/* Lzlib - A compression library for lzip files
Copyright (C) 2009, 2010 Antonio Diaz Diaz.
This library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this library. If not, see .
As a special exception, you may use this file as part of a free
software library without restriction. Specifically, if other files
instantiate templates or use macros or inline functions from this
file, or you compile this file and link it with other files to
produce an executable, this file does not by itself cause the
resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU General
Public License.
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include "lzlib.h"
#include "lzip.h"
#include "decoder.h"
const CRC32 Lzlib_namespace::crc32;
// Seeks a member header and updates `get'.
// Returns true if it finds a valid header.
bool Range_decoder::find_header() throw()
{
while( get != put )
{
if( buffer[get] == magic_string[0] )
{
int g = get;
File_header header;
for( int i = 0; i < File_header::size; ++i )
{
if( g == put ) return false; // not enough data
header.data[i] = buffer[g];
if( ++g >= buffer_size ) g = 0;
}
if( header.verify() ) return true;
}
if( ++get >= buffer_size ) get = 0;
}
return false;
}
// Returns true, fills `header', and updates `get' if `get' points to a
// valid header.
// Else returns false and leaves `get' unmodified.
bool Range_decoder::read_header( File_header & header ) throw()
{
int g = get;
for( int i = 0; i < File_header::size; ++i )
{
if( g == put ) return false; // not enough data
header.data[i] = buffer[g];
if( ++g >= buffer_size ) g = 0;
}
if( header.verify() )
{
get = g;
member_pos = File_header::size;
reload_pending = true;
return true;
}
return false;
}
bool LZ_decoder::verify_trailer()
{
File_trailer trailer;
const int trailer_size = File_trailer::size( member_version );
const long long member_size = range_decoder.member_position() + trailer_size;
bool error = false;
for( int i = 0; i < trailer_size && !error; ++i )
{
if( !range_decoder.finished() )
trailer.data[i] = range_decoder.get_byte();
else { error = true; for( ; i < trailer_size; ++i ) trailer.data[i] = 0; }
}
if( member_version == 0 ) trailer.member_size( member_size );
if( !range_decoder.code_is_zero() ) error = true;
if( trailer.data_crc() != crc() ) error = true;
if( trailer.data_size() != data_position() ) error = true;
if( trailer.member_size() != member_size ) error = true;
return !error;
}
// Return value: 0 = OK, 1 = decoder error, 2 = unexpected EOF,
// 3 = trailer error, 4 = unknown marker found.
int LZ_decoder::decode_member()
{
if( member_finished_ ) return 0;
if( !range_decoder.try_reload() ) return 0;
if( verify_trailer_pending )
{
if( range_decoder.available_bytes() < File_trailer::size( member_version ) &&
!range_decoder.at_stream_end() )
return 0;
verify_trailer_pending = false;
member_finished_ = true;
if( verify_trailer() ) return 0; else return 3;
}
while( true )
{
if( range_decoder.finished() ) return 2;
if( !range_decoder.enough_available_bytes() || !enough_free_bytes() )
return 0;
const int pos_state = data_position() & pos_state_mask;
if( range_decoder.decode_bit( bm_match[state()][pos_state] ) == 0 )
{
const uint8_t prev_byte = get_byte( 0 );
if( state.is_char() )
put_byte( literal_decoder.decode( range_decoder, prev_byte ) );
else
put_byte( literal_decoder.decode_matched( range_decoder, prev_byte,
get_byte( rep0 ) ) );
state.set_char();
}
else
{
int len;
if( range_decoder.decode_bit( bm_rep[state()] ) == 1 )
{
len = 0;
if( range_decoder.decode_bit( bm_rep0[state()] ) == 0 )
{
if( range_decoder.decode_bit( bm_len[state()][pos_state] ) == 0 )
{ len = 1; state.set_short_rep(); }
}
else
{
unsigned int distance;
if( range_decoder.decode_bit( bm_rep1[state()] ) == 0 )
distance = rep1;
else
{
if( range_decoder.decode_bit( bm_rep2[state()] ) == 0 )
distance = rep2;
else { distance = rep3; rep3 = rep2; }
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
if( len == 0 )
{
len = min_match_len + rep_match_len_decoder.decode( range_decoder, pos_state );
state.set_rep();
}
}
else
{
unsigned int rep0_saved = rep0;
len = min_match_len + len_decoder.decode( range_decoder, pos_state );
const int dis_slot = range_decoder.decode_tree( bm_dis_slot[get_dis_state(len)], dis_slot_bits );
if( dis_slot < start_dis_model ) rep0 = dis_slot;
else
{
const int direct_bits = ( dis_slot >> 1 ) - 1;
rep0 = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
if( dis_slot < end_dis_model )
rep0 += range_decoder.decode_tree_reversed( bm_dis + rep0 - dis_slot, direct_bits );
else
{
rep0 += range_decoder.decode( direct_bits - dis_align_bits ) << dis_align_bits;
rep0 += range_decoder.decode_tree_reversed( bm_align, dis_align_bits );
if( rep0 == 0xFFFFFFFFU ) // Marker found
{
rep0 = rep0_saved;
range_decoder.normalize();
if( len == min_match_len ) // End Of Stream marker
{
if( range_decoder.available_bytes() < File_trailer::size( member_version ) &&
!range_decoder.at_stream_end() )
{ verify_trailer_pending = true; return 0; }
member_finished_ = true;
if( verify_trailer() ) return 0; else return 3;
}
if( len == min_match_len + 1 ) // Sync Flush marker
{
if( range_decoder.try_reload( true ) ) continue;
else return 0;
}
return 4;
}
if( rep0 >= (unsigned int)dictionary_size ) return 1;
}
}
rep3 = rep2; rep2 = rep1; rep1 = rep0_saved;
state.set_match();
}
copy_block( rep0, len );
}
}
}
// Copies up to `out_size' bytes to `out_buffer' and updates `get'.
// Returns the number of bytes copied.
int Circular_buffer::read_data( uint8_t * const out_buffer, const int out_size ) throw()
{
if( out_size < 0 ) return 0;
int size = 0;
if( get > put )
{
size = std::min( buffer_size - get, out_size );
if( size > 0 )
{
std::memcpy( out_buffer, buffer + get, size );
get += size;
if( get >= buffer_size ) get = 0;
}
}
if( get < put )
{
const int size2 = std::min( put - get, out_size - size );
if( size2 > 0 )
{
std::memcpy( out_buffer + size, buffer + get, size2 );
get += size2;
size += size2;
}
}
return size;
}
// Copies up to `in_size' bytes from `in_buffer' and updates `put'.
// Returns the number of bytes copied.
int Circular_buffer::write_data( const uint8_t * const in_buffer, const int in_size ) throw()
{
if( in_size < 0 ) return 0;
int size = 0;
if( put >= get )
{
size = std::min( buffer_size - put - (get == 0), in_size );
if( size > 0 )
{
std::memcpy( buffer + put, in_buffer, size );
put += size;
if( put >= buffer_size ) put = 0;
}
}
if( put < get )
{
const int size2 = std::min( get - put - 1, in_size - size );
if( size2 > 0 )
{
std::memcpy( buffer + put, in_buffer + size, size2 );
put += size2;
size += size2;
}
}
return size;
}