bytes.


   A lzip file consists of a series of "members" (compressed data sets).
The members simply appear one after another in the file, with no
additional information before, between, or after them.

   Each member has the following structure:
+--+--+--+--+----+----+=============+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ID string | VN | DS | LZMA stream | CRC32 |   Data size   |  Member size  |
+--+--+--+--+----+----+=============+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   All multibyte values are stored in little endian order.

'ID string (the "magic" bytes)'
     A four byte string, identifying the lzip format, with the value
     "LZIP" (0x4C, 0x5A, 0x49, 0x50).

'VN (version number, 1 byte)'
     Just in case something needs to be modified in the future. 1 for
     now.

'DS (coded dictionary size, 1 byte)'
     The dictionary size is calculated by taking a power of 2 (the base
     size) and substracting from it a fraction between 0/16 and 7/16 of
     the base size.
     Bits 4-0 contain the base 2 logarithm of the base size (12 to 29).
     Bits 7-5 contain the numerator of the fraction (0 to 7) to
     substract from the base size to obtain the dictionary size.
     Example: 0xD3 = 2^19 - 6 * 2^15 = 512 KiB - 6 * 32 KiB = 320 KiB
     Valid values for dictionary size range from 4 KiB to 512 MiB.

'LZMA stream'
     The LZMA stream, finished by an end of stream marker. Uses default
     values for encoder properties.  *Note Stream format: (lzip)Stream
     format, for a complete description.

'CRC32 (4 bytes)'
     CRC of the uncompressed original data.

'Data size (8 bytes)'
     Size of the uncompressed original data.

'Member size (8 bytes)'
     Total size of the member, including header and trailer. This field
     acts as a distributed index, allows the verification of stream
     integrity, and facilitates safe recovery of undamaged members from
     multimember files.



File: lziprecover.info,  Node: Trailing data,  Next: Examples,  Prev: File format,  Up: Top

8 Extra data appended to the file
*********************************

Sometimes extra data is found appended to a lzip file after the last
member. Such trailing data may be:

   * Padding added to make the file size a multiple of some block size,
     for example when writing to a tape.

   * Garbage added by some not totally successful copy operation.

   * Useful data added by the user; a cryptographically secure hash, a
     description of file contents, etc.

   * Malicious data added to the file in order to make its total size
     and hash value (for a chosen hash) coincide with those of another
     file.

   * In very rare cases, trailing data could be the corrupt header of
     another member. In multimember or concatenated files the
     probability of corruption happening in the magic bytes is 5 times
     smaller than the probability of getting a false positive caused by
     the corruption of the integrity information itself. Therefore it
     can be considered to be below the noise level.

   Trailing data can be safely ignored in most cases. In some cases,
like that of user-added data, it is expected to be ignored. In those
cases where a file containing trailing data must be rejected, the option
'--trailing-error' can be used. *Note --trailing-error::.


File: lziprecover.info,  Node: Examples,  Next: Unzcrash,  Prev: Trailing data,  Up: Top

9 A small tutorial with examples
********************************

Example 1: Restore a regular file from its compressed version
'file.lz'. If the operation is successful, 'file.lz' is removed.

     lziprecover -d file.lz


Example 2: Verify the integrity of the compressed file 'file.lz' and
show status.

     lziprecover -tv file.lz


Example 3: The right way of concatenating compressed files.  *Note
Trailing data::.

     Don't do this
       cat file1.lz file2.lz file3.lz | lziprecover -d
     Do this instead
       lziprecover -cd file1.lz file2.lz file3.lz


Example 4: Decompress 'file.lz' partially until 10 KiB of decompressed
data are produced.

     lziprecover -D 0,10KiB file.lz


Example 5: Decompress 'file.lz' partially from decompressed byte 10000
to decompressed byte 15000 (5000 bytes are produced).

     lziprecover -D 10000-15000 file.lz


Example 6: Repair small errors in the file 'file.lz'. (Indented lines
are abridged diagnostic messages from lziprecover).

