1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
/* Lziprecover - Data recovery tool for the lzip format
Copyright (C) 2023-2024 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define _FILE_OFFSET_BITS 64
#include <cstdio>
#include <cstring>
#include <list>
#include <string>
#include <vector>
#include <stdint.h>
#include "lzip.h"
#include "md5.h"
#include "fec.h"
namespace {
struct Galois8_table // addition/subtraction is exclusive or
{
enum { size = 1 << 8, poly = 0x11D }; // generator polynomial
uint8_t * log, * ilog, * mul_table;
Galois8_table() : log( 0 ), ilog( 0 ), mul_table( 0 ) {}
// ~Galois8_table() { delete[] mul_table; delete[] ilog; delete[] log; }
void init() // fill log, inverse log, and multiplication tables
{
if( log ) return;
log = new uint8_t[size]; ilog = new uint8_t[size];
mul_table = new uint8_t[size * size];
for( unsigned b = 1, i = 0; i < size - 1; ++i )
{
log[b] = i;
ilog[i] = b;
b <<= 1;
if( b & size ) b ^= poly;
}
log[0] = size - 1; // log(0) is not defined, so use a special value
ilog[size-1] = 1;
for( int i = 1; i < size; ++i )
{
uint8_t * const mul_row = mul_table + i * size;
for( int j = 1; j < size; ++j )
mul_row[j] = ilog[(log[i] + log[j]) % (size - 1)];
}
for( int i = 0; i < size; ++i )
mul_table[0 * size + i] = mul_table[i * size + 0] = 0;
}
uint8_t inverse( const uint8_t a ) const { return ilog[size-1-log[a]]; }
} gf;
// check that A * B = I (A, B, I are square matrices of size k * k)
bool check_inverse( const uint8_t * const A, const uint8_t * const B,
const unsigned k )
{
for( unsigned row = 0; row < k; ++row ) // multiply A * B
for( unsigned col = 0; col < k; ++col )
{
const uint8_t * pa = A + row * k;
const uint8_t * pb = B + col;
uint8_t sum = 0;
for( unsigned i = 0; i < k; ++i, ++pa, pb += k )
sum ^= gf.mul_table[*pa * gf.size + *pb];
if( sum != ( row == col ) ) return false; // A * B != I
}
return true;
}
/* Invert in place a matrix of size k * k.
This is like Gaussian elimination with a virtual identity matrix:
A --some_changes--> I, I --same_changes--> A^-1
Galois arithmetic is exact. Swapping rows or columns is not needed. */
bool invert_matrix( uint8_t * const matrix, const unsigned k )
{
for( unsigned row = 0; row < k; ++row )
{
uint8_t * const pivot_row = matrix + row * k;
const uint8_t pivot = pivot_row[row];
if( pivot == 0 ) return false;
if( pivot != 1 ) // scale the pivot_row
{
const uint8_t * const mul_row =
gf.mul_table + gf.inverse( pivot ) * gf.size;
pivot_row[row] = 1;
for( unsigned col = 0; col < k; ++col )
pivot_row[col] = mul_row[pivot_row[col]];
}
// subtract pivot_row from the other rows
for( unsigned row2 = 0; row2 < k; ++row2 )
if( row2 != row )
{
uint8_t * const dst_row = matrix + row2 * k;
const uint8_t c = dst_row[row]; dst_row[row] = 0;
const uint8_t * const mul_row = gf.mul_table + c * gf.size;
for( unsigned col = 0; col < k; ++col )
dst_row[col] ^= mul_row[pivot_row[col]];
}
}
return true;
}
// create dec_matrix containing only the rows needed and invert it in place
const uint8_t * init_dec_matrix( const std::vector< unsigned > & bb_vector,
const std::vector< unsigned > & fbn_vector )
{
const unsigned bad_blocks = bb_vector.size();
uint8_t * const dec_matrix = new uint8_t[bad_blocks * bad_blocks];
// one row for each missing data block
for( unsigned row = 0; row < bad_blocks; ++row )
{
uint8_t * const dec_row = dec_matrix + row * bad_blocks;
const unsigned fbn = fbn_vector[row] | 0x80;
for( unsigned col = 0; col < bad_blocks; ++col )
dec_row[col] = gf.inverse( fbn ^ bb_vector[col] );
}
if( !invert_matrix( dec_matrix, bad_blocks ) )
internal_error( "GF(2^8) matrix not invertible." );
return dec_matrix;
}
/* compute dst[] += c * src[]
treat the buffers as arrays of quadruples of 8-bit Galois values */
inline void mul_add( const uint8_t * const src, uint8_t * const dst,
const unsigned long fbs, const uint8_t c )
{
if( c == 0 ) return; // nothing to add
const uint8_t * const mul_row = gf.mul_table + c * gf.size;
const uint32_t * const src32 = (const uint32_t *)src;
uint32_t * const dst32 = (uint32_t *)dst;
for( unsigned long i = 0; i < fbs / 4; ++i )
{ const uint32_t s = src32[i];
dst32[i] ^= mul_row[s & 0xFF] ^ mul_row[s >> 8 & 0xFF] << 8 ^
mul_row[s >> 16 & 0xFF] << 16 ^ mul_row[s >> 24] << 24; }
}
} // end namespace
void gf8_init() { gf.init(); }
bool gf8_check( const std::vector< unsigned > & fbn_vector, const unsigned k )
{
if( k == 0 ) return true;
gf.init();
bool good = true;
for( unsigned a = 1; a < gf.size; ++a )
if( gf.mul_table[a * gf.size + gf.inverse( a )] != 1 )
{ good = false;
std::fprintf( stderr, "%u * ( 1/%u ) != 1 in GF(2^8)\n", a, a ); }
uint8_t * const enc_matrix = new uint8_t[k * k];
uint8_t * const dec_matrix = new uint8_t[k * k];
const bool random = fbn_vector.size() == k;
for( unsigned row = 0; row < k; ++row )
{
const unsigned fbn = ( random ? fbn_vector[row] : row ) | 0x80;
uint8_t * const enc_row = enc_matrix + row * k;
for( unsigned col = 0; col < k; ++col )
enc_row[col] = gf.inverse( fbn ^ col );
}
std::memcpy( dec_matrix, enc_matrix, k * k );
if( !invert_matrix( dec_matrix, k ) )
{ good = false; show_error( "GF(2^8) matrix not invertible." ); }
else if( !check_inverse( enc_matrix, dec_matrix, k ) )
{ good = false; show_error( "GF(2^8) matrix A * A^-1 != I" ); }
delete[] dec_matrix;
delete[] enc_matrix;
return good;
}
void rs8_encode( const uint8_t * const buffer, const uint8_t * const lastbuf,
uint8_t * const fec_block, const unsigned long fbs,
const unsigned fbn, const unsigned k )
{
if( !gf.log ) internal_error( "GF(2^8) tables not initialized." );
/* The encode matrix is a Hilbert matrix of size k * k with one row per
fec block and one column per data block.
The value of each element is computed on the fly with inverse. */
const unsigned row = fbn | 0x80;
std::memset( fec_block, 0, fbs );
for( unsigned col = 0; col < k; ++col )
{
const uint8_t * const src =
( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf;
mul_add( src, fec_block, fbs, gf.inverse( row ^ col ) );
}
}
void rs8_decode( uint8_t * const buffer, uint8_t * const lastbuf,
const std::vector< unsigned > & bb_vector,
const std::vector< unsigned > & fbn_vector,
uint8_t * const fecbuf, const unsigned long fbs,
const unsigned k )
{
gf.init();
const unsigned bad_blocks = bb_vector.size();
for( unsigned col = 0, bi = 0; col < k; ++col ) // reduce
{
if( bi < bad_blocks && col == bb_vector[bi] ) { ++bi; continue; }
const uint8_t * const src =
( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf;
for( unsigned row = 0; row < bad_blocks; ++row )
{
const unsigned fbn = fbn_vector[row] | 0x80;
mul_add( src, fecbuf + row * fbs, fbs, gf.inverse( fbn ^ col ) );
}
}
const uint8_t * const dec_matrix = init_dec_matrix( bb_vector, fbn_vector );
for( unsigned col = 0; col < bad_blocks; ++col ) // solve
{
const unsigned di = bb_vector[col];
uint8_t * const dst =
( di < k - (lastbuf != 0) ) ? buffer + di * fbs : lastbuf;
std::memset( dst, 0, fbs );
const uint8_t * const dec_row = dec_matrix + col * bad_blocks;
for( unsigned row = 0; row < bad_blocks; ++row )
mul_add( fecbuf + row * fbs, dst, fbs, dec_row[row] );
}
delete[] dec_matrix;
}
|