/* Lzlib - Compression library for the lzip format Copyright (C) 2009-2024 Antonio Diaz Diaz. This library is free software. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */ enum { rd_min_available_bytes = 10 }; struct Range_decoder { struct Circular_buffer cb; /* input buffer */ unsigned long long member_position; uint32_t code; uint32_t range; bool at_stream_end; bool reload_pending; }; static inline bool Rd_init( struct Range_decoder * const rdec ) { if( !Cb_init( &rdec->cb, 65536 + rd_min_available_bytes ) ) return false; rdec->member_position = 0; rdec->code = 0; rdec->range = 0xFFFFFFFFU; rdec->at_stream_end = false; rdec->reload_pending = false; return true; } static inline void Rd_free( struct Range_decoder * const rdec ) { Cb_free( &rdec->cb ); } static inline bool Rd_finished( const struct Range_decoder * const rdec ) { return rdec->at_stream_end && Cb_empty( &rdec->cb ); } static inline void Rd_finish( struct Range_decoder * const rdec ) { rdec->at_stream_end = true; } static inline bool Rd_enough_available_bytes( const struct Range_decoder * const rdec ) { return Cb_used_bytes( &rdec->cb ) >= rd_min_available_bytes; } static inline unsigned Rd_available_bytes( const struct Range_decoder * const rdec ) { return Cb_used_bytes( &rdec->cb ); } static inline unsigned Rd_free_bytes( const struct Range_decoder * const rdec ) { return rdec->at_stream_end ? 0 : Cb_free_bytes( &rdec->cb ); } static inline unsigned long long Rd_purge( struct Range_decoder * const rdec ) { const unsigned long long size = rdec->member_position + Cb_used_bytes( &rdec->cb ); Cb_reset( &rdec->cb ); rdec->member_position = 0; rdec->at_stream_end = true; return size; } static inline void Rd_reset( struct Range_decoder * const rdec ) { Cb_reset( &rdec->cb ); rdec->member_position = 0; rdec->at_stream_end = false; } /* Seek for a member header and update 'get'. Set '*skippedp' to the number of bytes skipped. Return true if a valid header is found. */ static bool Rd_find_header( struct Range_decoder * const rdec, unsigned * const skippedp ) { *skippedp = 0; while( rdec->cb.get != rdec->cb.put ) { if( rdec->cb.buffer[rdec->cb.get] == lzip_magic[0] ) { unsigned get = rdec->cb.get; int i; Lzip_header header; for( i = 0; i < Lh_size; ++i ) { if( get == rdec->cb.put ) return false; /* not enough data */ header[i] = rdec->cb.buffer[get]; if( ++get >= rdec->cb.buffer_size ) get = 0; } if( Lh_check( header ) ) return true; } if( ++rdec->cb.get >= rdec->cb.buffer_size ) rdec->cb.get = 0; ++*skippedp; } return false; } static inline int Rd_write_data( struct Range_decoder * const rdec, const uint8_t * const inbuf, const int size ) { if( rdec->at_stream_end || size <= 0 ) return 0; return Cb_write_data( &rdec->cb, inbuf, size ); } static inline uint8_t Rd_get_byte( struct Range_decoder * const rdec ) { /* 0xFF avoids decoder error if member is truncated at EOS marker */ if( Rd_finished( rdec ) ) return 0xFF; ++rdec->member_position; return Cb_get_byte( &rdec->cb ); } static inline int Rd_read_data( struct Range_decoder * const rdec, uint8_t * const outbuf, const int size ) { const int sz = Cb_read_data( &rdec->cb, outbuf, size ); if( sz > 0 ) rdec->member_position += sz; return sz; } static inline bool Rd_unread_data( struct Range_decoder * const rdec, const unsigned size ) { if( size > rdec->member_position || !Cb_unread_data( &rdec->cb, size ) ) return false; rdec->member_position -= size; return true; } static int Rd_try_reload( struct Range_decoder * const rdec ) { if( rdec->reload_pending && Rd_available_bytes( rdec ) >= 5 ) { rdec->reload_pending = false; rdec->code = 0; rdec->range = 0xFFFFFFFFU; /* check first byte of the LZMA stream without reading it */ if( rdec->cb.buffer[rdec->cb.get] != 0 ) return 2; Rd_get_byte( rdec ); /* discard first byte of the LZMA stream */ int i; for( i = 0; i < 4; ++i ) rdec->code = (rdec->code << 8) | Rd_get_byte( rdec ); } return !rdec->reload_pending; } static inline void Rd_normalize( struct Range_decoder * const rdec ) { if( rdec->range <= 0x00FFFFFFU ) { rdec->range <<= 8; rdec->code = (rdec->code << 8) | Rd_get_byte( rdec ); } } static inline unsigned Rd_decode( struct Range_decoder * const rdec, const int num_bits ) { unsigned symbol = 0; int i; for( i = num_bits; i > 0; --i ) { Rd_normalize( rdec ); rdec->range >>= 1; /* symbol <<= 1; */ /* if( rdec->code >= rdec->range ) { rdec->code -= rdec->range; symbol |= 1; } */ const bool bit = rdec->code >= rdec->range; symbol <<= 1; symbol += bit; rdec->code -= rdec->range & ( 0U - bit ); } return symbol; } static inline unsigned Rd_decode_bit( struct Range_decoder * const rdec, Bit_model * const probability ) { Rd_normalize( rdec ); const uint32_t bound = ( rdec->range >> bit_model_total_bits ) * *probability; if( rdec->code < bound ) { rdec->range = bound; *probability += ( bit_model_total - *probability ) >> bit_model_move_bits; return 0; } else { rdec->code -= bound; rdec->range -= bound; *probability -= *probability >> bit_model_move_bits; return 1; } } static inline void Rd_decode_symbol_bit( struct Range_decoder * const rdec, Bit_model * const probability, unsigned * symbol ) { Rd_normalize( rdec ); *symbol <<= 1; const uint32_t bound = ( rdec->range >> bit_model_total_bits ) * *probability; if( rdec->code < bound ) { rdec->range = bound; *probability += ( bit_model_total - *probability ) >> bit_model_move_bits; } else { rdec->code -= bound; rdec->range -= bound; *probability -= *probability >> bit_model_move_bits; *symbol |= 1; } } static inline void Rd_decode_symbol_bit_reversed( struct Range_decoder * const rdec, Bit_model * const probability, unsigned * model, unsigned * symbol, const int i ) { Rd_normalize( rdec ); *model <<= 1; const uint32_t bound = ( rdec->range >> bit_model_total_bits ) * *probability; if( rdec->code < bound ) { rdec->range = bound; *probability += ( bit_model_total - *probability ) >> bit_model_move_bits; } else { rdec->code -= bound; rdec->range -= bound; *probability -= *probability >> bit_model_move_bits; *model |= 1; *symbol |= 1 << i; } } static inline unsigned Rd_decode_tree6( struct Range_decoder * const rdec, Bit_model bm[] ) { unsigned symbol = 1; Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); return symbol & 0x3F; } static inline unsigned Rd_decode_tree8( struct Range_decoder * const rdec, Bit_model bm[] ) { unsigned symbol = 1; Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); return symbol & 0xFF; } static inline unsigned Rd_decode_tree_reversed( struct Range_decoder * const rdec, Bit_model bm[], const int num_bits ) { unsigned model = 1; unsigned symbol = 0; int i; for( i = 0; i < num_bits; ++i ) Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, i ); return symbol; } static inline unsigned Rd_decode_tree_reversed4( struct Range_decoder * const rdec, Bit_model bm[] ) { unsigned model = 1; unsigned symbol = 0; Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, 0 ); Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, 1 ); Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, 2 ); Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, 3 ); return symbol; } static inline unsigned Rd_decode_matched( struct Range_decoder * const rdec, Bit_model bm[], unsigned match_byte ) { unsigned symbol = 1; unsigned mask = 0x100; while( true ) { const unsigned match_bit = ( match_byte <<= 1 ) & mask; const unsigned bit = Rd_decode_bit( rdec, &bm[symbol+match_bit+mask] ); symbol <<= 1; symbol += bit; if( symbol > 0xFF ) return symbol & 0xFF; mask &= ~(match_bit ^ (bit << 8)); /* if( match_bit != bit ) mask = 0; */ } } static inline unsigned Rd_decode_len( struct Range_decoder * const rdec, struct Len_model * const lm, const int pos_state ) { Bit_model * bm; unsigned mask, offset, symbol = 1; if( Rd_decode_bit( rdec, &lm->choice1 ) == 0 ) { bm = lm->bm_low[pos_state]; mask = 7; offset = 0; goto len3; } if( Rd_decode_bit( rdec, &lm->choice2 ) == 0 ) { bm = lm->bm_mid[pos_state]; mask = 7; offset = len_low_symbols; goto len3; } bm = lm->bm_high; mask = 0xFF; offset = len_low_symbols + len_mid_symbols; Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); len3: Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol ); return ( symbol & mask ) + min_match_len + offset; } enum { lzd_min_free_bytes = max_match_len }; struct LZ_decoder { struct Circular_buffer cb; unsigned long long partial_data_pos; struct Range_decoder * rdec; unsigned dictionary_size; uint32_t crc; bool check_trailer_pending; bool member_finished; bool pos_wrapped; unsigned rep0; /* rep[0-3] latest four distances */ unsigned rep1; /* used for efficient coding of */ unsigned rep2; /* repeated distances */ unsigned rep3; State state; Bit_model bm_literal[1<cb ) >= lzd_min_free_bytes; } static inline uint8_t LZd_peek_prev( const struct LZ_decoder * const d ) { return d->cb.buffer[((d->cb.put > 0) ? d->cb.put : d->cb.buffer_size)-1]; } static inline uint8_t LZd_peek( const struct LZ_decoder * const d, const unsigned distance ) { const unsigned i = ( ( d->cb.put > distance ) ? 0 : d->cb.buffer_size ) + d->cb.put - distance - 1; return d->cb.buffer[i]; } static inline void LZd_put_byte( struct LZ_decoder * const d, const uint8_t b ) { CRC32_update_byte( &d->crc, b ); d->cb.buffer[d->cb.put] = b; if( ++d->cb.put >= d->cb.buffer_size ) { d->partial_data_pos += d->cb.put; d->cb.put = 0; d->pos_wrapped = true; } } static inline void LZd_copy_block( struct LZ_decoder * const d, const unsigned distance, unsigned len ) { unsigned lpos = d->cb.put, i = lpos - distance - 1; bool fast, fast2; if( lpos > distance ) { fast = len < d->cb.buffer_size - lpos; fast2 = fast && len <= lpos - i; } else { i += d->cb.buffer_size; fast = len < d->cb.buffer_size - i; /* (i == pos) may happen */ fast2 = fast && len <= i - lpos; } if( fast ) /* no wrap */ { const unsigned tlen = len; if( fast2 ) /* no wrap, no overlap */ memcpy( d->cb.buffer + lpos, d->cb.buffer + i, len ); else for( ; len > 0; --len ) d->cb.buffer[lpos++] = d->cb.buffer[i++]; CRC32_update_buf( &d->crc, d->cb.buffer + d->cb.put, tlen ); d->cb.put += tlen; } else for( ; len > 0; --len ) { LZd_put_byte( d, d->cb.buffer[i] ); if( ++i >= d->cb.buffer_size ) i = 0; } } static inline bool LZd_init( struct LZ_decoder * const d, struct Range_decoder * const rde, const unsigned dict_size ) { if( !Cb_init( &d->cb, max( 65536, dict_size ) + lzd_min_free_bytes ) ) return false; d->partial_data_pos = 0; d->rdec = rde; d->dictionary_size = dict_size; d->crc = 0xFFFFFFFFU; d->check_trailer_pending = false; d->member_finished = false; d->pos_wrapped = false; /* prev_byte of first byte; also for LZd_peek( 0 ) on corrupt file */ d->cb.buffer[d->cb.buffer_size-1] = 0; d->rep0 = 0; d->rep1 = 0; d->rep2 = 0; d->rep3 = 0; d->state = 0; Bm_array_init( d->bm_literal[0], (1 << literal_context_bits) * 0x300 ); Bm_array_init( d->bm_match[0], states * pos_states ); Bm_array_init( d->bm_rep, states ); Bm_array_init( d->bm_rep0, states ); Bm_array_init( d->bm_rep1, states ); Bm_array_init( d->bm_rep2, states ); Bm_array_init( d->bm_len[0], states * pos_states ); Bm_array_init( d->bm_dis_slot[0], len_states * (1 << dis_slot_bits) ); Bm_array_init( d->bm_dis, modeled_distances - end_dis_model + 1 ); Bm_array_init( d->bm_align, dis_align_size ); Lm_init( &d->match_len_model ); Lm_init( &d->rep_len_model ); return true; } static inline void LZd_free( struct LZ_decoder * const d ) { Cb_free( &d->cb ); } static inline bool LZd_member_finished( const struct LZ_decoder * const d ) { return d->member_finished && Cb_empty( &d->cb ); } static inline unsigned LZd_crc( const struct LZ_decoder * const d ) { return d->crc ^ 0xFFFFFFFFU; } static inline unsigned long long LZd_data_position( const struct LZ_decoder * const d ) { return d->partial_data_pos + d->cb.put; }