     lziprecover -v -R file.lz
       Copy of input file repaired successfully.
     lziprecover -tv file_fixed.lz
       file_fixed.lz: ok
     mv file_fixed.lz file.lz


Example 7: Split the multimember file 'file.lz' and write each member
in its own 'recXXXfile.lz' file. Then use 'lziprecover -t' to test the
integrity of the resulting files.

     lziprecover -s file.lz
     lziprecover -tv rec*file.lz


Example 8: Recover a compressed backup from two copies on CD-ROM with
error-checked merging of copies.  (*Note GNU ddrescue manual:
(ddrescue)Top, for details about ddrescue).

     ddrescue -d -r1 -b2048 /dev/cdrom cdimage1 mapfile1
     mount -t iso9660 -o loop,ro cdimage1 /mnt/cdimage
     cp /mnt/cdimage/backup.tar.lz rescued1.tar.lz
     umount /mnt/cdimage
       (insert second copy in the CD drive)
     ddrescue -d -r1 -b2048 /dev/cdrom cdimage2 mapfile2
     mount -t iso9660 -o loop,ro cdimage2 /mnt/cdimage
     cp /mnt/cdimage/backup.tar.lz rescued2.tar.lz
     umount /mnt/cdimage
     lziprecover -m -v -o backup.tar.lz rescued1.tar.lz rescued2.tar.lz
       Input files merged successfully.
     lziprecover -tv backup.tar.lz
       backup.tar.lz: ok


Example 9: Recover the first volume of those created with the command
'lzip -b 32MiB -S 650MB big_db' from two copies, 'big_db1_00001.lz' and
'big_db2_00001.lz', with member 07 damaged in the first copy, member 18
damaged in the second copy, and member 12 damaged in both copies. The
correct file produced is saved in 'big_db_00001.lz'.

     lziprecover -m -v -o big_db_00001.lz big_db1_00001.lz big_db2_00001.lz
       Input files merged successfully.
     lziprecover -tv big_db_00001.lz
       big_db_00001.lz: ok


File: lziprecover.info,  Node: Unzcrash,  Next: Problems,  Prev: Examples,  Up: Top

10 Testing the robustness of decompressors
******************************************

The lziprecover package also includes unzcrash, a program written to
test robustness to decompression of corrupted data, inspired by
unzcrash.c from Julian Seward's bzip2. Type 'make unzcrash' in the
lziprecover source directory to build it.

   By default, unzcrash reads the specified file and then repeatedly
decompresses it, increasing 256 times each byte of the compressed data,
so as to test all possible one-byte errors.

   If the '--block' option is given, unzcrash reads the specified file
and then repeatedly decompresses it, setting all bytes in each
successive block to the value given, so as to test all possible full
sector errors.

   If the '--truncate' option is given, unzcrash reads the specified
file and then repeatedly decompresses it, truncating the file to
increasing lengths, so as to test all possible truncation points.

   None of the three test modes described above should cause any invalid
memory accesses. If any of them does, please, report it as a bug to the
maintainers of the decompressor being tested.

   Unzcrash really executes as a subprocess the shell command specified
in the first non-option argument, and then writes the file specified in
the second non-option argument to the standard input of the subprocess,
modifying the corresponding byte each time. Therefore unzcrash can be
used to test any decompressor (not only lzip), or even other decoder
programs having a suitable command line syntax.

   If the decompressor returns with zero status, unzcrash compares the
output of the decompressor for the original and corrupt files. If the
outputs differ, it means that the decompressor returned a false
negative; it failed to recognize the corruption and produced garbage
output. The only exception is when a multimember file is truncated just
after the last byte of a member, producing a shorter but valid
compressed file. Except in this latter case, please, report any false
negative as a bug.

   In order to compare the outputs, unzcrash needs a 'zcmp' program
able to understand the format being tested. For example the one provided
by 'zutils'.  *Note Zcmp: (zutils)Zcmp,

   The format for running unzcrash is:

     unzcrash [OPTIONS] "lzip -tv" FILENAME.lz

   Unzcrash supports the following options:

'-h'
'--help'
     Print an informative help message describing the options and exit.

'-V'
'--version'
     Print the version number of unzcrash on the standard output and
     exit.

'-b RANGE'
'--bits=RANGE'
     Test N-bit errors only, instead of testing all the 255 wrong
     values for each byte. 'N-bit error' means any value differing from
     the original value in N bit positions, not a value differing from
     the original value in the bit position N.
     The number of N-bit errors per byte (N = 1 to 8) is:
     8 28 56 70 56 28 8 1

     Examples of RANGE   Tests errors of N-bit
     1                   1
     1,2,3               1, 2 and 3
     2-4                 2, 3 and 4
     1,3-5,8             1, 3, 4, 5 and 8
     1-3,5-8             1, 2, 3, 5, 6, 7 and 8

'-B[SIZE][,VALUE]'
'--block[=SIZE][,VALUE]'
     Test block errors of given SIZE aligned to a SIZE-byte boundary,
     simulating a whole sector I/O error. Block SIZE defaults to 512
     bytes. VALUE defaults to 0.

'-d N'
'--delta=N'
     Test only one of every N bytes, blocks or truncation sizes,
     instead of all of them.

'-p BYTES'
'--position=BYTES'
     First byte position to test in the file. Defaults to 0. Negative
     values are relative to the end of the file.

'-q'
'--quiet'
     Quiet operation. Suppress all messages.

'-s BYTES'
'--size=BYTES'
     Number of byte positions to test. If not specified, the rest of
     the file is tested (from '--position' to end of file). Negative
     values are relative to the rest of the file.

'-t'
'--truncate'
     Test all possible truncation points in the range specified by
     '--position' and '--size'.

'-v'
'--verbose'
     Verbose mode.

'-z'
'--zcmp=<command>'
     Set zcmp command name and options. Defaults to 'zcmp'. Use
     '--zcmp=false' to disable comparisons.


   Exit status: 0 for a normal exit, 1 for environmental problems (file
not found, invalid flags, I/O errors, etc), 2 to indicate a corrupt or
invalid input file, 3 for an internal consistency error (eg, bug) which
caused unzcrash to panic.


File: lziprecover.info,  Node: Problems,  Next: Concept index,  Prev: Unzcrash,  Up: Top

11 Reporting bugs
*****************

There are probably bugs in lziprecover. There are certainly errors and
omissions in this manual. If you report them, they will get fixed. If
you don't, no one will ever know about them and they will remain unfixed
for all eternity, if not longer.

   If you find a bug in lziprecover, please send electronic mail to
<lzip-bug@nongnu.org>. Include the version number, which you can find
by running 'lziprecover --version'.


File: lziprecover.info,  Node: Concept index,  Prev: Problems,  Up: Top

Concept index
*************

[index]
* Menu:

* bugs:                                  Problems.              (line 6)
* data safety:                           Data safety.           (line 6)
* examples:                              Examples.              (line 6)
* file format:                           File format.           (line 6)
* file names:                            File names.            (line 6)
* getting help:                          Problems.              (line 6)
* introduction:                          Introduction.          (line 6)
* invoking:                              Invoking lziprecover.  (line 6)
* merging files:                         Merging files.         (line 6)
* repairing files:                       Repairing files.       (line 6)
* trailing data:                         Trailing data.         (line 6)
* unzcrash:                              Unzcrash.              (line 6)



Tag Table:
Node: Top231
Node: Introduction1267
Node: Invoking lziprecover4525
Ref: --trailing-error5175
Node: Data safety11779
Node: Repairing files13702
Node: Merging files15602
Node: File names17217
Node: File format17681
Node: Trailing data20109
Node: Examples21492
Ref: concat-example21923
Ref: ddrescue-example22986
Node: Unzcrash24276
Node: Problems28786
Node: Concept index29338

End Tag Table


Local Variables:
coding: iso-8859-15
End: