/* * mdadm - Intel(R) Matrix Storage Manager Support * * Copyright (C) 2002-2008 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #define HAVE_STDINT_H 1 #include "mdadm.h" #include "mdmon.h" #include "dlink.h" #include "drive_encryption.h" #include "sha1.h" #include "platform-intel.h" #include "xmalloc.h" #include #include #include #include #include #include #include /* MPB == Metadata Parameter Block */ #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. " #define MPB_SIG_LEN (strlen(MPB_SIGNATURE)) /* Legacy IMSM versions: * MPB_VERSION_RAID0 1.0.00 * MPB_VERSION_RAID1 1.1.00 * MPB_VERSION_MANY_VOLUMES_PER_ARRAY 1.2.00 * MPB_VERSION_3OR4_DISK_ARRAY 1.2.01 * MPB_VERSION_RAID5 1.2.02 * MPB_VERSION_5OR6_DISK_ARRAY 1.2.04 * MPB_VERSION_CNG 1.2.06 */ #define MPB_VERSION_ATTRIBS "1.3.00" #define MPB_VERSION_ATTRIBS_JD "2.0.00" #define MAX_SIGNATURE_LENGTH 32 #define MAX_RAID_SERIAL_LEN 16 /* supports RAID0 */ #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001) /* supports RAID1 */ #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002) /* supports RAID10 */ #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004) /* supports RAID1E */ #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008) /* supports RAID5 */ #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010) /* supports RAID CNG */ #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020) /* supports expanded stripe sizes of 256K, 512K and 1MB */ #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040) /* supports RAID10 with more than 4 drives */ #define MPB_ATTRIB_RAID10_EXT __cpu_to_le32(0x00000080) /* The OROM Support RST Caching of Volumes */ #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000) /* The OROM supports creating disks greater than 2TB */ #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000) /* The OROM supports Bad Block Management */ #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000) /* THe OROM Supports NVM Caching of Volumes */ #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000) /* The OROM supports creating volumes greater than 2TB */ #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000) /* originally for PMP, now it's wasted b/c. Never use this bit! */ #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000) /* Verify MPB contents against checksum after reading MPB */ #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000) /* Define all supported attributes that have to be accepted by mdadm */ #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \ MPB_ATTRIB_2TB | \ MPB_ATTRIB_2TB_DISK | \ MPB_ATTRIB_RAID0 | \ MPB_ATTRIB_RAID1 | \ MPB_ATTRIB_RAID10 | \ MPB_ATTRIB_RAID5 | \ MPB_ATTRIB_EXP_STRIPE_SIZE | \ MPB_ATTRIB_RAID10_EXT | \ MPB_ATTRIB_BBM) /* Define attributes that are unused but not harmful */ #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE) #define MPB_SECTOR_CNT 2210 #define IMSM_RESERVED_SECTORS 8192 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048 #define SECT_PER_MB_SHIFT 11 #define MAX_SECTOR_SIZE 4096 #define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole * mutliple PPL area */ /* * Internal Write-intent bitmap is stored in the same area where PPL. * Both features are mutually exclusive, so it is not an issue. * The first 8KiB of the area are reserved and shall not be used. */ #define IMSM_BITMAP_AREA_RESERVED_SIZE 8192 #define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE) #define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE #define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE) #define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET) #define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE) #define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024) #define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5 /* * This macro let's us ensure that no-one accidentally * changes the size of a struct */ #define ASSERT_SIZE(_struct, size) \ static inline void __assert_size_##_struct(void) \ { \ switch (0) { \ case 0: break; \ case (sizeof(struct _struct) == size): break; \ } \ } /* Disk configuration info. */ #define IMSM_MAX_DEVICES 255 struct imsm_disk { __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */ __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */ __u32 scsi_id; /* 0xEC - 0xEF scsi ID */ #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */ #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */ #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */ #define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */ __u32 status; /* 0xF0 - 0xF3 */ __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */ __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */ #define IMSM_DISK_FILLERS 3 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */ }; ASSERT_SIZE(imsm_disk, 48) /* map selector for map managment */ #define MAP_0 0 #define MAP_1 1 #define MAP_X -1 /* RAID map configuration infos. */ struct imsm_map { __u32 pba_of_lba0_lo; /* start address of partition */ __u32 blocks_per_member_lo;/* blocks per member */ __u32 num_data_stripes_lo; /* number of data stripes */ __u16 blocks_per_strip; __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */ #define IMSM_T_STATE_NORMAL 0 #define IMSM_T_STATE_UNINITIALIZED 1 #define IMSM_T_STATE_DEGRADED 2 #define IMSM_T_STATE_FAILED 3 __u8 raid_level; #define IMSM_T_RAID0 0 #define IMSM_T_RAID1 1 #define IMSM_T_RAID5 5 #define IMSM_T_RAID10 10 __u8 num_members; /* number of member disks */ __u8 num_domains; /* number of parity domains */ __u8 failed_disk_num; /* valid only when state is degraded */ __u8 ddf; __u32 pba_of_lba0_hi; __u32 blocks_per_member_hi; __u32 num_data_stripes_hi; __u32 filler[4]; /* expansion area */ #define IMSM_ORD_REBUILD (1 << 24) __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members], * top byte contains some flags */ }; ASSERT_SIZE(imsm_map, 52) struct imsm_vol { __u32 curr_migr_unit_lo; __u32 checkpoint_id; /* id to access curr_migr_unit */ #define MIGR_STATE_NORMAL 0 #define MIGR_STATE_MIGRATING 1 __u8 migr_state; /* Normal or Migrating */ #define MIGR_INIT 0 #define MIGR_REBUILD 1 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */ #define MIGR_GEN_MIGR 3 #define MIGR_STATE_CHANGE 4 #define MIGR_REPAIR 5 __u8 migr_type; /* Initializing, Rebuilding, ... */ #define RAIDVOL_CLEAN 0 #define RAIDVOL_DIRTY 1 #define RAIDVOL_DSRECORD_VALID 2 __u8 dirty; __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */ __u16 verify_errors; /* number of mismatches */ __u16 bad_blocks; /* number of bad blocks during verify */ __u32 curr_migr_unit_hi; __u32 filler[3]; struct imsm_map map[1]; /* here comes another one if migr_state */ }; ASSERT_SIZE(imsm_vol, 84) struct imsm_dev { __u8 volume[MAX_RAID_SERIAL_LEN]; __u32 size_low; __u32 size_high; #define DEV_BOOTABLE __cpu_to_le32(0x01) #define DEV_BOOT_DEVICE __cpu_to_le32(0x02) #define DEV_READ_COALESCING __cpu_to_le32(0x04) #define DEV_WRITE_COALESCING __cpu_to_le32(0x08) #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10) #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20) #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40) #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80) #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100) #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200) #define DEV_CLONE_N_GO __cpu_to_le32(0x400) #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800) #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000) __u32 status; /* Persistent RaidDev status */ __u32 reserved_blocks; /* Reserved blocks at beginning of volume */ __u8 migr_priority; __u8 num_sub_vols; __u8 tid; __u8 cng_master_disk; __u16 cache_policy; __u8 cng_state; __u8 cng_sub_state; __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */ /* NVM_EN */ __u8 nv_cache_mode; __u8 nv_cache_flags; /* Unique Volume Id of the NvCache Volume associated with this volume */ __u32 nvc_vol_orig_family_num; __u16 nvc_vol_raid_dev_num; #define RWH_OFF 0 #define RWH_DISTRIBUTED 1 #define RWH_JOURNALING_DRIVE 2 #define RWH_MULTIPLE_DISTRIBUTED 3 #define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4 #define RWH_MULTIPLE_OFF 5 #define RWH_BITMAP 6 __u8 rwh_policy; /* Raid Write Hole Policy */ __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */ __u8 filler1; #define IMSM_DEV_FILLERS 3 __u32 filler[IMSM_DEV_FILLERS]; struct imsm_vol vol; }; ASSERT_SIZE(imsm_dev, 164) struct imsm_super { __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */ __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */ __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */ __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */ __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */ __u32 error_log_size; /* 0x30 - 0x33 in bytes */ __u32 attributes; /* 0x34 - 0x37 */ __u8 num_disks; /* 0x38 Number of configured disks */ __u8 num_raid_devs; /* 0x39 Number of configured volumes */ __u8 error_log_pos; /* 0x3A */ __u8 fill[1]; /* 0x3B */ __u32 cache_size; /* 0x3c - 0x40 in mb */ __u32 orig_family_num; /* 0x40 - 0x43 original family num */ __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */ __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */ __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique * volume IDs for raid_dev created in this array * (starts at 1) */ __u16 filler1; /* 0x4E - 0x4F */ __u64 creation_time; /* 0x50 - 0x57 Array creation time */ #define IMSM_FILLERS 32 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */ struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */ /* here comes imsm_dev[num_raid_devs] */ /* here comes BBM logs */ }; ASSERT_SIZE(imsm_super, 264) #define BBM_LOG_MAX_ENTRIES 254 #define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */ #define BBM_LOG_SIGNATURE 0xabadb10c struct bbm_log_block_addr { __u16 w1; __u32 dw1; } __attribute__ ((__packed__)); struct bbm_log_entry { __u8 marked_count; /* Number of blocks marked - 1 */ __u8 disk_ordinal; /* Disk entry within the imsm_super */ struct bbm_log_block_addr defective_block_start; } __attribute__ ((__packed__)); struct bbm_log { __u32 signature; /* 0xABADB10C */ __u32 entry_count; struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES]; }; ASSERT_SIZE(bbm_log, 2040) static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" }; #define BLOCKS_PER_KB (1024/512) #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */ #define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */ #define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk, * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS */ #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must * be recovered using srcMap */ #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has * already been migrated and must * be recovered from checkpoint area */ #define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */ struct migr_record { __u32 rec_status; /* Status used to determine how to restart * migration in case it aborts * in some fashion */ __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */ __u32 family_num; /* Family number of MPB * containing the RaidDev * that is migrating */ __u32 ascending_migr; /* True if migrating in increasing * order of lbas */ __u32 blocks_per_unit; /* Num disk blocks per unit of operation */ __u32 dest_depth_per_unit; /* Num member blocks each destMap * member disk * advances per unit-of-operation */ __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */ __u32 dest_1st_member_lba_lo; /* First member lba on first * stripe of destination */ __u32 num_migr_units_lo; /* Total num migration units-of-op */ __u32 post_migr_vol_cap; /* Size of volume after * migration completes */ __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */ __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the * migration ckpt record was read from * (for recovered migrations) */ __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */ __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area * high order 32 bits */ __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of * destination - high order 32 bits */ __u32 num_migr_units_hi; /* Total num migration units-of-op * high order 32 bits */ __u32 filler[16]; }; ASSERT_SIZE(migr_record, 128) /** * enum imsm_status - internal IMSM return values representation. * @STATUS_OK: function succeeded. * @STATUS_ERROR: General error ocurred (not specified). * * Typedefed to imsm_status_t. */ typedef enum imsm_status { IMSM_STATUS_ERROR = -1, IMSM_STATUS_OK = 0, } imsm_status_t; struct md_list { /* usage marker: * 1: load metadata * 2: metadata does not match * 4: already checked */ int used; char *devname; int found; int container; dev_t st_rdev; struct md_list *next; }; static __u8 migr_type(struct imsm_dev *dev) { if (dev->vol.migr_type == MIGR_VERIFY && dev->status & DEV_VERIFY_AND_FIX) return MIGR_REPAIR; else return dev->vol.migr_type; } static void set_migr_type(struct imsm_dev *dev, __u8 migr_type) { /* for compatibility with older oroms convert MIGR_REPAIR, into * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status */ if (migr_type == MIGR_REPAIR) { dev->vol.migr_type = MIGR_VERIFY; dev->status |= DEV_VERIFY_AND_FIX; } else { dev->vol.migr_type = migr_type; dev->status &= ~DEV_VERIFY_AND_FIX; } } static unsigned int sector_count(__u32 bytes, unsigned int sector_size) { return ROUND_UP(bytes, sector_size) / sector_size; } static unsigned int mpb_sectors(struct imsm_super *mpb, unsigned int sector_size) { return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size); } struct intel_dev { struct imsm_dev *dev; struct intel_dev *next; unsigned index; }; struct intel_hba { enum sys_dev_type type; char *path; char *pci_id; struct intel_hba *next; }; enum action { DISK_REMOVE = 1, DISK_ADD }; /* internal representation of IMSM metadata */ struct intel_super { union { void *buf; /* O_DIRECT buffer for reading/writing metadata */ struct imsm_super *anchor; /* immovable parameters */ }; union { void *migr_rec_buf; /* buffer for I/O operations */ struct migr_record *migr_rec; /* migration record */ }; int clean_migration_record_by_mdmon; /* when reshape is switched to next array, it indicates that mdmon is allowed to clean migration record */ size_t len; /* size of the 'buf' allocation */ size_t extra_space; /* extra space in 'buf' that is not used yet */ void *next_buf; /* for realloc'ing buf from the manager */ size_t next_len; int updates_pending; /* count of pending updates for mdmon */ int current_vol; /* index of raid device undergoing creation */ unsigned long long create_offset; /* common start for 'current_vol' */ __u32 random; /* random data for seeding new family numbers */ struct intel_dev *devlist; unsigned int sector_size; /* sector size of used member drives */ struct dl { struct dl *next; int index; __u8 serial[MAX_RAID_SERIAL_LEN]; int major, minor; char *devname; struct imsm_disk disk; int fd; int extent_cnt; struct extent *e; /* for determining freespace @ create */ int raiddisk; /* slot to fill in autolayout */ enum action action; } *disks, *current_disk; struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon active */ struct dl *missing; /* disks removed while we weren't looking */ struct bbm_log *bbm_log; struct intel_hba *hba; /* device path of the raid controller for this metadata */ const struct imsm_orom *orom; /* platform firmware support */ struct intel_super *next; /* (temp) list for disambiguating family_num */ struct md_bb bb; /* memory for get_bad_blocks call */ }; struct intel_disk { struct imsm_disk disk; #define IMSM_UNKNOWN_OWNER (-1) int owner; struct intel_disk *next; }; /** * struct extent - reserved space details. * @start: start offset. * @size: size of reservation, set to 0 for metadata reservation. * @vol: index of the volume, meaningful if &size is set. */ struct extent { unsigned long long start, size; int vol; }; /* definitions of reshape process types */ enum imsm_reshape_type { CH_TAKEOVER, CH_MIGRATION, CH_ARRAY_SIZE, CH_ABORT }; /* definition of messages passed to imsm_process_update */ enum imsm_update_type { update_activate_spare, update_create_array, update_kill_array, update_rename_array, update_add_remove_disk, update_reshape_container_disks, update_reshape_migration, update_takeover, update_general_migration_checkpoint, update_size_change, update_prealloc_badblocks_mem, update_rwh_policy, }; struct imsm_update_activate_spare { enum imsm_update_type type; struct dl *dl; int slot; int array; struct imsm_update_activate_spare *next; }; struct geo_params { char devnm[32]; char *dev_name; unsigned long long size; int level; int layout; int chunksize; int raid_disks; }; enum takeover_direction { R10_TO_R0, R0_TO_R10 }; struct imsm_update_takeover { enum imsm_update_type type; int subarray; enum takeover_direction direction; }; struct imsm_update_reshape { enum imsm_update_type type; int old_raid_disks; int new_raid_disks; int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */ }; struct imsm_update_reshape_migration { enum imsm_update_type type; int old_raid_disks; int new_raid_disks; /* fields for array migration changes */ int subdev; int new_level; int new_layout; int new_chunksize; int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */ }; struct imsm_update_size_change { enum imsm_update_type type; int subdev; long long new_size; }; struct imsm_update_general_migration_checkpoint { enum imsm_update_type type; __u64 curr_migr_unit; }; struct disk_info { __u8 serial[MAX_RAID_SERIAL_LEN]; }; struct imsm_update_create_array { enum imsm_update_type type; int dev_idx; struct imsm_dev dev; }; struct imsm_update_kill_array { enum imsm_update_type type; int dev_idx; }; struct imsm_update_rename_array { enum imsm_update_type type; __u8 name[MAX_RAID_SERIAL_LEN]; int dev_idx; }; struct imsm_update_add_remove_disk { enum imsm_update_type type; }; struct imsm_update_prealloc_bb_mem { enum imsm_update_type type; }; struct imsm_update_rwh_policy { enum imsm_update_type type; int new_policy; int dev_idx; }; enum imsm_sku { SKU_NO_KEY = 0, SKU_STANDARD_KEY = 1, SKU_PREMIUM_KEY = 2, SKU_INTEL_SSD_ONLY_KEY = 3, SKU_RAID1_ONLY_KEY = 4 }; static const char *_sys_dev_type[] = { [SYS_DEV_UNKNOWN] = "Unknown", [SYS_DEV_SAS] = "SAS", [SYS_DEV_SATA] = "SATA", [SYS_DEV_NVME] = "NVMe", [SYS_DEV_VMD] = "VMD", [SYS_DEV_SATA_VMD] = "SATA VMD" }; struct imsm_chunk_ops { uint chunk; char *chunk_str; }; static const struct imsm_chunk_ops imsm_chunk_ops[] = { {IMSM_OROM_SSS_2kB, "2k"}, {IMSM_OROM_SSS_4kB, "4k"}, {IMSM_OROM_SSS_8kB, "8k"}, {IMSM_OROM_SSS_16kB, "16k"}, {IMSM_OROM_SSS_32kB, "32k"}, {IMSM_OROM_SSS_64kB, "64k"}, {IMSM_OROM_SSS_128kB, "128k"}, {IMSM_OROM_SSS_256kB, "256k"}, {IMSM_OROM_SSS_512kB, "512k"}, {IMSM_OROM_SSS_1MB, "1M"}, {IMSM_OROM_SSS_2MB, "2M"}, {IMSM_OROM_SSS_4MB, "4M"}, {IMSM_OROM_SSS_8MB, "8M"}, {IMSM_OROM_SSS_16MB, "16M"}, {IMSM_OROM_SSS_32MB, "32M"}, {IMSM_OROM_SSS_64MB, "64M"}, {0, NULL} }; static int no_platform = -1; static int check_no_platform(void) { static const char search[] = "mdadm.imsm.test=1"; FILE *fp; if (no_platform >= 0) return no_platform; if (check_env("IMSM_NO_PLATFORM")) { no_platform = 1; return 1; } fp = fopen("/proc/cmdline", "r"); if (fp) { char *l = conf_line(fp); char *w = l; if (l == NULL) { fclose(fp); return 0; } do { if (strcmp(w, search) == 0) no_platform = 1; w = dl_next(w); } while (w != l); free_line(l); fclose(fp); if (no_platform >= 0) return no_platform; } no_platform = 0; return 0; } void imsm_set_no_platform(int v) { no_platform = v; } const char *get_sys_dev_type(enum sys_dev_type type) { if (type >= SYS_DEV_MAX) type = SYS_DEV_UNKNOWN; return _sys_dev_type[type]; } static struct intel_hba * alloc_intel_hba(struct sys_dev *device) { struct intel_hba *result = xmalloc(sizeof(*result)); result->type = device->type; result->path = xstrdup(device->path); result->next = NULL; if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL) result->pci_id++; return result; } static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device) { struct intel_hba *result; for (result = hba; result; result = result->next) { if (result->type == device->type && strcmp(result->path, device->path) == 0) break; } return result; } static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device) { struct intel_hba *hba; /* check if disk attached to Intel HBA */ hba = find_intel_hba(super->hba, device); if (hba != NULL) return 1; /* Check if HBA is already attached to super */ if (super->hba == NULL) { super->hba = alloc_intel_hba(device); return 1; } hba = super->hba; /* Intel metadata allows for all disks attached to the same type HBA. * Do not support HBA types mixing */ if (device->type != hba->type) return 2; /* Multiple same type HBAs can be used if they share the same OROM */ const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id); if (device_orom != super->orom) return 2; while (hba->next) hba = hba->next; hba->next = alloc_intel_hba(device); return 1; } static struct sys_dev* find_disk_attached_hba(int fd, const char *devname) { struct sys_dev *list, *elem; char *disk_path; if ((list = find_intel_devices()) == NULL) return 0; if (!is_fd_valid(fd)) disk_path = (char *) devname; else disk_path = diskfd_to_devpath(fd, 1, NULL); if (!disk_path) return 0; for (elem = list; elem; elem = elem->next) if (is_path_attached_to_hba(disk_path, elem->path)) break; if (disk_path != devname) free(disk_path); return elem; } static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname); static struct supertype *match_metadata_desc_imsm(char *arg) { struct supertype *st; if (strcmp(arg, "imsm") != 0 && strcmp(arg, "default") != 0 ) return NULL; st = xcalloc(1, sizeof(*st)); st->ss = &super_imsm; st->max_devs = IMSM_MAX_DEVICES; st->minor_version = 0; st->sb = NULL; return st; } static __u8 *get_imsm_version(struct imsm_super *mpb) { return &mpb->sig[MPB_SIG_LEN]; } /* retrieve a disk directly from the anchor when the anchor is known to be * up-to-date, currently only at load time */ static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index) { if (index >= mpb->num_disks) return NULL; return &mpb->disk[index]; } /* retrieve the disk description based on a index of the disk * in the sub-array */ static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index) { struct dl *d; for (d = super->disks; d; d = d->next) if (d->index == index) return d; return NULL; } /* retrieve a disk from the parsed metadata */ static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index) { struct dl *dl; dl = get_imsm_dl_disk(super, index); if (dl) return &dl->disk; return NULL; } /* generate a checksum directly from the anchor when the anchor is known to be * up-to-date, currently only at load or write_super after coalescing */ static __u32 __gen_imsm_checksum(struct imsm_super *mpb) { __u32 end = mpb->mpb_size / sizeof(end); __u32 *p = (__u32 *) mpb; __u32 sum = 0; while (end--) { sum += __le32_to_cpu(*p); p++; } return sum - __le32_to_cpu(mpb->check_sum); } static size_t sizeof_imsm_map(struct imsm_map *map) { return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1); } struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map) { /* A device can have 2 maps if it is in the middle of a migration. * If second_map is: * MAP_0 - we return the first map * MAP_1 - we return the second map if it exists, else NULL * MAP_X - we return the second map if it exists, else the first */ struct imsm_map *map = &dev->vol.map[0]; struct imsm_map *map2 = NULL; if (dev->vol.migr_state) map2 = (void *)map + sizeof_imsm_map(map); switch (second_map) { case MAP_0: break; case MAP_1: map = map2; break; case MAP_X: if (map2) map = map2; break; default: map = NULL; } return map; } /* return the size of the device. * migr_state increases the returned size if map[0] were to be duplicated */ static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state) { size_t size = sizeof(*dev) - sizeof(struct imsm_map) + sizeof_imsm_map(get_imsm_map(dev, MAP_0)); /* migrating means an additional map */ if (dev->vol.migr_state) size += sizeof_imsm_map(get_imsm_map(dev, MAP_1)); else if (migr_state) size += sizeof_imsm_map(get_imsm_map(dev, MAP_0)); return size; } /* retrieve disk serial number list from a metadata update */ static struct disk_info *get_disk_info(struct imsm_update_create_array *update) { void *u = update; struct disk_info *inf; inf = u + sizeof(*update) - sizeof(struct imsm_dev) + sizeof_imsm_dev(&update->dev, 0); return inf; } /** * __get_imsm_dev() - Get device with index from imsm_super. * @mpb: &imsm_super pointer, not NULL. * @index: Device index. * * Function works as non-NULL, aborting in such a case, * when NULL would be returned. * * Device index should be in range 0 up to num_raid_devs. * Function assumes the index was already verified. * Index must be valid, otherwise abort() is called. * * Return: Pointer to corresponding imsm_dev. * */ static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index) { int offset; int i; void *_mpb = mpb; if (index >= mpb->num_raid_devs) goto error; /* devices start after all disks */ offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb; for (i = 0; i <= index; i++, offset += sizeof_imsm_dev(_mpb + offset, 0)) if (i == index) return _mpb + offset; error: pr_err("cannot find imsm_dev with index %u in imsm_super\n", index); abort(); } /** * get_imsm_dev() - Get device with index from intel_super. * @super: &intel_super pointer, not NULL. * @index: Device index. * * Function works as non-NULL, aborting in such a case, * when NULL would be returned. * * Device index should be in range 0 up to num_raid_devs. * Function assumes the index was already verified. * Index must be valid, otherwise abort() is called. * * Return: Pointer to corresponding imsm_dev. * */ static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index) { struct intel_dev *dv; if (index >= super->anchor->num_raid_devs) goto error; for (dv = super->devlist; dv; dv = dv->next) if (dv->index == index) return dv->dev; error: pr_err("cannot find imsm_dev with index %u in intel_super\n", index); abort(); } static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr *addr) { return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) | __le16_to_cpu(addr->w1)); } static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec) { struct bbm_log_block_addr addr; addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff)); addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff); return addr; } /* get size of the bbm log */ static __u32 get_imsm_bbm_log_size(struct bbm_log *log) { if (!log || log->entry_count == 0) return 0; return sizeof(log->signature) + sizeof(log->entry_count) + log->entry_count * sizeof(struct bbm_log_entry); } /* check if bad block is not partially stored in bbm log */ static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned long long sector, const int length, __u32 *pos) { __u32 i; for (i = *pos; i < log->entry_count; i++) { struct bbm_log_entry *entry = &log->marked_block_entries[i]; unsigned long long bb_start; unsigned long long bb_end; bb_start = __le48_to_cpu(&entry->defective_block_start); bb_end = bb_start + (entry->marked_count + 1); if ((entry->disk_ordinal == idx) && (bb_start >= sector) && (bb_end <= sector + length)) { *pos = i; return 1; } } return 0; } /* record new bad block in bbm log */ static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned long long sector, int length) { int new_bb = 0; __u32 pos = 0; struct bbm_log_entry *entry = NULL; while (is_stored_in_bbm(log, idx, sector, length, &pos)) { struct bbm_log_entry *e = &log->marked_block_entries[pos]; if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) && (__le48_to_cpu(&e->defective_block_start) == sector)) { sector += BBM_LOG_MAX_LBA_ENTRY_VAL; length -= BBM_LOG_MAX_LBA_ENTRY_VAL; pos = pos + 1; continue; } entry = e; break; } if (entry) { int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length : BBM_LOG_MAX_LBA_ENTRY_VAL; entry->defective_block_start = __cpu_to_le48(sector); entry->marked_count = cnt - 1; if (cnt == length) return 1; sector += cnt; length -= cnt; } new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) / BBM_LOG_MAX_LBA_ENTRY_VAL; if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES) return 0; while (length > 0) { int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length : BBM_LOG_MAX_LBA_ENTRY_VAL; struct bbm_log_entry *entry = &log->marked_block_entries[log->entry_count]; entry->defective_block_start = __cpu_to_le48(sector); entry->marked_count = cnt - 1; entry->disk_ordinal = idx; sector += cnt; length -= cnt; log->entry_count++; } return new_bb; } /* clear all bad blocks for given disk */ static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx) { __u32 i = 0; while (i < log->entry_count) { struct bbm_log_entry *entries = log->marked_block_entries; if (entries[i].disk_ordinal == idx) { if (i < log->entry_count - 1) entries[i] = entries[log->entry_count - 1]; log->entry_count--; } else { i++; } } } /* clear given bad block */ static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned long long sector, const int length) { __u32 i = 0; while (i < log->entry_count) { struct bbm_log_entry *entries = log->marked_block_entries; if ((entries[i].disk_ordinal == idx) && (__le48_to_cpu(&entries[i].defective_block_start) == sector) && (entries[i].marked_count + 1 == length)) { if (i < log->entry_count - 1) entries[i] = entries[log->entry_count - 1]; log->entry_count--; break; } i++; } return 1; } /* allocate and load BBM log from metadata */ static int load_bbm_log(struct intel_super *super) { struct imsm_super *mpb = super->anchor; __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size); super->bbm_log = xcalloc(1, sizeof(struct bbm_log)); if (!super->bbm_log) return 1; if (bbm_log_size) { struct bbm_log *log = (void *)mpb + __le32_to_cpu(mpb->mpb_size) - bbm_log_size; __u32 entry_count; if (bbm_log_size < sizeof(log->signature) + sizeof(log->entry_count)) return 2; entry_count = __le32_to_cpu(log->entry_count); if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) || (entry_count > BBM_LOG_MAX_ENTRIES)) return 3; if (bbm_log_size != sizeof(log->signature) + sizeof(log->entry_count) + entry_count * sizeof(struct bbm_log_entry)) return 4; memcpy(super->bbm_log, log, bbm_log_size); } else { super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE); super->bbm_log->entry_count = 0; } return 0; } /* checks if bad block is within volume boundaries */ static int is_bad_block_in_volume(const struct bbm_log_entry *entry, const unsigned long long start_sector, const unsigned long long size) { unsigned long long bb_start; unsigned long long bb_end; bb_start = __le48_to_cpu(&entry->defective_block_start); bb_end = bb_start + (entry->marked_count + 1); if (((bb_start >= start_sector) && (bb_start < start_sector + size)) || ((bb_end >= start_sector) && (bb_end <= start_sector + size))) return 1; return 0; } /* get list of bad blocks on a drive for a volume */ static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx, const unsigned long long start_sector, const unsigned long long size, struct md_bb *bbs) { __u32 count = 0; __u32 i; for (i = 0; i < log->entry_count; i++) { const struct bbm_log_entry *ent = &log->marked_block_entries[i]; struct md_bb_entry *bb; if ((ent->disk_ordinal == idx) && is_bad_block_in_volume(ent, start_sector, size)) { if (!bbs->entries) { bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES * sizeof(*bb)); if (!bbs->entries) break; } bb = &bbs->entries[count++]; bb->sector = __le48_to_cpu(&ent->defective_block_start); bb->length = ent->marked_count + 1; } } bbs->count = count; } /* * for second_map: * == MAP_0 get first map * == MAP_1 get second map * == MAP_X than get map according to the current migr_state */ static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot, int second_map) { struct imsm_map *map; map = get_imsm_map(dev, second_map); /* top byte identifies disk under rebuild */ return __le32_to_cpu(map->disk_ord_tbl[slot]); } #define ord_to_idx(ord) (((ord) << 8) >> 8) static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map) { __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map); return ord_to_idx(ord); } static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord) { map->disk_ord_tbl[slot] = __cpu_to_le32(ord); } static int get_imsm_disk_slot(struct imsm_map *map, const unsigned int idx) { int slot; __u32 ord; for (slot = 0; slot < map->num_members; slot++) { ord = __le32_to_cpu(map->disk_ord_tbl[slot]); if (ord_to_idx(ord) == idx) return slot; } return IMSM_STATUS_ERROR; } /** * update_imsm_raid_level() - update raid level appropriately in &imsm_map. * @map: &imsm_map pointer. * @new_level: MD style level. * * For backward compatibility reasons we need to differentiate RAID10. * In the past IMSM RAID10 was presented as RAID1. * Keep compatibility unless it is not explicitly updated by UEFI driver. * * Routine needs num_members to be set and (optionally) raid_level. */ static void update_imsm_raid_level(struct imsm_map *map, int new_level) { if (new_level != IMSM_T_RAID10) { map->raid_level = new_level; return; } if (map->num_members == 4) { if (map->raid_level == IMSM_T_RAID10 || map->raid_level == IMSM_T_RAID1) return; map->raid_level = IMSM_T_RAID1; return; } map->raid_level = IMSM_T_RAID10; } static int get_imsm_raid_level(struct imsm_map *map) { if (map->raid_level == IMSM_T_RAID1) { if (map->num_members == 2) return IMSM_T_RAID1; else return IMSM_T_RAID10; } return map->raid_level; } /** * get_disk_slot_in_dev() - retrieve disk slot from &imsm_dev. * @super: &intel_super pointer, not NULL. * @dev_idx: imsm device index. * @idx: disk index. * * Return: Slot on success, IMSM_STATUS_ERROR otherwise. */ static int get_disk_slot_in_dev(struct intel_super *super, const __u8 dev_idx, const unsigned int idx) { struct imsm_dev *dev = get_imsm_dev(super, dev_idx); struct imsm_map *map = get_imsm_map(dev, MAP_0); return get_imsm_disk_slot(map, idx); } static int cmp_extent(const void *av, const void *bv) { const struct extent *a = av; const struct extent *b = bv; if (a->start < b->start) return -1; if (a->start > b->start) return 1; return 0; } static int count_memberships(struct dl *dl, struct intel_super *super) { int memberships = 0; int i; for (i = 0; i < super->anchor->num_raid_devs; i++) if (get_disk_slot_in_dev(super, i, dl->index) >= 0) memberships++; return memberships; } static __u32 imsm_min_reserved_sectors(struct intel_super *super); static int split_ull(unsigned long long n, void *lo, void *hi) { if (lo == 0 || hi == 0) return 1; __put_unaligned32(__cpu_to_le32((__u32)n), lo); __put_unaligned32(__cpu_to_le32((n >> 32)), hi); return 0; } static unsigned long long join_u32(__u32 lo, __u32 hi) { return (unsigned long long)__le32_to_cpu(lo) | (((unsigned long long)__le32_to_cpu(hi)) << 32); } static unsigned long long total_blocks(struct imsm_disk *disk) { if (disk == NULL) return 0; return join_u32(disk->total_blocks_lo, disk->total_blocks_hi); } /** * imsm_num_data_members() - get data drives count for an array. * @map: Map to analyze. * * num_data_members value represents minimal count of drives for level. * The name of the property could be misleading for RAID5 with asymmetric layout * because some data required to be calculated from parity. * The property is extracted from level and num_members value. * * Return: num_data_members value on success, zero otherwise. */ static __u8 imsm_num_data_members(struct imsm_map *map) { switch (get_imsm_raid_level(map)) { case 0: return map->num_members; case 1: case 10: return map->num_members / 2; case 5: return map->num_members - 1; default: dprintf("unsupported raid level\n"); return 0; } } static unsigned long long pba_of_lba0(struct imsm_map *map) { if (map == NULL) return 0; return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi); } static unsigned long long blocks_per_member(struct imsm_map *map) { if (map == NULL) return 0; return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi); } static unsigned long long num_data_stripes(struct imsm_map *map) { if (map == NULL) return 0; return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi); } static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev) { if (dev == NULL) return 0; return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi); } static unsigned long long imsm_dev_size(struct imsm_dev *dev) { if (dev == NULL) return 0; return join_u32(dev->size_low, dev->size_high); } static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec) { if (migr_rec == NULL) return 0; return join_u32(migr_rec->ckpt_area_pba_lo, migr_rec->ckpt_area_pba_hi); } static unsigned long long current_migr_unit(struct migr_record *migr_rec) { if (migr_rec == NULL) return 0; return join_u32(migr_rec->curr_migr_unit_lo, migr_rec->curr_migr_unit_hi); } static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec) { if (migr_rec == NULL) return 0; return join_u32(migr_rec->dest_1st_member_lba_lo, migr_rec->dest_1st_member_lba_hi); } static unsigned long long get_num_migr_units(struct migr_record *migr_rec) { if (migr_rec == NULL) return 0; return join_u32(migr_rec->num_migr_units_lo, migr_rec->num_migr_units_hi); } static void set_total_blocks(struct imsm_disk *disk, unsigned long long n) { split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi); } /** * set_num_domains() - Set number of domains for an array. * @map: Map to be updated. * * num_domains property represents copies count of each data drive, thus make * it meaningful only for RAID1 and RAID10. IMSM supports two domains for * raid1 and raid10. */ static void set_num_domains(struct imsm_map *map) { int level = get_imsm_raid_level(map); if (level == 1 || level == 10) map->num_domains = 2; else map->num_domains = 1; } static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n) { split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi); } static void set_blocks_per_member(struct imsm_map *map, unsigned long long n) { split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi); } static void set_num_data_stripes(struct imsm_map *map, unsigned long long n) { split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi); } /** * update_num_data_stripes() - Calculate and update num_data_stripes value. * @map: map to be updated. * @dev_size: size of volume. * * num_data_stripes value is addictionally divided by num_domains, therefore for * levels where num_domains is not 1, nds is a part of real value. */ static void update_num_data_stripes(struct imsm_map *map, unsigned long long dev_size) { unsigned long long nds = dev_size / imsm_num_data_members(map); nds /= map->num_domains; nds /= map->blocks_per_strip; set_num_data_stripes(map, nds); } static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n) { if (dev == NULL) return; split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi); } static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n) { split_ull(n, &dev->size_low, &dev->size_high); } static void set_migr_chkp_area_pba(struct migr_record *migr_rec, unsigned long long n) { split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi); } static void set_current_migr_unit(struct migr_record *migr_rec, unsigned long long n) { split_ull(n, &migr_rec->curr_migr_unit_lo, &migr_rec->curr_migr_unit_hi); } static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec, unsigned long long n) { split_ull(n, &migr_rec->dest_1st_member_lba_lo, &migr_rec->dest_1st_member_lba_hi); } static void set_num_migr_units(struct migr_record *migr_rec, unsigned long long n) { split_ull(n, &migr_rec->num_migr_units_lo, &migr_rec->num_migr_units_hi); } static unsigned long long per_dev_array_size(struct imsm_map *map) { unsigned long long array_size = 0; if (map == NULL) return array_size; array_size = num_data_stripes(map) * map->blocks_per_strip; if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10) array_size *= 2; return array_size; } static struct extent *get_extents(struct intel_super *super, struct dl *dl, int get_minimal_reservation) { /* find a list of used extents on the given physical device */ int memberships = count_memberships(dl, super); struct extent *rv = xcalloc(memberships + 1, sizeof(struct extent)); struct extent *e = rv; int i; __u32 reservation; /* trim the reserved area for spares, so they can join any array * regardless of whether the OROM has assigned sectors from the * IMSM_RESERVED_SECTORS region */ if (dl->index == -1 || get_minimal_reservation) reservation = imsm_min_reserved_sectors(super); else reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS; for (i = 0; i < super->anchor->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); struct imsm_map *map = get_imsm_map(dev, MAP_0); if (get_imsm_disk_slot(map, dl->index) >= 0) { e->start = pba_of_lba0(map); e->size = per_dev_array_size(map); e->vol = i; e++; } } qsort(rv, memberships, sizeof(*rv), cmp_extent); /* determine the start of the metadata * when no raid devices are defined use the default * ...otherwise allow the metadata to truncate the value * as is the case with older versions of imsm */ if (memberships) { struct extent *last = &rv[memberships - 1]; unsigned long long remainder; remainder = total_blocks(&dl->disk) - (last->start + last->size); /* round down to 1k block to satisfy precision of the kernel * 'size' interface */ remainder &= ~1UL; /* make sure remainder is still sane */ if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9) remainder = ROUND_UP(super->len, 512) >> 9; if (reservation > remainder) reservation = remainder; } e->start = total_blocks(&dl->disk) - reservation; e->size = 0; return rv; } /* try to determine how much space is reserved for metadata from * the last get_extents() entry, otherwise fallback to the * default */ static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl) { struct extent *e; int i; __u32 rv; /* for spares just return a minimal reservation which will grow * once the spare is picked up by an array */ if (dl->index == -1) return MPB_SECTOR_CNT; e = get_extents(super, dl, 0); if (!e) return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS; /* scroll to last entry */ for (i = 0; e[i].size; i++) continue; rv = total_blocks(&dl->disk) - e[i].start; free(e); return rv; } static int is_spare(struct imsm_disk *disk) { return (disk->status & SPARE_DISK) == SPARE_DISK; } static int is_configured(struct imsm_disk *disk) { return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK; } static int is_failed(struct imsm_disk *disk) { return (disk->status & FAILED_DISK) == FAILED_DISK; } static int is_journal(struct imsm_disk *disk) { return (disk->status & JOURNAL_DISK) == JOURNAL_DISK; } /** * round_member_size_to_mb()- Round given size to closest MiB. * @size: size to round in sectors. */ static inline unsigned long long round_member_size_to_mb(unsigned long long size) { return (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT; } /** * round_size_to_mb()- Round given size. * @array_size: size to round in sectors. * @disk_count: count of data members. * * Get size per each data member and round it to closest MiB to ensure that data * splits evenly between members. * * Return: Array size, rounded down. */ static inline unsigned long long round_size_to_mb(unsigned long long array_size, unsigned int disk_count) { return round_member_size_to_mb(array_size / disk_count) * disk_count; } static int able_to_resync(int raid_level, int missing_disks) { int max_missing_disks = 0; switch (raid_level) { case 10: max_missing_disks = 1; break; default: max_missing_disks = 0; } return missing_disks <= max_missing_disks; } /* try to determine how much space is reserved for metadata from * the last get_extents() entry on the smallest active disk, * otherwise fallback to the default */ static __u32 imsm_min_reserved_sectors(struct intel_super *super) { struct extent *e; int i; unsigned long long min_active; __u32 remainder; __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS; struct dl *dl, *dl_min = NULL; if (!super) return rv; min_active = 0; for (dl = super->disks; dl; dl = dl->next) { if (dl->index < 0) continue; unsigned long long blocks = total_blocks(&dl->disk); if (blocks < min_active || min_active == 0) { dl_min = dl; min_active = blocks; } } if (!dl_min) return rv; /* find last lba used by subarrays on the smallest active disk */ e = get_extents(super, dl_min, 0); if (!e) return rv; for (i = 0; e[i].size; i++) continue; remainder = min_active - e[i].start; free(e); /* to give priority to recovery we should not require full IMSM_RESERVED_SECTORS from the spare */ rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION; /* if real reservation is smaller use that value */ return (remainder < rv) ? remainder : rv; } static bool is_gen_migration(struct imsm_dev *dev); #define IMSM_4K_DIV 8 static __u64 blocks_per_migr_unit(struct intel_super *super, struct imsm_dev *dev); static void print_imsm_dev(struct intel_super *super, struct imsm_dev *dev, char *uuid, int disk_idx) { __u64 sz; int slot, i; struct imsm_map *map = get_imsm_map(dev, MAP_0); struct imsm_map *map2 = get_imsm_map(dev, MAP_1); __u32 ord; printf("\n"); printf("[%.16s]:\n", dev->volume); printf(" Subarray : %d\n", super->current_vol); printf(" UUID : %s\n", uuid); printf(" RAID Level : %d", get_imsm_raid_level(map)); if (map2) printf(" <-- %d", get_imsm_raid_level(map2)); printf("\n"); printf(" Members : %d", map->num_members); if (map2) printf(" <-- %d", map2->num_members); printf("\n"); printf(" Slots : ["); for (i = 0; i < map->num_members; i++) { ord = get_imsm_ord_tbl_ent(dev, i, MAP_0); printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U"); } printf("]"); if (map2) { printf(" <-- ["); for (i = 0; i < map2->num_members; i++) { ord = get_imsm_ord_tbl_ent(dev, i, MAP_1); printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U"); } printf("]"); } printf("\n"); printf(" Failed disk : "); if (map->failed_disk_num == 0xff) printf(STR_COMMON_NONE); else printf("%i", map->failed_disk_num); printf("\n"); slot = get_imsm_disk_slot(map, disk_idx); if (slot >= 0) { ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X); printf(" This Slot : %d%s\n", slot, ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : ""); } else printf(" This Slot : ?\n"); printf(" Sector Size : %u\n", super->sector_size); sz = imsm_dev_size(dev); printf(" Array Size : %llu%s\n", (unsigned long long)sz * 512 / super->sector_size, human_size(sz * 512)); sz = blocks_per_member(map); printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz * 512 / super->sector_size, human_size(sz * 512)); printf(" Sector Offset : %llu\n", pba_of_lba0(map) * 512 / super->sector_size); printf(" Num Stripes : %llu\n", num_data_stripes(map)); printf(" Chunk Size : %u KiB", __le16_to_cpu(map->blocks_per_strip) / 2); if (map2) printf(" <-- %u KiB", __le16_to_cpu(map2->blocks_per_strip) / 2); printf("\n"); printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks)); printf(" Migrate State : "); if (dev->vol.migr_state) { if (migr_type(dev) == MIGR_INIT) printf("initialize\n"); else if (migr_type(dev) == MIGR_REBUILD) printf("rebuild\n"); else if (migr_type(dev) == MIGR_VERIFY) printf("check\n"); else if (migr_type(dev) == MIGR_GEN_MIGR) printf("general migration\n"); else if (migr_type(dev) == MIGR_STATE_CHANGE) printf("state change\n"); else if (migr_type(dev) == MIGR_REPAIR) printf("repair\n"); else printf("\n", migr_type(dev)); } else printf("idle\n"); printf(" Map State : %s", map_state_str[map->map_state]); if (dev->vol.migr_state) { struct imsm_map *map = get_imsm_map(dev, MAP_1); printf(" <-- %s", map_state_str[map->map_state]); printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev)); if (is_gen_migration(dev) && (slot > 1 || slot < 0)) printf("(N/A)"); else printf("(%llu)", (unsigned long long) blocks_per_migr_unit(super, dev)); } printf("\n"); printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ? "dirty" : "clean"); printf(" RWH Policy : "); if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF) printf("off\n"); else if (dev->rwh_policy == RWH_DISTRIBUTED) printf("PPL distributed\n"); else if (dev->rwh_policy == RWH_JOURNALING_DRIVE) printf("PPL journaling drive\n"); else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED) printf("Multiple distributed PPLs\n"); else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE) printf("Multiple PPLs on journaling drive\n"); else if (dev->rwh_policy == RWH_BITMAP) printf("Write-intent bitmap\n"); else printf("\n", dev->rwh_policy); printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num); } static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved, unsigned int sector_size) { char str[MAX_RAID_SERIAL_LEN + 1]; __u64 sz; if (index < -1 || !disk) return; printf("\n"); snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial); if (index >= 0) printf(" Disk%02d Serial : %s\n", index, str); else printf(" Disk Serial : %s\n", str); printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "", is_configured(disk) ? " active" : "", is_failed(disk) ? " failed" : "", is_journal(disk) ? " journal" : ""); printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id)); sz = total_blocks(disk) - reserved; printf(" Usable Size : %llu%s\n", (unsigned long long)sz * 512 / sector_size, human_size(sz * 512)); } void convert_to_4k_imsm_migr_rec(struct intel_super *super) { struct migr_record *migr_rec = super->migr_rec; migr_rec->blocks_per_unit /= IMSM_4K_DIV; migr_rec->dest_depth_per_unit /= IMSM_4K_DIV; split_ull((join_u32(migr_rec->post_migr_vol_cap, migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV), &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi); set_migr_chkp_area_pba(migr_rec, migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV); set_migr_dest_1st_member_lba(migr_rec, migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV); } void convert_to_4k_imsm_disk(struct imsm_disk *disk) { set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV)); } void convert_to_4k(struct intel_super *super) { struct imsm_super *mpb = super->anchor; struct imsm_disk *disk; int i; __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size); for (i = 0; i < mpb->num_disks ; i++) { disk = __get_imsm_disk(mpb, i); /* disk */ convert_to_4k_imsm_disk(disk); } for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = __get_imsm_dev(mpb, i); struct imsm_map *map = get_imsm_map(dev, MAP_0); /* dev */ set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV); set_vol_curr_migr_unit(dev, vol_curr_migr_unit(dev) / IMSM_4K_DIV); /* map0 */ set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV); map->blocks_per_strip /= IMSM_4K_DIV; set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV); if (dev->vol.migr_state) { /* map1 */ map = get_imsm_map(dev, MAP_1); set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV); map->blocks_per_strip /= IMSM_4K_DIV; set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV); } } if (bbm_log_size) { struct bbm_log *log = (void *)mpb + __le32_to_cpu(mpb->mpb_size) - bbm_log_size; __u32 i; for (i = 0; i < log->entry_count; i++) { struct bbm_log_entry *entry = &log->marked_block_entries[i]; __u8 count = entry->marked_count + 1; unsigned long long sector = __le48_to_cpu(&entry->defective_block_start); entry->defective_block_start = __cpu_to_le48(sector/IMSM_4K_DIV); entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1; } } mpb->check_sum = __gen_imsm_checksum(mpb); } void examine_migr_rec_imsm(struct intel_super *super) { struct migr_record *migr_rec = super->migr_rec; struct imsm_super *mpb = super->anchor; int i; for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = __get_imsm_dev(mpb, i); struct imsm_map *map; int slot = -1; if (is_gen_migration(dev) == false) continue; printf("\nMigration Record Information:"); /* first map under migration */ map = get_imsm_map(dev, MAP_0); if (map) slot = get_imsm_disk_slot(map, super->disks->index); if (map == NULL || slot > 1 || slot < 0) { printf(" Empty\n "); printf("Examine one of first two disks in array\n"); break; } printf("\n Status : "); if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL) printf("Normal\n"); else printf("Contains Data\n"); printf(" Current Unit : %llu\n", current_migr_unit(migr_rec)); printf(" Family : %u\n", __le32_to_cpu(migr_rec->family_num)); printf(" Ascending : %u\n", __le32_to_cpu(migr_rec->ascending_migr)); printf(" Blocks Per Unit : %u\n", __le32_to_cpu(migr_rec->blocks_per_unit)); printf(" Dest. Depth Per Unit : %u\n", __le32_to_cpu(migr_rec->dest_depth_per_unit)); printf(" Checkpoint Area pba : %llu\n", migr_chkp_area_pba(migr_rec)); printf(" First member lba : %llu\n", migr_dest_1st_member_lba(migr_rec)); printf(" Total Number of Units : %llu\n", get_num_migr_units(migr_rec)); printf(" Size of volume : %llu\n", join_u32(migr_rec->post_migr_vol_cap, migr_rec->post_migr_vol_cap_hi)); printf(" Record was read from : %u\n", __le32_to_cpu(migr_rec->ckpt_read_disk_num)); break; } } void convert_from_4k_imsm_migr_rec(struct intel_super *super) { struct migr_record *migr_rec = super->migr_rec; migr_rec->blocks_per_unit *= IMSM_4K_DIV; migr_rec->dest_depth_per_unit *= IMSM_4K_DIV; split_ull((join_u32(migr_rec->post_migr_vol_cap, migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV), &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi); set_migr_chkp_area_pba(migr_rec, migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV); set_migr_dest_1st_member_lba(migr_rec, migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV); } void convert_from_4k(struct intel_super *super) { struct imsm_super *mpb = super->anchor; struct imsm_disk *disk; int i; __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size); for (i = 0; i < mpb->num_disks ; i++) { disk = __get_imsm_disk(mpb, i); /* disk */ set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV)); } for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = __get_imsm_dev(mpb, i); struct imsm_map *map = get_imsm_map(dev, MAP_0); /* dev */ set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV); set_vol_curr_migr_unit(dev, vol_curr_migr_unit(dev) * IMSM_4K_DIV); /* map0 */ set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV); map->blocks_per_strip *= IMSM_4K_DIV; set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV); if (dev->vol.migr_state) { /* map1 */ map = get_imsm_map(dev, MAP_1); set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV); map->blocks_per_strip *= IMSM_4K_DIV; set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV); } } if (bbm_log_size) { struct bbm_log *log = (void *)mpb + __le32_to_cpu(mpb->mpb_size) - bbm_log_size; __u32 i; for (i = 0; i < log->entry_count; i++) { struct bbm_log_entry *entry = &log->marked_block_entries[i]; __u8 count = entry->marked_count + 1; unsigned long long sector = __le48_to_cpu(&entry->defective_block_start); entry->defective_block_start = __cpu_to_le48(sector*IMSM_4K_DIV); entry->marked_count = count*IMSM_4K_DIV - 1; } } mpb->check_sum = __gen_imsm_checksum(mpb); } /** * imsm_check_attributes() - Check if features represented by attributes flags are supported. * * @attributes: attributes read from metadata. * Returns: true if all features are supported, false otherwise. */ static bool imsm_check_attributes(__u32 attributes) { if ((attributes & (MPB_ATTRIB_SUPPORTED | MPB_ATTRIB_IGNORED)) == attributes) return true; return false; } static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map); static void examine_super_imsm(struct supertype *st, char *homehost) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; char str[MAX_SIGNATURE_LENGTH]; int i; struct mdinfo info; char nbuf[64]; __u32 sum; __u32 reserved = imsm_reserved_sectors(super, super->disks); struct dl *dl; time_t creation_time; strncpy(str, (char *)mpb->sig, MPB_SIG_LEN); str[MPB_SIG_LEN-1] = '\0'; printf(" Magic : %s\n", str); printf(" Version : %s\n", get_imsm_version(mpb)); printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num)); printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num)); printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num)); creation_time = __le64_to_cpu(mpb->creation_time); printf(" Creation Time : %.24s\n", creation_time ? ctime(&creation_time) : "Unknown"); printf(" Attributes : %08x (%s)\n", mpb->attributes, imsm_check_attributes(mpb->attributes) ? "supported" : "not supported"); getinfo_super_imsm(st, &info, NULL); fname_from_uuid(&info, nbuf); printf(" UUID : %s\n", nbuf + 5); sum = __le32_to_cpu(mpb->check_sum); printf(" Checksum : %08x %s\n", sum, __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect"); printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size)); printf(" Disks : %d\n", mpb->num_disks); printf(" RAID Devices : %d\n", mpb->num_raid_devs); print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved, super->sector_size); if (get_imsm_bbm_log_size(super->bbm_log)) { struct bbm_log *log = super->bbm_log; printf("\n"); printf("Bad Block Management Log:\n"); printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size)); printf(" Signature : %x\n", __le32_to_cpu(log->signature)); printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count)); } for (i = 0; i < mpb->num_raid_devs; i++) { struct mdinfo info; struct imsm_dev *dev = __get_imsm_dev(mpb, i); super->current_vol = i; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(&info, nbuf); print_imsm_dev(super, dev, nbuf + 5, super->disks->index); } for (i = 0; i < mpb->num_disks; i++) { if (i == super->disks->index) continue; print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved, super->sector_size); } for (dl = super->disks; dl; dl = dl->next) if (dl->index == -1) print_imsm_disk(&dl->disk, -1, reserved, super->sector_size); examine_migr_rec_imsm(super); } static void brief_examine_super_imsm(struct supertype *st, int verbose) { /* We just write a generic IMSM ARRAY entry */ struct mdinfo info; char nbuf[64]; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(&info, nbuf); printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5); } static void brief_examine_subarrays_imsm(struct supertype *st, int verbose) { /* We just write a generic IMSM ARRAY entry */ struct mdinfo info; char nbuf[64]; char nbuf1[64]; struct intel_super *super = st->sb; int i; if (!super->anchor->num_raid_devs) return; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(&info, nbuf); for (i = 0; i < super->anchor->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); super->current_vol = i; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(&info, nbuf1); printf("ARRAY " DEV_MD_DIR "%.16s container=%s member=%d UUID=%s\n", dev->volume, nbuf + 5, i, nbuf1 + 5); } } static void export_examine_super_imsm(struct supertype *st) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; struct mdinfo info; char nbuf[64]; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(&info, nbuf); printf("MD_METADATA=imsm\n"); printf("MD_LEVEL=container\n"); printf("MD_UUID=%s\n", nbuf+5); printf("MD_DEVICES=%u\n", mpb->num_disks); printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time)); } static void detail_super_imsm(struct supertype *st, char *homehost, char *subarray) { struct mdinfo info; char nbuf[64]; struct intel_super *super = st->sb; int temp_vol = super->current_vol; if (subarray) super->current_vol = strtoul(subarray, NULL, 10); getinfo_super_imsm(st, &info, NULL); fname_from_uuid(&info, nbuf); printf("\n UUID : %s\n", nbuf + 5); super->current_vol = temp_vol; } static void brief_detail_super_imsm(struct supertype *st, char *subarray) { struct mdinfo info; char nbuf[64]; struct intel_super *super = st->sb; int temp_vol = super->current_vol; if (subarray) super->current_vol = strtoul(subarray, NULL, 10); getinfo_super_imsm(st, &info, NULL); fname_from_uuid(&info, nbuf); printf(" UUID=%s", nbuf + 5); super->current_vol = temp_vol; } static int imsm_read_serial(int fd, char *devname, __u8 *serial, size_t serial_buf_len); static void fd2devname(int fd, char *name); void print_encryption_information(int disk_fd, enum sys_dev_type hba_type) { struct encryption_information information = {0}; mdadm_status_t status = MDADM_STATUS_SUCCESS; const char *indent = " "; switch (hba_type) { case SYS_DEV_VMD: case SYS_DEV_NVME: status = get_nvme_opal_encryption_information(disk_fd, &information, 1); break; case SYS_DEV_SATA: case SYS_DEV_SATA_VMD: status = get_ata_encryption_information(disk_fd, &information, 1); break; default: return; } if (status) { pr_err("Failed to get drive encryption information.\n"); return; } printf("%sEncryption(Ability|Status): %s|%s\n", indent, get_encryption_ability_string(information.ability), get_encryption_status_string(information.status)); } static int ahci_enumerate_ports(struct sys_dev *hba, unsigned long port_count, int host_base, int verbose) { /* dump an unsorted list of devices attached to AHCI Intel storage * controller, as well as non-connected ports */ int hba_len = strlen(hba->path) + 1; struct dirent *ent; DIR *dir; char *path = NULL; int err = 0; unsigned long port_mask = (1 << port_count) - 1; if (port_count > (int)sizeof(port_mask) * 8) { if (verbose > 0) pr_err("port_count %ld out of range\n", port_count); return 2; } /* scroll through /sys/dev/block looking for devices attached to * this hba */ dir = opendir("/sys/dev/block"); if (!dir) return 1; for (ent = readdir(dir); ent; ent = readdir(dir)) { int fd; char model[64]; char vendor[64]; char buf[1024]; int major, minor; char device[PATH_MAX]; char *c; int port; int type; if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2) continue; path = devt_to_devpath(makedev(major, minor), 1, NULL); if (!path) continue; if (!is_path_attached_to_hba(path, hba->path)) { free(path); path = NULL; continue; } /* retrieve the scsi device */ if (!devt_to_devpath(makedev(major, minor), 1, device)) { if (verbose > 0) pr_err("failed to get device\n"); err = 2; break; } if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) { err = 2; break; } type = strtoul(buf, NULL, 10); /* if it's not a disk print the vendor and model */ if (!(type == 0 || type == 7 || type == 14)) { vendor[0] = '\0'; model[0] = '\0'; if (devpath_to_char(device, "vendor", buf, sizeof(buf), 0) == 0) { strncpy(vendor, buf, sizeof(vendor)); vendor[sizeof(vendor) - 1] = '\0'; c = (char *) &vendor[sizeof(vendor) - 1]; while (isspace(*c) || *c == '\0') *c-- = '\0'; } if (devpath_to_char(device, "model", buf, sizeof(buf), 0) == 0) { strncpy(model, buf, sizeof(model)); model[sizeof(model) - 1] = '\0'; c = (char *) &model[sizeof(model) - 1]; while (isspace(*c) || *c == '\0') *c-- = '\0'; } if (vendor[0] && model[0]) sprintf(buf, "%.64s %.64s", vendor, model); else switch (type) { /* numbers from hald/linux/device.c */ case 1: sprintf(buf, "tape"); break; case 2: sprintf(buf, "printer"); break; case 3: sprintf(buf, "processor"); break; case 4: case 5: sprintf(buf, "cdrom"); break; case 6: sprintf(buf, "scanner"); break; case 8: sprintf(buf, "media_changer"); break; case 9: sprintf(buf, "comm"); break; case 12: sprintf(buf, "raid"); break; default: sprintf(buf, "unknown"); } } else buf[0] = '\0'; /* chop device path to 'host%d' and calculate the port number */ c = strchr(&path[hba_len], '/'); if (!c) { if (verbose > 0) pr_err("%s - invalid path name\n", path + hba_len); err = 2; break; } *c = '\0'; if ((sscanf(&path[hba_len], "ata%d", &port) == 1) || ((sscanf(&path[hba_len], "host%d", &port) == 1))) port -= host_base; else { if (verbose > 0) { *c = '/'; /* repair the full string */ pr_err("failed to determine port number for %s\n", path); } err = 2; break; } /* mark this port as used */ port_mask &= ~(1 << port); /* print out the device information */ if (buf[0]) { printf(" Port%d : - non-disk device (%s) -\n", port, buf); continue; } fd = dev_open(ent->d_name, O_RDONLY); if (!is_fd_valid(fd)) printf(" Port%d : - disk info unavailable -\n", port); else { fd2devname(fd, buf); printf(" Port%d : %s", port, buf); if (imsm_read_serial(fd, NULL, (__u8 *)buf, sizeof(buf)) == 0) printf(" (%s)\n", buf); else printf(" ()\n"); print_encryption_information(fd, hba->type); close(fd); } free(path); path = NULL; } if (path) free(path); if (dir) closedir(dir); if (err == 0) { unsigned long i; for (i = 0; i < port_count; i++) if (port_mask & (1L << i)) printf(" Port%ld : - no device attached -\n", i); } return err; } static int print_nvme_info(struct sys_dev *hba) { struct dirent *ent; DIR *dir; dir = opendir("/sys/block/"); if (!dir) return 1; for (ent = readdir(dir); ent; ent = readdir(dir)) { char ns_path[PATH_MAX]; char cntrl_path[PATH_MAX]; char buf[PATH_MAX]; int fd = -1; if (!strstr(ent->d_name, "nvme")) goto skip; fd = open_dev(ent->d_name); if (!is_fd_valid(fd)) goto skip; if (!diskfd_to_devpath(fd, 0, ns_path) || !diskfd_to_devpath(fd, 1, cntrl_path)) goto skip; if (!is_path_attached_to_hba(cntrl_path, hba->path)) goto skip; if (!imsm_is_nvme_namespace_supported(fd, 0)) goto skip; fd2devname(fd, buf); if (hba->type == SYS_DEV_VMD) printf(" NVMe under VMD : %s", buf); else if (hba->type == SYS_DEV_NVME) printf(" NVMe Device : %s", buf); if (!imsm_read_serial(fd, NULL, (__u8 *)buf, sizeof(buf))) printf(" (%s)\n", buf); else printf("()\n"); print_encryption_information(fd, hba->type); skip: close_fd(&fd); } closedir(dir); return 0; } static void print_found_intel_controllers(struct sys_dev *elem) { for (; elem; elem = elem->next) { pr_err("found Intel(R) "); if (elem->type == SYS_DEV_SATA) fprintf(stderr, "SATA "); else if (elem->type == SYS_DEV_SAS) fprintf(stderr, "SAS "); else if (elem->type == SYS_DEV_NVME) fprintf(stderr, "NVMe "); if (elem->type == SYS_DEV_VMD) fprintf(stderr, "VMD domain"); else if (elem->type == SYS_DEV_SATA_VMD) fprintf(stderr, "SATA VMD domain"); else fprintf(stderr, "RAID controller"); if (elem->pci_id) fprintf(stderr, " at %s", elem->pci_id); fprintf(stderr, ".\n"); } fflush(stderr); } static int ahci_get_port_count(const char *hba_path, int *port_count) { struct dirent *ent; DIR *dir; int host_base = -1; *port_count = 0; if ((dir = opendir(hba_path)) == NULL) return -1; for (ent = readdir(dir); ent; ent = readdir(dir)) { int host; if ((sscanf(ent->d_name, "ata%d", &host) != 1) && ((sscanf(ent->d_name, "host%d", &host) != 1))) continue; if (*port_count == 0) host_base = host; else if (host < host_base) host_base = host; if (host + 1 > *port_count + host_base) *port_count = host + 1 - host_base; } closedir(dir); return host_base; } static void print_imsm_level_capability(const struct imsm_orom *orom) { int idx; for (idx = 0; imsm_level_ops[idx].name; idx++) if (imsm_level_ops[idx].is_level_supported(orom)) printf("%s ", imsm_level_ops[idx].name); } static void print_imsm_sku_capability(const struct imsm_orom *orom) { int key_val; key_val = (orom->driver_features & IMSM_OROM_CAPABILITIES_SKUMode_LOW) >> IMSM_OROM_CAPABILITIES_SKUMode_LOW_SHIFT; key_val |= (orom->driver_features & IMSM_OROM_CAPABILITIES_SKUMode_HIGH) >> IMSM_OROM_CAPABILITIES_SKUMode_HIGH_SHIFT; switch (key_val) { case SKU_NO_KEY: printf("Pass-through"); break; case SKU_STANDARD_KEY: printf("Standard"); break; case SKU_PREMIUM_KEY: printf("Premium"); break; case SKU_INTEL_SSD_ONLY_KEY: printf("Intel-SSD-only"); break; case SKU_RAID1_ONLY_KEY: printf("RAID1 Only"); break; default: printf("Unknown"); } if (orom->driver_features & IMSM_OROM_CAPABILITIES_SKUMode_NON_PRODUCTION) printf(" - for evaluation only"); } static void print_imsm_chunk_size_capability(const struct imsm_orom *orom) { int idx; for (idx = 0; imsm_chunk_ops[idx].chunk_str; idx++) if (imsm_chunk_ops[idx].chunk & orom->sss) printf("%s ", imsm_chunk_ops[idx].chunk_str); } static void print_imsm_capability(const struct orom_entry *entry) { const struct imsm_orom *orom = &entry->orom; printf(" Platform : Intel(R) "); if (orom->capabilities == 0 && orom->driver_features == 0) printf("Matrix Storage Manager\n"); else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6) printf("Virtual RAID on CPU\n"); else printf("Rapid Storage Technology%s\n", imsm_orom_is_enterprise(orom) ? " enterprise" : ""); if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build) { if (imsm_orom_is_vmd_without_efi(orom)) printf(" Version : %d.%d\n", orom->major_ver, orom->minor_ver); else printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver, orom->hotfix_ver, orom->build); } if (entry->type == SYS_DEV_VMD) { printf(" License : "); print_imsm_sku_capability(orom); printf("\n"); } printf(" RAID Levels : "); print_imsm_level_capability(orom); printf("\n"); printf(" Chunk Sizes : "); print_imsm_chunk_size_capability(orom); printf("\n"); printf(" 2TB volumes :%s supported\n", (orom->attr & IMSM_OROM_ATTR_2TB) ? "" : " not"); printf(" 2TB disks :%s supported\n", (orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "" : " not"); printf(" Max Disks : %d\n", orom->tds); printf(" Max Volumes : %d per array, %d per %s\n", orom->vpa, orom->vphba, imsm_orom_is_nvme(orom) ? "platform" : "controller"); if (entry->type == SYS_DEV_VMD || entry->type == SYS_DEV_NVME) /* This is only meaningful for controllers with nvme support */ printf(" 3rd party NVMe :%s supported\n", imsm_orom_has_tpv_support(&entry->orom) ? "" : " not"); return; } static void print_imsm_capability_export(const struct imsm_orom *orom) { printf("MD_FIRMWARE_TYPE=imsm\n"); if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build) printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver, orom->hotfix_ver, orom->build); printf("IMSM_SUPPORTED_RAID_LEVELS="); print_imsm_level_capability(orom); printf("\n"); printf("IMSM_SUPPORTED_CHUNK_SIZES="); print_imsm_chunk_size_capability(orom); printf("\n"); printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no"); printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no"); printf("IMSM_MAX_DISKS=%d\n",orom->tds); printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa); printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba); } static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path) { /* There are two components to imsm platform support, the ahci SATA * controller and the option-rom. To find the SATA controller we * simply look in /sys/bus/pci/drivers/ahci to see if an ahci * controller with the Intel vendor id is present. This approach * allows mdadm to leverage the kernel's ahci detection logic, with the * caveat that if ahci.ko is not loaded mdadm will not be able to * detect platform raid capabilities. The option-rom resides in a * platform "Adapter ROM". We scan for its signature to retrieve the * platform capabilities. If raid support is disabled in the BIOS the * option-rom capability structure will not be available. */ const struct orom_entry *entry; struct sys_dev *list, *hba; struct devid_list *devid; int port_count = 0; int host_base = 0; int result = 1; if (enumerate_only) { if (check_no_platform()) return 0; list = find_intel_devices(); if (!list) return 2; for (hba = list; hba; hba = hba->next) if (find_imsm_capability(hba)) return 0; return 2; } list = find_intel_devices(); if (!list) { if (verbose > 0) pr_err("no active Intel(R) RAID controller found.\n"); return 2; } else if (verbose > 0) print_found_intel_controllers(list); for (hba = list; hba; hba = hba->next) { if (controller_path && (compare_paths(hba->path, controller_path) != 0)) continue; if (!find_imsm_capability(hba)) { char buf[PATH_MAX]; pr_err("imsm capabilities not found for controller: %s (type %s)\n", hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ? vmd_domain_to_controller(hba, buf) : hba->path, get_sys_dev_type(hba->type)); continue; } result = 0; } if (controller_path && result == 1) { pr_err("no active Intel(R) RAID controller found under %s\n", controller_path); return result; } for (entry = orom_entries; entry; entry = entry->next) { print_imsm_capability(entry); if (entry->type == SYS_DEV_VMD || entry->type == SYS_DEV_NVME) { for (hba = list; hba; hba = hba->next) { char buf[PATH_MAX]; if (hba->type != entry->type) continue; if (hba->type == SYS_DEV_VMD) printf(" I/O Controller : %s (%s)\n", vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type)); print_nvme_info(hba); } printf("\n"); continue; } for (devid = entry->devid_list; devid; devid = devid->next) { hba = device_by_id(devid->devid); if (!hba) continue; printf(" I/O Controller : %s (%s)\n", hba->path, get_sys_dev_type(hba->type)); if (hba->type == SYS_DEV_SATA || hba->type == SYS_DEV_SATA_VMD) { host_base = ahci_get_port_count(hba->path, &port_count); if (ahci_enumerate_ports(hba, port_count, host_base, verbose)) { if (verbose > 0) pr_err("failed to enumerate ports on %s controller at %s.\n", get_sys_dev_type(hba->type), hba->pci_id); result |= 2; } } } printf("\n"); } return result; } static int export_detail_platform_imsm(int verbose, char *controller_path) { struct sys_dev *list, *hba; int result=1; list = find_intel_devices(); if (!list) { if (verbose > 0) pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n"); result = 2; return result; } for (hba = list; hba; hba = hba->next) { if (controller_path && (compare_paths(hba->path,controller_path) != 0)) continue; if (!find_imsm_capability(hba) && verbose > 0) { char buf[PATH_MAX]; pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n", hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ? vmd_domain_to_controller(hba, buf) : hba->path); } else result = 0; } const struct orom_entry *entry; for (entry = orom_entries; entry; entry = entry->next) { if (entry->type == SYS_DEV_VMD || entry->type == SYS_DEV_SATA_VMD) { for (hba = list; hba; hba = hba->next) print_imsm_capability_export(&entry->orom); continue; } print_imsm_capability_export(&entry->orom); } return result; } static int match_home_imsm(struct supertype *st, char *homehost) { /* the imsm metadata format does not specify any host * identification information. We return -1 since we can never * confirm nor deny whether a given array is "meant" for this * host. We rely on compare_super and the 'family_num' fields to * exclude member disks that do not belong, and we rely on * mdadm.conf to specify the arrays that should be assembled. * Auto-assembly may still pick up "foreign" arrays. */ return -1; } static void uuid_from_super_imsm(struct supertype *st, int uuid[4]) { /* The uuid returned here is used for: * uuid to put into bitmap file (Create, Grow) * uuid for backup header when saving critical section (Grow) * comparing uuids when re-adding a device into an array * In these cases the uuid required is that of the data-array, * not the device-set. * uuid to recognise same set when adding a missing device back * to an array. This is a uuid for the device-set. * * For each of these we can make do with a truncated * or hashed uuid rather than the original, as long as * everyone agrees. * In each case the uuid required is that of the data-array, * not the device-set. */ /* imsm does not track uuid's so we synthesis one using sha1 on * - The signature (Which is constant for all imsm array, but no matter) * - the orig_family_num of the container * - the index number of the volume * - the 'serial' number of the volume. * Hopefully these are all constant. */ struct intel_super *super = st->sb; char buf[20]; struct sha1_ctx ctx; struct imsm_dev *dev = NULL; __u32 family_num; /* some mdadm versions failed to set ->orig_family_num, in which * case fall back to ->family_num. orig_family_num will be * fixed up with the first metadata update. */ family_num = super->anchor->orig_family_num; if (family_num == 0) family_num = super->anchor->family_num; sha1_init_ctx(&ctx); sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx); sha1_process_bytes(&family_num, sizeof(__u32), &ctx); if (super->current_vol >= 0) dev = get_imsm_dev(super, super->current_vol); if (dev) { __u32 vol = super->current_vol; sha1_process_bytes(&vol, sizeof(vol), &ctx); sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx); } sha1_finish_ctx(&ctx, buf); memcpy(uuid, buf, 4*4); } static __u32 migr_strip_blocks_resync(struct imsm_dev *dev) { /* migr_strip_size when repairing or initializing parity */ struct imsm_map *map = get_imsm_map(dev, MAP_0); __u32 chunk = __le32_to_cpu(map->blocks_per_strip); switch (get_imsm_raid_level(map)) { case 5: case 10: return chunk; default: return 128*1024 >> 9; } } static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev) { /* migr_strip_size when rebuilding a degraded disk, no idea why * this is different than migr_strip_size_resync(), but it's good * to be compatible */ struct imsm_map *map = get_imsm_map(dev, MAP_1); __u32 chunk = __le32_to_cpu(map->blocks_per_strip); switch (get_imsm_raid_level(map)) { case 1: case 10: if (map->num_members % map->num_domains == 0) return 128*1024 >> 9; else return chunk; case 5: return max((__u32) 64*1024 >> 9, chunk); default: return 128*1024 >> 9; } } static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev) { struct imsm_map *lo = get_imsm_map(dev, MAP_0); struct imsm_map *hi = get_imsm_map(dev, MAP_1); __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip); __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip); return max((__u32) 1, hi_chunk / lo_chunk); } static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev) { struct imsm_map *lo = get_imsm_map(dev, MAP_0); int level = get_imsm_raid_level(lo); if (level == 1 || level == 10) { struct imsm_map *hi = get_imsm_map(dev, MAP_1); return hi->num_domains; } else return num_stripes_per_unit_resync(dev); } static unsigned long long calc_component_size(struct imsm_map *map, struct imsm_dev *dev) { unsigned long long component_size; unsigned long long dev_size = imsm_dev_size(dev); long long calc_dev_size = 0; unsigned int member_disks = imsm_num_data_members(map); if (member_disks == 0) return 0; component_size = per_dev_array_size(map); calc_dev_size = component_size * member_disks; /* Component size is rounded to 1MB so difference between size from * metadata and size calculated from num_data_stripes equals up to * 2048 blocks per each device. If the difference is higher it means * that array size was expanded and num_data_stripes was not updated. */ if (llabs(calc_dev_size - (long long)dev_size) > (1 << SECT_PER_MB_SHIFT) * member_disks) { component_size = dev_size / member_disks; dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n", component_size / map->blocks_per_strip, num_data_stripes(map)); } return component_size; } static __u32 parity_segment_depth(struct imsm_dev *dev) { struct imsm_map *map = get_imsm_map(dev, MAP_0); __u32 chunk = __le32_to_cpu(map->blocks_per_strip); switch(get_imsm_raid_level(map)) { case 1: case 10: return chunk * map->num_domains; case 5: return chunk * map->num_members; default: return chunk; } } static __u32 map_migr_block(struct imsm_dev *dev, __u32 block) { struct imsm_map *map = get_imsm_map(dev, MAP_1); __u32 chunk = __le32_to_cpu(map->blocks_per_strip); __u32 strip = block / chunk; switch (get_imsm_raid_level(map)) { case 1: case 10: { __u32 vol_strip = (strip * map->num_domains) + 1; __u32 vol_stripe = vol_strip / map->num_members; return vol_stripe * chunk + block % chunk; } case 5: { __u32 stripe = strip / (map->num_members - 1); return stripe * chunk + block % chunk; } default: return 0; } } static __u64 blocks_per_migr_unit(struct intel_super *super, struct imsm_dev *dev) { /* calculate the conversion factor between per member 'blocks' * (md/{resync,rebuild}_start) and imsm migration units, return * 0 for the 'not migrating' and 'unsupported migration' cases */ if (!dev->vol.migr_state) return 0; switch (migr_type(dev)) { case MIGR_GEN_MIGR: { struct migr_record *migr_rec = super->migr_rec; return __le32_to_cpu(migr_rec->blocks_per_unit); } case MIGR_VERIFY: case MIGR_REPAIR: case MIGR_INIT: { struct imsm_map *map = get_imsm_map(dev, MAP_0); __u32 stripes_per_unit; __u32 blocks_per_unit; __u32 parity_depth; __u32 migr_chunk; __u32 block_map; __u32 block_rel; __u32 segment; __u32 stripe; __u8 disks; /* yes, this is really the translation of migr_units to * per-member blocks in the 'resync' case */ stripes_per_unit = num_stripes_per_unit_resync(dev); migr_chunk = migr_strip_blocks_resync(dev); disks = imsm_num_data_members(map); blocks_per_unit = stripes_per_unit * migr_chunk * disks; stripe = __le16_to_cpu(map->blocks_per_strip) * disks; segment = blocks_per_unit / stripe; block_rel = blocks_per_unit - segment * stripe; parity_depth = parity_segment_depth(dev); block_map = map_migr_block(dev, block_rel); return block_map + parity_depth * segment; } case MIGR_REBUILD: { __u32 stripes_per_unit; __u32 migr_chunk; stripes_per_unit = num_stripes_per_unit_rebuild(dev); migr_chunk = migr_strip_blocks_rebuild(dev); return migr_chunk * stripes_per_unit; } case MIGR_STATE_CHANGE: default: return 0; } } static int imsm_level_to_layout(int level) { switch (level) { case 0: case 1: return 0; case 5: case 6: return ALGORITHM_LEFT_ASYMMETRIC; case 10: return 0x102; } return UnSet; } /******************************************************************************* * Function: read_imsm_migr_rec * Description: Function reads imsm migration record from last sector of disk * Parameters: * fd : disk descriptor * super : metadata info * Returns: * 0 : success, * -1 : fail ******************************************************************************/ static int read_imsm_migr_rec(int fd, struct intel_super *super) { int ret_val = -1; unsigned int sector_size = super->sector_size; unsigned long long dsize; get_dev_size(fd, NULL, &dsize); if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION), SEEK_SET) < 0) { pr_err("Cannot seek to anchor block: %s\n", strerror(errno)); goto out; } if ((unsigned int)read(fd, super->migr_rec_buf, MIGR_REC_BUF_SECTORS*sector_size) != MIGR_REC_BUF_SECTORS*sector_size) { pr_err("Cannot read migr record block: %s\n", strerror(errno)); goto out; } ret_val = 0; if (sector_size == 4096) convert_from_4k_imsm_migr_rec(super); out: return ret_val; } static struct imsm_dev *imsm_get_device_during_migration( struct intel_super *super) { struct intel_dev *dv; for (dv = super->devlist; dv; dv = dv->next) { if (is_gen_migration(dv->dev)) return dv->dev; } return NULL; } /******************************************************************************* * Function: load_imsm_migr_rec * Description: Function reads imsm migration record (it is stored at the last * sector of disk) * Parameters: * super : imsm internal array info * Returns: * 0 : success * -1 : fail * -2 : no migration in progress ******************************************************************************/ static int load_imsm_migr_rec(struct intel_super *super) { struct dl *dl; char nm[30]; int retval = -1; int fd = -1; struct imsm_dev *dev; struct imsm_map *map; int slot = -1; int keep_fd = 1; /* find map under migration */ dev = imsm_get_device_during_migration(super); /* nothing to load,no migration in progress? */ if (dev == NULL) return -2; map = get_imsm_map(dev, MAP_0); if (!map) return -1; for (dl = super->disks; dl; dl = dl->next) { /* skip spare and failed disks */ if (dl->index < 0) continue; /* read only from one of the first two slots */ slot = get_imsm_disk_slot(map, dl->index); if (slot > 1 || slot < 0) continue; if (!is_fd_valid(dl->fd)) { sprintf(nm, "%d:%d", dl->major, dl->minor); fd = dev_open(nm, O_RDONLY); if (is_fd_valid(fd)) { keep_fd = 0; break; } } else { fd = dl->fd; break; } } if (!is_fd_valid(fd)) return retval; retval = read_imsm_migr_rec(fd, super); if (!keep_fd) close(fd); return retval; } /******************************************************************************* * function: imsm_create_metadata_checkpoint_update * Description: It creates update for checkpoint change. * Parameters: * super : imsm internal array info * u : pointer to prepared update * Returns: * Uptate length. * If length is equal to 0, input pointer u contains no update ******************************************************************************/ static int imsm_create_metadata_checkpoint_update( struct intel_super *super, struct imsm_update_general_migration_checkpoint **u) { int update_memory_size = 0; dprintf("(enter)\n"); if (u == NULL) return 0; *u = NULL; /* size of all update data without anchor */ update_memory_size = sizeof(struct imsm_update_general_migration_checkpoint); *u = xcalloc(1, update_memory_size); if (*u == NULL) { dprintf("error: cannot get memory\n"); return 0; } (*u)->type = update_general_migration_checkpoint; (*u)->curr_migr_unit = current_migr_unit(super->migr_rec); dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit); return update_memory_size; } static void imsm_update_metadata_locally(struct supertype *st, void *buf, int len); /******************************************************************************* * Function: write_imsm_migr_rec * Description: Function writes imsm migration record * (at the last sector of disk) * Parameters: * super : imsm internal array info * Returns: * 0 : success * -1 : if fail ******************************************************************************/ static int write_imsm_migr_rec(struct supertype *st) { struct intel_super *super = st->sb; unsigned int sector_size = super->sector_size; unsigned long long dsize; int retval = -1; struct dl *sd; int len; struct imsm_update_general_migration_checkpoint *u; struct imsm_dev *dev; struct imsm_map *map; /* find map under migration */ dev = imsm_get_device_during_migration(super); /* if no migration, write buffer anyway to clear migr_record * on disk based on first available device */ if (dev == NULL) dev = get_imsm_dev(super, super->current_vol < 0 ? 0 : super->current_vol); map = get_imsm_map(dev, MAP_0); if (sector_size == 4096) convert_to_4k_imsm_migr_rec(super); for (sd = super->disks ; sd ; sd = sd->next) { int slot = -1; /* skip failed and spare devices */ if (sd->index < 0) continue; /* write to 2 first slots only */ if (map) slot = get_imsm_disk_slot(map, sd->index); if (map == NULL || slot > 1 || slot < 0) continue; get_dev_size(sd->fd, NULL, &dsize); if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION * sector_size), SEEK_SET) < 0) { pr_err("Cannot seek to anchor block: %s\n", strerror(errno)); goto out; } if ((unsigned int)write(sd->fd, super->migr_rec_buf, MIGR_REC_BUF_SECTORS*sector_size) != MIGR_REC_BUF_SECTORS*sector_size) { pr_err("Cannot write migr record block: %s\n", strerror(errno)); goto out; } } if (sector_size == 4096) convert_from_4k_imsm_migr_rec(super); /* update checkpoint information in metadata */ len = imsm_create_metadata_checkpoint_update(super, &u); if (len <= 0) { dprintf("imsm: Cannot prepare update\n"); goto out; } /* update metadata locally */ imsm_update_metadata_locally(st, u, len); /* and possibly remotely */ if (st->update_tail) { append_metadata_update(st, u, len); /* during reshape we do all work inside metadata handler * manage_reshape(), so metadata update has to be triggered * insida it */ flush_metadata_updates(st); st->update_tail = &st->updates; } else free(u); retval = 0; out: return retval; } /* spare/missing disks activations are not allowe when * array/container performs reshape operation, because * all arrays in container works on the same disks set */ int imsm_reshape_blocks_arrays_changes(struct intel_super *super) { int rv = 0; struct intel_dev *i_dev; struct imsm_dev *dev; /* check whole container */ for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) { dev = i_dev->dev; if (is_gen_migration(dev)) { /* No repair during any migration in container */ rv = 1; break; } } return rv; } static unsigned long long imsm_component_size_alignment_check(int level, int chunk_size, unsigned int sector_size, unsigned long long component_size) { unsigned int component_size_alignment; /* check component size alignment */ component_size_alignment = component_size % (chunk_size/sector_size); dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n", level, chunk_size, component_size, component_size_alignment); if (component_size_alignment && (level != 1) && (level != UnSet)) { dprintf("imsm: reported component size aligned from %llu ", component_size); component_size -= component_size_alignment; dprintf_cont("to %llu (%i).\n", component_size, component_size_alignment); } return component_size; } /******************************************************************************* * Function: get_bitmap_header_sector * Description: Returns the sector where the bitmap header is placed. * Parameters: * st : supertype information * dev_idx : index of the device with bitmap * * Returns: * The sector where the bitmap header is placed ******************************************************************************/ static unsigned long long get_bitmap_header_sector(struct intel_super *super, int dev_idx) { struct imsm_dev *dev = get_imsm_dev(super, dev_idx); struct imsm_map *map = get_imsm_map(dev, MAP_0); if (!super->sector_size) { dprintf("sector size is not set\n"); return 0; } return pba_of_lba0(map) + calc_component_size(map, dev) + (IMSM_BITMAP_HEADER_OFFSET / super->sector_size); } /******************************************************************************* * Function: get_bitmap_sector * Description: Returns the sector where the bitmap is placed. * Parameters: * st : supertype information * dev_idx : index of the device with bitmap * * Returns: * The sector where the bitmap is placed ******************************************************************************/ static unsigned long long get_bitmap_sector(struct intel_super *super, int dev_idx) { if (!super->sector_size) { dprintf("sector size is not set\n"); return 0; } return get_bitmap_header_sector(super, dev_idx) + (IMSM_BITMAP_HEADER_SIZE / super->sector_size); } static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx) { struct imsm_dev *dev = get_imsm_dev(super, dev_idx); struct imsm_map *map = get_imsm_map(dev, MAP_0); return pba_of_lba0(map) + (num_data_stripes(map) * map->blocks_per_strip); } static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap) { struct intel_super *super = st->sb; struct migr_record *migr_rec = super->migr_rec; struct imsm_dev *dev = get_imsm_dev(super, super->current_vol); struct imsm_map *map = get_imsm_map(dev, MAP_0); struct imsm_map *prev_map = get_imsm_map(dev, MAP_1); struct imsm_map *map_to_analyse = map; struct dl *dl; int map_disks = info->array.raid_disks; memset(info, 0, sizeof(*info)); if (prev_map) map_to_analyse = prev_map; dl = super->current_disk; info->container_member = super->current_vol; info->array.raid_disks = map->num_members; info->array.level = get_imsm_raid_level(map_to_analyse); info->array.layout = imsm_level_to_layout(info->array.level); info->array.md_minor = -1; info->array.ctime = 0; info->array.utime = 0; info->array.chunk_size = __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9; info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY); info->custom_array_size = imsm_dev_size(dev); info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb); if (is_gen_migration(dev)) { /* * device prev_map should be added if it is in the middle * of migration */ assert(prev_map); info->reshape_active = 1; info->new_level = get_imsm_raid_level(map); info->new_layout = imsm_level_to_layout(info->new_level); info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9; info->delta_disks = map->num_members - prev_map->num_members; if (info->delta_disks) { /* this needs to be applied to every array * in the container. */ info->reshape_active = CONTAINER_RESHAPE; } /* We shape information that we give to md might have to be * modify to cope with md's requirement for reshaping arrays. * For example, when reshaping a RAID0, md requires it to be * presented as a degraded RAID4. * Also if a RAID0 is migrating to a RAID5 we need to specify * the array as already being RAID5, but the 'before' layout * is a RAID4-like layout. */ switch (info->array.level) { case 0: switch(info->new_level) { case 0: /* conversion is happening as RAID4 */ info->array.level = 4; info->array.raid_disks += 1; break; case 5: /* conversion is happening as RAID5 */ info->array.level = 5; info->array.layout = ALGORITHM_PARITY_N; info->delta_disks -= 1; break; default: /* FIXME error message */ info->array.level = UnSet; break; } break; } } else { info->new_level = UnSet; info->new_layout = UnSet; info->new_chunk = info->array.chunk_size; info->delta_disks = 0; } if (dl) { info->disk.major = dl->major; info->disk.minor = dl->minor; info->disk.number = dl->index; info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse, dl->index); } info->data_offset = pba_of_lba0(map_to_analyse); info->component_size = calc_component_size(map, dev); info->component_size = imsm_component_size_alignment_check( info->array.level, info->array.chunk_size, super->sector_size, info->component_size); info->bb.supported = 1; memset(info->uuid, 0, sizeof(info->uuid)); info->recovery_start = MaxSector; if (info->array.level == 5 && (dev->rwh_policy == RWH_DISTRIBUTED || dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) { info->consistency_policy = CONSISTENCY_POLICY_PPL; info->ppl_sector = get_ppl_sector(super, super->current_vol); if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED) info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9; else info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE) >> 9; } else if (info->array.level <= 0) { info->consistency_policy = CONSISTENCY_POLICY_NONE; } else { if (dev->rwh_policy == RWH_BITMAP) { info->bitmap_offset = get_bitmap_sector(super, super->current_vol); info->consistency_policy = CONSISTENCY_POLICY_BITMAP; } else { info->consistency_policy = CONSISTENCY_POLICY_RESYNC; } } info->reshape_progress = 0; info->resync_start = MaxSector; if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED || !(info->array.state & 1)) && imsm_reshape_blocks_arrays_changes(super) == 0) { info->resync_start = 0; } if (dev->vol.migr_state) { switch (migr_type(dev)) { case MIGR_REPAIR: case MIGR_INIT: { __u64 blocks_per_unit = blocks_per_migr_unit(super, dev); __u64 units = vol_curr_migr_unit(dev); info->resync_start = blocks_per_unit * units; break; } case MIGR_GEN_MIGR: { __u64 blocks_per_unit = blocks_per_migr_unit(super, dev); __u64 units = current_migr_unit(migr_rec); int used_disks; if (__le32_to_cpu(migr_rec->ascending_migr) && (units < (get_num_migr_units(migr_rec)-1)) && (super->migr_rec->rec_status == __cpu_to_le32(UNIT_SRC_IN_CP_AREA))) units++; info->reshape_progress = blocks_per_unit * units; dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n", (unsigned long long)units, (unsigned long long)blocks_per_unit, info->reshape_progress); used_disks = imsm_num_data_members(prev_map); if (used_disks > 0) { info->custom_array_size = per_dev_array_size(map) * used_disks; } } case MIGR_VERIFY: /* we could emulate the checkpointing of * 'sync_action=check' migrations, but for now * we just immediately complete them */ case MIGR_REBUILD: /* this is handled by container_content_imsm() */ case MIGR_STATE_CHANGE: /* FIXME handle other migrations */ default: /* we are not dirty, so... */ info->resync_start = MaxSector; } } strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN); info->name[MAX_RAID_SERIAL_LEN] = 0; info->array.major_version = -1; info->array.minor_version = -2; sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member); info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */ uuid_from_super_imsm(st, info->uuid); if (dmap) { int i, j; for (i=0; iarray.raid_disks) { struct imsm_disk *dsk; j = get_imsm_disk_idx(dev, i, MAP_X); dsk = get_imsm_disk(super, j); if (dsk && (dsk->status & CONFIGURED_DISK)) dmap[i] = 1; } } } } static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed, int look_in_map); static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev, int look_in_map); static void manage_second_map(struct intel_super *super, struct imsm_dev *dev) { if (is_gen_migration(dev)) { int failed; __u8 map_state; struct imsm_map *map2 = get_imsm_map(dev, MAP_1); failed = imsm_count_failed(super, dev, MAP_1); map_state = imsm_check_degraded(super, dev, failed, MAP_1); if (map2->map_state != map_state) { map2->map_state = map_state; super->updates_pending++; } } } static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index) { struct dl *d; for (d = super->missing; d; d = d->next) if (d->index == index) return &d->disk; return NULL; } static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map) { struct intel_super *super = st->sb; struct imsm_disk *disk; int map_disks = info->array.raid_disks; int max_enough = -1; int i; struct imsm_super *mpb; if (super->current_vol >= 0) { getinfo_super_imsm_volume(st, info, map); return; } memset(info, 0, sizeof(*info)); /* Set raid_disks to zero so that Assemble will always pull in valid * spares */ info->array.raid_disks = 0; info->array.level = LEVEL_CONTAINER; info->array.layout = 0; info->array.md_minor = -1; info->array.ctime = 0; /* N/A for imsm */ info->array.utime = 0; info->array.chunk_size = 0; info->disk.major = 0; info->disk.minor = 0; info->disk.raid_disk = -1; info->reshape_active = 0; info->array.major_version = -1; info->array.minor_version = -2; strcpy(info->text_version, "imsm"); info->safe_mode_delay = 0; info->disk.number = -1; info->disk.state = 0; info->name[0] = 0; info->recovery_start = MaxSector; info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb); info->bb.supported = 1; /* do we have the all the insync disks that we expect? */ mpb = super->anchor; info->events = __le32_to_cpu(mpb->generation_num); for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); int failed, enough, j, missing = 0; struct imsm_map *map; __u8 state; failed = imsm_count_failed(super, dev, MAP_0); state = imsm_check_degraded(super, dev, failed, MAP_0); map = get_imsm_map(dev, MAP_0); /* any newly missing disks? * (catches single-degraded vs double-degraded) */ for (j = 0; j < map->num_members; j++) { __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0); __u32 idx = ord_to_idx(ord); if (super->disks && super->disks->index == (int)idx) info->disk.raid_disk = j; if (!(ord & IMSM_ORD_REBUILD) && get_imsm_missing(super, idx)) { missing = 1; break; } } if (state == IMSM_T_STATE_FAILED) enough = -1; else if (state == IMSM_T_STATE_DEGRADED && (state != map->map_state || missing)) enough = 0; else /* we're normal, or already degraded */ enough = 1; if (is_gen_migration(dev) && missing) { /* during general migration we need all disks * that process is running on. * No new missing disk is allowed. */ max_enough = -1; enough = -1; /* no more checks necessary */ break; } /* in the missing/failed disk case check to see * if at least one array is runnable */ max_enough = max(max_enough, enough); } info->container_enough = max_enough; if (super->disks) { __u32 reserved = imsm_reserved_sectors(super, super->disks); disk = &super->disks->disk; info->data_offset = total_blocks(&super->disks->disk) - reserved; info->component_size = reserved; info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0; /* we don't change info->disk.raid_disk here because * this state will be finalized in mdmon after we have * found the 'most fresh' version of the metadata */ info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0; info->disk.state |= (is_spare(disk) || is_journal(disk)) ? 0 : (1 << MD_DISK_SYNC); } /* only call uuid_from_super_imsm when this disk is part of a populated container, * ->compare_super may have updated the 'num_raid_devs' field for spares */ if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs) uuid_from_super_imsm(st, info->uuid); else memcpy(info->uuid, uuid_zero, sizeof(uuid_zero)); /* I don't know how to compute 'map' on imsm, so use safe default */ if (map) { int i; for (i = 0; i < map_disks; i++) map[i] = 1; } } /* allocates memory and fills disk in mdinfo structure * for each disk in array */ struct mdinfo *getinfo_super_disks_imsm(struct supertype *st) { struct mdinfo *mddev; struct intel_super *super = st->sb; struct imsm_disk *disk; int count = 0; struct dl *dl; if (!super || !super->disks) return NULL; dl = super->disks; mddev = xcalloc(1, sizeof(*mddev)); while (dl) { struct mdinfo *tmp; disk = &dl->disk; tmp = xcalloc(1, sizeof(*tmp)); if (mddev->devs) tmp->next = mddev->devs; mddev->devs = tmp; tmp->disk.number = count++; tmp->disk.major = dl->major; tmp->disk.minor = dl->minor; tmp->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0; tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0; tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC); tmp->disk.raid_disk = -1; dl = dl->next; } return mddev; } static int update_super_imsm(struct supertype *st, struct mdinfo *info, enum update_opt update, char *devname, int verbose, int uuid_set, char *homehost) { /* For 'assemble' and 'force' we need to return non-zero if any * change was made. For others, the return value is ignored. * Update options are: * force-one : This device looks a bit old but needs to be included, * update age info appropriately. * assemble: clear any 'faulty' flag to allow this device to * be assembled. * force-array: Array is degraded but being forced, mark it clean * if that will be needed to assemble it. * * newdev: not used ???? * grow: Array has gained a new device - this is currently for * linear only * resync: mark as dirty so a resync will happen. * name: update the name - preserving the homehost * uuid: Change the uuid of the array to match watch is given * * Following are not relevant for this imsm: * sparc2.2 : update from old dodgey metadata * super-minor: change the preferred_minor number * summaries: update redundant counters. * homehost: update the recorded homehost * _reshape_progress: record new reshape_progress position. */ int rv = 1; struct intel_super *super = st->sb; struct imsm_super *mpb; /* we can only update container info */ if (!super || super->current_vol >= 0 || !super->anchor) return 1; mpb = super->anchor; switch (update) { case UOPT_UUID: /* We take this to mean that the family_num should be updated. * However that is much smaller than the uuid so we cannot really * allow an explicit uuid to be given. And it is hard to reliably * know if one was. * So if !uuid_set we know the current uuid is random and just used * the first 'int' and copy it to the other 3 positions. * Otherwise we require the 4 'int's to be the same as would be the * case if we are using a random uuid. So an explicit uuid will be * accepted as long as all for ints are the same... which shouldn't hurt */ if (!uuid_set) { info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0]; rv = 0; } else { if (info->uuid[0] != info->uuid[1] || info->uuid[1] != info->uuid[2] || info->uuid[2] != info->uuid[3]) rv = -1; else rv = 0; } if (rv == 0) mpb->orig_family_num = info->uuid[0]; break; case UOPT_SPEC_ASSEMBLE: rv = 0; break; default: rv = -1; break; } /* successful update? recompute checksum */ if (rv == 0) mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb)); return rv; } static size_t disks_to_mpb_size(int disks) { size_t size; size = sizeof(struct imsm_super); size += (disks - 1) * sizeof(struct imsm_disk); size += 2 * sizeof(struct imsm_dev); /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */ size += (4 - 2) * sizeof(struct imsm_map); /* 4 possible disk_ord_tbl's */ size += 4 * (disks - 1) * sizeof(__u32); /* maximum bbm log */ size += sizeof(struct bbm_log); return size; } static __u64 avail_size_imsm(struct supertype *st, __u64 devsize, unsigned long long data_offset) { if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS)) return 0; return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS); } static void free_devlist(struct intel_super *super) { struct intel_dev *dv; while (super->devlist) { dv = super->devlist->next; free(super->devlist->dev); free(super->devlist); super->devlist = dv; } } static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src) { memcpy(dest, src, sizeof_imsm_dev(src, 0)); } static int compare_super_imsm(struct supertype *st, struct supertype *tst, int verbose) { /* return: * 0 same, or first was empty, and second was copied * 1 sb are different */ struct intel_super *first = st->sb; struct intel_super *sec = tst->sb; if (!first) { st->sb = tst->sb; tst->sb = NULL; return 0; } /* in platform dependent environment test if the disks * use the same Intel hba * if not on Intel hba at all, allow anything. * doesn't check HBAs if num_raid_devs is not set, as it means * it is a free floating spare, and all spares regardless of HBA type * will fall into separate container during the assembly */ if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) { if (first->hba->type != sec->hba->type) { if (verbose) pr_err("HBAs of devices do not match %s != %s\n", get_sys_dev_type(first->hba->type), get_sys_dev_type(sec->hba->type)); return 1; } if (first->orom != sec->orom) { if (verbose) pr_err("HBAs of devices do not match %s != %s\n", first->hba->pci_id, sec->hba->pci_id); return 1; } } if (first->anchor->num_raid_devs > 0 && sec->anchor->num_raid_devs > 0) { /* Determine if these disks might ever have been * related. Further disambiguation can only take place * in load_super_imsm_all */ __u32 first_family = first->anchor->orig_family_num; __u32 sec_family = sec->anchor->orig_family_num; if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0) return 1; if (first_family == 0) first_family = first->anchor->family_num; if (sec_family == 0) sec_family = sec->anchor->family_num; if (first_family != sec_family) return 1; } /* if an anchor does not have num_raid_devs set then it is a free * floating spare. don't assosiate spare with any array, as during assembly * spares shall fall into separate container, from which they can be moved * when necessary */ if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs) return 1; return 0; } static void fd2devname(int fd, char *name) { char *nm; nm = fd2kname(fd); if (!nm) return; snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm); } static int nvme_get_serial(int fd, void *buf, size_t buf_len) { char path[PATH_MAX]; char *name = fd2kname(fd); if (!name) return 1; if (strncmp(name, "nvme", 4) != 0) return 1; if (!diskfd_to_devpath(fd, 1, path)) return 1; return devpath_to_char(path, "serial", buf, buf_len, 0); } mdadm_status_t scsi_get_serial(int fd, void *buf, size_t buf_len) { struct sg_io_hdr io_hdr = {0}; unsigned char rsp_buf[255]; unsigned char inq_cmd[] = {INQUIRY, 1, 0x80, 0, sizeof(rsp_buf), 0}; unsigned char sense[32]; unsigned int rsp_len; int rv; io_hdr.interface_id = 'S'; io_hdr.cmdp = inq_cmd; io_hdr.cmd_len = sizeof(inq_cmd); io_hdr.dxferp = rsp_buf; io_hdr.dxfer_len = sizeof(rsp_buf); io_hdr.dxfer_direction = SG_DXFER_FROM_DEV; io_hdr.sbp = sense; io_hdr.mx_sb_len = sizeof(sense); io_hdr.timeout = 5000; rv = ioctl(fd, SG_IO, &io_hdr); if (rv) return MDADM_STATUS_ERROR; if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK) return MDADM_STATUS_ERROR; rsp_len = rsp_buf[3]; if (!rsp_len || buf_len < rsp_len) return MDADM_STATUS_ERROR; memcpy(buf, &rsp_buf[4], rsp_len); return MDADM_STATUS_SUCCESS; } static int imsm_read_serial(int fd, char *devname, __u8 *serial, size_t serial_buf_len) { char buf[50]; int rv; size_t len; char *dest; char *src; unsigned int i; memset(buf, 0, sizeof(buf)); if (check_env("IMSM_DEVNAME_AS_SERIAL")) { memset(serial, 0, serial_buf_len); fd2devname(fd, (char *) serial); return 0; } rv = nvme_get_serial(fd, buf, sizeof(buf)); if (rv) rv = scsi_get_serial(fd, buf, sizeof(buf)); if (rv != 0) { if (devname) pr_err("Failed to retrieve serial for %s\n", devname); return rv; } /* trim all whitespace and non-printable characters and convert * ':' to ';' */ for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) { src = &buf[i]; if (*src > 0x20) { /* ':' is reserved for use in placeholder serial * numbers for missing disks */ if (*src == ':') *dest++ = ';'; else *dest++ = *src; } } len = dest - buf; dest = buf; if (len > serial_buf_len) { /* truncate leading characters */ dest += len - serial_buf_len; len = serial_buf_len; } memset(serial, 0, serial_buf_len); memcpy(serial, dest, len); return 0; } static int serialcmp(__u8 *s1, __u8 *s2) { return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN); } static void serialcpy(__u8 *dest, __u8 *src) { strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN); } static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super) { struct dl *dl; for (dl = super->disks; dl; dl = dl->next) if (serialcmp(dl->serial, serial) == 0) break; return dl; } static struct imsm_disk * __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx) { int i; for (i = 0; i < mpb->num_disks; i++) { struct imsm_disk *disk = __get_imsm_disk(mpb, i); if (serialcmp(disk->serial, serial) == 0) { if (idx) *idx = i; return disk; } } return NULL; } static int load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd) { struct imsm_disk *disk; struct dl *dl; struct stat stb; int rv; char name[40]; __u8 serial[MAX_RAID_SERIAL_LEN]; rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN); if (rv != 0) return 2; dl = xcalloc(1, sizeof(*dl)); if (fstat(fd, &stb) != 0) { free(dl); return 1; } dl->major = major(stb.st_rdev); dl->minor = minor(stb.st_rdev); dl->next = super->disks; dl->fd = keep_fd ? fd : -1; assert(super->disks == NULL); super->disks = dl; serialcpy(dl->serial, serial); dl->index = -2; dl->e = NULL; fd2devname(fd, name); if (devname) dl->devname = xstrdup(devname); else dl->devname = xstrdup(name); /* look up this disk's index in the current anchor */ disk = __serial_to_disk(dl->serial, super->anchor, &dl->index); if (disk) { dl->disk = *disk; /* only set index on disks that are a member of a * populated contianer, i.e. one with raid_devs */ if (is_failed(&dl->disk)) dl->index = -2; else if (is_spare(&dl->disk) || is_journal(&dl->disk)) dl->index = -1; } return 0; } /* When migrating map0 contains the 'destination' state while map1 * contains the current state. When not migrating map0 contains the * current state. This routine assumes that map[0].map_state is set to * the current array state before being called. * * Migration is indicated by one of the following states * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed) * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal * map1state=unitialized) * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal * map1state=normal) * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal * map1state=degraded) * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal * map1state=normal) */ static void migrate(struct imsm_dev *dev, struct intel_super *super, __u8 to_state, int migr_type) { struct imsm_map *dest; struct imsm_map *src = get_imsm_map(dev, MAP_0); dev->vol.migr_state = MIGR_STATE_MIGRATING; set_migr_type(dev, migr_type); set_vol_curr_migr_unit(dev, 0); dest = get_imsm_map(dev, MAP_1); /* duplicate and then set the target end state in map[0] */ memcpy(dest, src, sizeof_imsm_map(src)); if (migr_type == MIGR_GEN_MIGR) { __u32 ord; int i; for (i = 0; i < src->num_members; i++) { ord = __le32_to_cpu(src->disk_ord_tbl[i]); set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord)); } } if (migr_type == MIGR_GEN_MIGR) /* Clear migration record */ memset(super->migr_rec, 0, sizeof(struct migr_record)); src->map_state = to_state; } static void end_migration(struct imsm_dev *dev, struct intel_super *super, __u8 map_state) { /* To avoid compilation error, saying dev can't be NULL when * migr_state is assigned. */ if (dev == NULL) return; struct imsm_map *map = get_imsm_map(dev, MAP_0); struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == MIGR_STATE_NORMAL ? MAP_0 : MAP_1); int i, j; /* merge any IMSM_ORD_REBUILD bits that were not successfully * completed in the last migration. * * FIXME add support for raid-level-migration */ if (map_state != map->map_state && (is_gen_migration(dev) == false) && prev->map_state != IMSM_T_STATE_UNINITIALIZED) { /* when final map state is other than expected * merge maps (not for migration) */ int failed; for (i = 0; i < prev->num_members; i++) for (j = 0; j < map->num_members; j++) /* during online capacity expansion * disks position can be changed * if takeover is used */ if (ord_to_idx(map->disk_ord_tbl[j]) == ord_to_idx(prev->disk_ord_tbl[i])) { map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i]; break; } failed = imsm_count_failed(super, dev, MAP_0); map_state = imsm_check_degraded(super, dev, failed, MAP_0); } dev->vol.migr_state = MIGR_STATE_NORMAL; set_migr_type(dev, 0); set_vol_curr_migr_unit(dev, 0); map->map_state = map_state; } static int parse_raid_devices(struct intel_super *super) { int i; struct imsm_dev *dev_new; size_t len, len_migr; size_t max_len = 0; size_t space_needed = 0; struct imsm_super *mpb = super->anchor; for (i = 0; i < super->anchor->num_raid_devs; i++) { struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i); struct intel_dev *dv; len = sizeof_imsm_dev(dev_iter, 0); len_migr = sizeof_imsm_dev(dev_iter, 1); if (len_migr > len) space_needed += len_migr - len; dv = xmalloc(sizeof(*dv)); if (max_len < len_migr) max_len = len_migr; if (max_len > len_migr) space_needed += max_len - len_migr; dev_new = xmalloc(max_len); imsm_copy_dev(dev_new, dev_iter); dv->dev = dev_new; dv->index = i; dv->next = super->devlist; super->devlist = dv; } /* ensure that super->buf is large enough when all raid devices * are migrating */ if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) { void *buf; len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, super->sector_size); if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0) return 1; memcpy(buf, super->buf, super->len); memset(buf + super->len, 0, len - super->len); free(super->buf); super->buf = buf; super->len = len; } super->extra_space += space_needed; return 0; } /******************************************************************************* * Function: check_mpb_migr_compatibility * Description: Function checks for unsupported migration features: * - migration optimization area (pba_of_lba0) * - descending reshape (ascending_migr) * Parameters: * super : imsm metadata information * Returns: * 0 : migration is compatible * -1 : migration is not compatible ******************************************************************************/ int check_mpb_migr_compatibility(struct intel_super *super) { struct imsm_map *map0, *map1; struct migr_record *migr_rec = super->migr_rec; int i; for (i = 0; i < super->anchor->num_raid_devs; i++) { struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i); if (dev_iter->vol.migr_state == MIGR_STATE_MIGRATING && dev_iter->vol.migr_type == MIGR_GEN_MIGR) { /* This device is migrating */ map0 = get_imsm_map(dev_iter, MAP_0); map1 = get_imsm_map(dev_iter, MAP_1); if (pba_of_lba0(map0) != pba_of_lba0(map1)) /* migration optimization area was used */ return -1; if (migr_rec->ascending_migr == 0 && migr_rec->dest_depth_per_unit > 0) /* descending reshape not supported yet */ return -1; } } return 0; } static void __free_imsm(struct intel_super *super, int free_disks); /* load_imsm_mpb - read matrix metadata * allocates super->mpb to be freed by free_imsm */ static int load_imsm_mpb(int fd, struct intel_super *super, char *devname) { unsigned long long dsize; unsigned long long sectors; unsigned int sector_size = super->sector_size; struct stat; struct imsm_super *anchor; __u32 check_sum; get_dev_size(fd, NULL, &dsize); if (dsize < 2*sector_size) { if (devname) pr_err("%s: device to small for imsm\n", devname); return 1; } if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) { if (devname) pr_err("Cannot seek to anchor block on %s: %s\n", devname, strerror(errno)); return 1; } if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) { if (devname) pr_err("Failed to allocate imsm anchor buffer on %s\n", devname); return 1; } if ((unsigned int)read(fd, anchor, sector_size) != sector_size) { if (devname) pr_err("Cannot read anchor block on %s: %s\n", devname, strerror(errno)); free(anchor); return 1; } if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) { if (devname) pr_err("no IMSM anchor on %s\n", devname); free(anchor); return 2; } __free_imsm(super, 0); /* reload capability and hba */ /* capability and hba must be updated with new super allocation */ find_intel_hba_capability(fd, super, devname); super->len = ROUND_UP(anchor->mpb_size, sector_size); if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) { if (devname) pr_err("unable to allocate %zu byte mpb buffer\n", super->len); free(anchor); return 2; } memcpy(super->buf, anchor, sector_size); sectors = mpb_sectors(anchor, sector_size) - 1; free(anchor); if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) { pr_err("could not allocate migr_rec buffer\n"); free(super->buf); super->buf = NULL; return 2; } super->clean_migration_record_by_mdmon = 0; if (!sectors) { check_sum = __gen_imsm_checksum(super->anchor); if (check_sum != __le32_to_cpu(super->anchor->check_sum)) { if (devname) pr_err("IMSM checksum %x != %x on %s\n", check_sum, __le32_to_cpu(super->anchor->check_sum), devname); return 2; } return 0; } /* read the extended mpb */ if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) { if (devname) pr_err("Cannot seek to extended mpb on %s: %s\n", devname, strerror(errno)); return 1; } if ((unsigned int)read(fd, super->buf + sector_size, super->len - sector_size) != super->len - sector_size) { if (devname) pr_err("Cannot read extended mpb on %s: %s\n", devname, strerror(errno)); return 2; } check_sum = __gen_imsm_checksum(super->anchor); if (check_sum != __le32_to_cpu(super->anchor->check_sum)) { if (devname) pr_err("IMSM checksum %x != %x on %s\n", check_sum, __le32_to_cpu(super->anchor->check_sum), devname); return 3; } return 0; } static int read_imsm_migr_rec(int fd, struct intel_super *super); /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */ static void clear_hi(struct intel_super *super) { struct imsm_super *mpb = super->anchor; int i, n; if (mpb->attributes & MPB_ATTRIB_2TB_DISK) return; for (i = 0; i < mpb->num_disks; ++i) { struct imsm_disk *disk = &mpb->disk[i]; disk->total_blocks_hi = 0; } for (i = 0; i < mpb->num_raid_devs; ++i) { struct imsm_dev *dev = get_imsm_dev(super, i); for (n = 0; n < 2; ++n) { struct imsm_map *map = get_imsm_map(dev, n); if (!map) continue; map->pba_of_lba0_hi = 0; map->blocks_per_member_hi = 0; map->num_data_stripes_hi = 0; } } } static int load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd) { int err; err = load_imsm_mpb(fd, super, devname); if (err) return err; if (super->sector_size == 4096) convert_from_4k(super); err = load_imsm_disk(fd, super, devname, keep_fd); if (err) return err; err = parse_raid_devices(super); if (err) return err; err = load_bbm_log(super); clear_hi(super); return err; } static void __free_imsm_disk(struct dl *d, int do_close) { if (do_close) close_fd(&d->fd); if (d->devname) free(d->devname); if (d->e) free(d->e); free(d); } static void free_imsm_disks(struct intel_super *super) { struct dl *d; while (super->disks) { d = super->disks; super->disks = d->next; __free_imsm_disk(d, 1); } while (super->disk_mgmt_list) { d = super->disk_mgmt_list; super->disk_mgmt_list = d->next; __free_imsm_disk(d, 1); } while (super->missing) { d = super->missing; super->missing = d->next; __free_imsm_disk(d, 1); } } /* free all the pieces hanging off of a super pointer */ static void __free_imsm(struct intel_super *super, int free_disks) { struct intel_hba *elem, *next; if (super->buf) { free(super->buf); super->buf = NULL; } /* unlink capability description */ super->orom = NULL; if (super->migr_rec_buf) { free(super->migr_rec_buf); super->migr_rec_buf = NULL; } if (free_disks) free_imsm_disks(super); free_devlist(super); elem = super->hba; while (elem) { if (elem->path) free((void *)elem->path); next = elem->next; free(elem); elem = next; } if (super->bbm_log) free(super->bbm_log); super->hba = NULL; } static void free_imsm(struct intel_super *super) { __free_imsm(super, 1); free(super->bb.entries); free(super); } static void free_super_imsm(struct supertype *st) { struct intel_super *super = st->sb; if (!super) return; free_imsm(super); st->sb = NULL; } static struct intel_super *alloc_super(void) { struct intel_super *super = xcalloc(1, sizeof(*super)); super->current_vol = -1; super->create_offset = ~((unsigned long long) 0); super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES * sizeof(struct md_bb_entry)); if (!super->bb.entries) { free(super); return NULL; } return super; } /* * find and allocate hba and OROM/EFI based on valid fd of RAID component device */ static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname) { struct sys_dev *hba_name; int rv = 0; if (is_fd_valid(fd) && test_partition(fd)) { pr_err("imsm: %s is a partition, cannot be used in IMSM\n", devname); return 1; } if (!is_fd_valid(fd) || check_no_platform()) { super->orom = NULL; super->hba = NULL; return 0; } hba_name = find_disk_attached_hba(fd, NULL); if (!hba_name) { if (devname) pr_err("%s is not attached to Intel(R) RAID controller.\n", devname); return 1; } rv = attach_hba_to_super(super, hba_name); if (rv == 2) { if (devname) { struct intel_hba *hba = super->hba; pr_err("%s is attached to Intel(R) %s %s (%s),\n" " but the container is assigned to Intel(R) %s %s (", devname, get_sys_dev_type(hba_name->type), hba_name->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ? "domain" : "RAID controller", hba_name->pci_id ? : "Err!", get_sys_dev_type(super->hba->type), hba->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ? "domain" : "RAID controller"); while (hba) { fprintf(stderr, "%s", hba->pci_id ? : "Err!"); if (hba->next) fprintf(stderr, ", "); hba = hba->next; } fprintf(stderr, ").\n" " Mixing devices attached to different controllers is not allowed.\n"); } return 2; } super->orom = find_imsm_capability(hba_name); if (!super->orom) return 3; return 0; } /* find_missing - helper routine for load_super_imsm_all that identifies * disks that have disappeared from the system. This routine relies on * the mpb being uptodate, which it is at load time. */ static int find_missing(struct intel_super *super) { int i; struct imsm_super *mpb = super->anchor; struct dl *dl; struct imsm_disk *disk; for (i = 0; i < mpb->num_disks; i++) { disk = __get_imsm_disk(mpb, i); dl = serial_to_dl(disk->serial, super); if (dl) continue; dl = xmalloc(sizeof(*dl)); dl->major = 0; dl->minor = 0; dl->fd = -1; dl->devname = xstrdup("missing"); dl->index = i; serialcpy(dl->serial, disk->serial); dl->disk = *disk; dl->e = NULL; dl->next = super->missing; super->missing = dl; } return 0; } static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list) { struct intel_disk *idisk = disk_list; while (idisk) { if (serialcmp(idisk->disk.serial, serial) == 0) break; idisk = idisk->next; } return idisk; } static int __prep_thunderdome(struct intel_super **table, int tbl_size, struct intel_super *super, struct intel_disk **disk_list) { struct imsm_disk *d = &super->disks->disk; struct imsm_super *mpb = super->anchor; int i, j; for (i = 0; i < tbl_size; i++) { struct imsm_super *tbl_mpb = table[i]->anchor; struct imsm_disk *tbl_d = &table[i]->disks->disk; if (tbl_mpb->family_num == mpb->family_num) { if (tbl_mpb->check_sum == mpb->check_sum) { dprintf("mpb from %d:%d matches %d:%d\n", super->disks->major, super->disks->minor, table[i]->disks->major, table[i]->disks->minor); break; } if (((is_configured(d) && !is_configured(tbl_d)) || is_configured(d) == is_configured(tbl_d)) && tbl_mpb->generation_num < mpb->generation_num) { /* current version of the mpb is a * better candidate than the one in * super_table, but copy over "cross * generational" status */ struct intel_disk *idisk; dprintf("mpb from %d:%d replaces %d:%d\n", super->disks->major, super->disks->minor, table[i]->disks->major, table[i]->disks->minor); idisk = disk_list_get(tbl_d->serial, *disk_list); if (idisk && is_failed(&idisk->disk)) tbl_d->status |= FAILED_DISK; break; } else { struct intel_disk *idisk; struct imsm_disk *disk; /* tbl_mpb is more up to date, but copy * over cross generational status before * returning */ disk = __serial_to_disk(d->serial, mpb, NULL); if (disk && is_failed(disk)) d->status |= FAILED_DISK; idisk = disk_list_get(d->serial, *disk_list); if (idisk) { idisk->owner = i; if (disk && is_configured(disk)) idisk->disk.status |= CONFIGURED_DISK; } dprintf("mpb from %d:%d prefer %d:%d\n", super->disks->major, super->disks->minor, table[i]->disks->major, table[i]->disks->minor); return tbl_size; } } } if (i >= tbl_size) table[tbl_size++] = super; else table[i] = super; /* update/extend the merged list of imsm_disk records */ for (j = 0; j < mpb->num_disks; j++) { struct imsm_disk *disk = __get_imsm_disk(mpb, j); struct intel_disk *idisk; idisk = disk_list_get(disk->serial, *disk_list); if (idisk) { idisk->disk.status |= disk->status; if (is_configured(&idisk->disk) || is_failed(&idisk->disk)) idisk->disk.status &= ~(SPARE_DISK); } else { idisk = xcalloc(1, sizeof(*idisk)); idisk->owner = IMSM_UNKNOWN_OWNER; idisk->disk = *disk; idisk->next = *disk_list; *disk_list = idisk; } if (serialcmp(idisk->disk.serial, d->serial) == 0) idisk->owner = i; } return tbl_size; } static struct intel_super * validate_members(struct intel_super *super, struct intel_disk *disk_list, const int owner) { struct imsm_super *mpb = super->anchor; int ok_count = 0; int i; for (i = 0; i < mpb->num_disks; i++) { struct imsm_disk *disk = __get_imsm_disk(mpb, i); struct intel_disk *idisk; idisk = disk_list_get(disk->serial, disk_list); if (idisk) { if (idisk->owner == owner || idisk->owner == IMSM_UNKNOWN_OWNER) ok_count++; else dprintf("'%.16s' owner %d != %d\n", disk->serial, idisk->owner, owner); } else { dprintf("unknown disk %x [%d]: %.16s\n", __le32_to_cpu(mpb->family_num), i, disk->serial); break; } } if (ok_count == mpb->num_disks) return super; return NULL; } static void show_conflicts(__u32 family_num, struct intel_super *super_list) { struct intel_super *s; for (s = super_list; s; s = s->next) { if (family_num != s->anchor->family_num) continue; pr_err("Conflict, offlining family %#x on '%s'\n", __le32_to_cpu(family_num), s->disks->devname); } } static struct intel_super * imsm_thunderdome(struct intel_super **super_list, int len) { struct intel_super *super_table[len]; struct intel_disk *disk_list = NULL; struct intel_super *champion, *spare; struct intel_super *s, **del; int tbl_size = 0; int conflict; int i; memset(super_table, 0, sizeof(super_table)); for (s = *super_list; s; s = s->next) tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list); for (i = 0; i < tbl_size; i++) { struct imsm_disk *d; struct intel_disk *idisk; s = super_table[i]; d = &s->disks->disk; /* 'd' must appear in merged disk list for its * configuration to be valid */ idisk = disk_list_get(d->serial, disk_list); if (idisk && idisk->owner == i) s = validate_members(s, disk_list, i); else s = NULL; if (!s) dprintf("marking family: %#x from %d:%d offline\n", super_table[i]->anchor->family_num, super_table[i]->disks->major, super_table[i]->disks->minor); super_table[i] = s; } /* This is where the mdadm implementation differs from the Windows * driver which has no strict concept of a container. We can only * assemble one family from a container, so when returning a prodigal * array member to this system the code will not be able to disambiguate * the container contents that should be assembled ("foreign" versus * "local"). It requires user intervention to set the orig_family_num * to a new value to establish a new container. The Windows driver in * this situation fixes up the volume name in place and manages the * foreign array as an independent entity. */ s = NULL; spare = NULL; conflict = 0; for (i = 0; i < tbl_size; i++) { struct intel_super *tbl_ent = super_table[i]; int is_spare = 0; if (!tbl_ent) continue; if (tbl_ent->anchor->num_raid_devs == 0) { spare = tbl_ent; is_spare = 1; } if (s && !is_spare) { show_conflicts(tbl_ent->anchor->family_num, *super_list); conflict++; } else if (!s && !is_spare) s = tbl_ent; } if (!s) s = spare; if (!s) { champion = NULL; goto out; } champion = s; if (conflict) pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n", __le32_to_cpu(s->anchor->family_num), s->disks->devname); /* collect all dl's onto 'champion', and update them to * champion's version of the status */ for (s = *super_list; s; s = s->next) { struct imsm_super *mpb = champion->anchor; struct dl *dl = s->disks; if (s == champion) continue; mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK; for (i = 0; i < mpb->num_disks; i++) { struct imsm_disk *disk; disk = __serial_to_disk(dl->serial, mpb, &dl->index); if (disk) { dl->disk = *disk; /* only set index on disks that are a member of * a populated contianer, i.e. one with * raid_devs */ if (is_failed(&dl->disk)) dl->index = -2; else if (is_spare(&dl->disk)) dl->index = -1; break; } } if (i >= mpb->num_disks) { struct intel_disk *idisk; idisk = disk_list_get(dl->serial, disk_list); if (idisk && is_spare(&idisk->disk) && !is_failed(&idisk->disk) && !is_configured(&idisk->disk)) dl->index = -1; else { dl->index = -2; continue; } } dl->next = champion->disks; champion->disks = dl; s->disks = NULL; } /* delete 'champion' from super_list */ for (del = super_list; *del; ) { if (*del == champion) { *del = (*del)->next; break; } else del = &(*del)->next; } champion->next = NULL; out: while (disk_list) { struct intel_disk *idisk = disk_list; disk_list = disk_list->next; free(idisk); } return champion; } static int get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd); static int get_super_block(struct intel_super **super_list, char *devnm, char *devname, int major, int minor, int keep_fd); static int get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list, int *max, int keep_fd); static int load_super_imsm_all(struct supertype *st, int fd, void **sbp, char *devname, struct md_list *devlist, int keep_fd) { struct intel_super *super_list = NULL; struct intel_super *super = NULL; int err = 0; int i = 0; if (is_fd_valid(fd)) /* 'fd' is an opened container */ err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd); else /* get super block from devlist devices */ err = get_devlist_super_block(devlist, &super_list, &i, keep_fd); if (err) goto error; /* all mpbs enter, maybe one leaves */ super = imsm_thunderdome(&super_list, i); if (!super) { err = 1; goto error; } if (find_missing(super) != 0) { free_imsm(super); err = 2; goto error; } /* load migration record */ err = load_imsm_migr_rec(super); if (err == -1) { /* migration is in progress, * but migr_rec cannot be loaded, */ err = 4; goto error; } /* Check migration compatibility */ if (err == 0 && check_mpb_migr_compatibility(super) != 0) { pr_err("Unsupported migration detected"); if (devname) fprintf(stderr, " on %s\n", devname); else fprintf(stderr, " (IMSM).\n"); err = 5; goto error; } err = 0; error: while (super_list) { struct intel_super *s = super_list; super_list = super_list->next; free_imsm(s); } if (err) return err; *sbp = super; if (is_fd_valid(fd)) strcpy(st->container_devnm, fd2devnm(fd)); else st->container_devnm[0] = 0; if (err == 0 && st->ss == NULL) { st->ss = &super_imsm; st->minor_version = 0; st->max_devs = IMSM_MAX_DEVICES; } return 0; } static int get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list, int *max, int keep_fd) { struct md_list *tmpdev; int err = 0; int i = 0; for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) { if (tmpdev->used != 1) continue; if (tmpdev->container == 1) { int lmax = 0; int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL); if (!is_fd_valid(fd)) { pr_err("cannot open device %s: %s\n", tmpdev->devname, strerror(errno)); err = 8; goto error; } err = get_sra_super_block(fd, super_list, tmpdev->devname, &lmax, keep_fd); i += lmax; close(fd); if (err) { err = 7; goto error; } } else { int major = major(tmpdev->st_rdev); int minor = minor(tmpdev->st_rdev); err = get_super_block(super_list, NULL, tmpdev->devname, major, minor, keep_fd); i++; if (err) { err = 6; goto error; } } } error: *max = i; return err; } static int get_super_block(struct intel_super **super_list, char *devnm, char *devname, int major, int minor, int keep_fd) { struct intel_super *s; char nm[32]; int dfd = -1; int err = 0; int retry; s = alloc_super(); if (!s) { err = 1; goto error; } sprintf(nm, "%d:%d", major, minor); dfd = dev_open(nm, O_RDWR); if (!is_fd_valid(dfd)) { err = 2; goto error; } if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) { err = 2; goto error; } find_intel_hba_capability(dfd, s, devname); err = load_and_parse_mpb(dfd, s, NULL, keep_fd); /* retry the load if we might have raced against mdmon */ if (err == 3 && devnm && mdmon_running(devnm)) for (retry = 0; retry < 3; retry++) { sleep_for(0, MSEC_TO_NSEC(3), true); err = load_and_parse_mpb(dfd, s, NULL, keep_fd); if (err != 3) break; } error: if (!err) { s->next = *super_list; *super_list = s; } else { if (s) free_imsm(s); close_fd(&dfd); } if (!keep_fd) close_fd(&dfd); return err; } static int get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd) { struct mdinfo *sra; char *devnm; struct mdinfo *sd; int err = 0; int i = 0; sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE); if (!sra) return 1; if (sra->array.major_version != -1 || sra->array.minor_version != -2 || strcmp(sra->text_version, "imsm") != 0) { err = 1; goto error; } /* load all mpbs */ devnm = fd2devnm(fd); for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) { if (get_super_block(super_list, devnm, devname, sd->disk.major, sd->disk.minor, keep_fd) != 0) { err = 7; goto error; } } error: sysfs_free(sra); *max = i; return err; } static int load_container_imsm(struct supertype *st, int fd, char *devname) { return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1); } static int load_super_imsm(struct supertype *st, int fd, char *devname) { struct intel_super *super; int rv; int retry; if (test_partition(fd)) /* IMSM not allowed on partitions */ return 1; free_super_imsm(st); super = alloc_super(); if (!super) return 1; if (!get_dev_sector_size(fd, NULL, &super->sector_size)) { free_imsm(super); return 1; } /* Load hba and capabilities if they exist. * But do not preclude loading metadata in case capabilities or hba are * non-compliant and ignore_hw_compat is set. */ rv = find_intel_hba_capability(fd, super, devname); /* no orom/efi or non-intel hba of the disk */ if (rv != 0 && st->ignore_hw_compat == 0) { if (devname) pr_err("No OROM/EFI properties for %s\n", devname); free_imsm(super); return 2; } rv = load_and_parse_mpb(fd, super, devname, 0); /* retry the load if we might have raced against mdmon */ if (rv == 3) { struct mdstat_ent *mdstat = NULL; char *name = fd2kname(fd); if (name) mdstat = mdstat_by_component(name); if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) { for (retry = 0; retry < 3; retry++) { sleep_for(0, MSEC_TO_NSEC(3), true); rv = load_and_parse_mpb(fd, super, devname, 0); if (rv != 3) break; } } free_mdstat(mdstat); } if (rv) { if (devname) pr_err("Failed to load all information sections on %s\n", devname); free_imsm(super); return rv; } st->sb = super; if (st->ss == NULL) { st->ss = &super_imsm; st->minor_version = 0; st->max_devs = IMSM_MAX_DEVICES; } /* load migration record */ if (load_imsm_migr_rec(super) == 0) { /* Check for unsupported migration features */ if (check_mpb_migr_compatibility(super) != 0) { pr_err("Unsupported migration detected"); if (devname) fprintf(stderr, " on %s\n", devname); else fprintf(stderr, " (IMSM).\n"); return 3; } } return 0; } static __u16 info_to_blocks_per_strip(mdu_array_info_t *info) { if (info->level == 1) return 128; return info->chunk_size >> 9; } static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info, unsigned long long size) { if (info->level == 1) return size * 2; else return (size * 2) & ~(info_to_blocks_per_strip(info) - 1); } static void imsm_write_signature(struct imsm_super *mpb) { /* It is safer to eventually truncate version rather than left it not NULL ended */ snprintf((char *) mpb->sig, MAX_SIGNATURE_LENGTH, MPB_SIGNATURE MPB_VERSION_ATTRIBS); } static void imsm_update_version_info(struct intel_super *super) { /* update the version and attributes */ struct imsm_super *mpb = super->anchor; struct imsm_dev *dev; struct imsm_map *map; int i; mpb->attributes |= MPB_ATTRIB_CHECKSUM_VERIFY; for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); map = get_imsm_map(dev, MAP_0); if (__le32_to_cpu(dev->size_high) > 0) mpb->attributes |= MPB_ATTRIB_2TB; switch (get_imsm_raid_level(map)) { case IMSM_T_RAID0: mpb->attributes |= MPB_ATTRIB_RAID0; break; case IMSM_T_RAID1: mpb->attributes |= MPB_ATTRIB_RAID1; break; case IMSM_T_RAID5: mpb->attributes |= MPB_ATTRIB_RAID5; break; case IMSM_T_RAID10: mpb->attributes |= MPB_ATTRIB_RAID10; if (map->num_members > 4) mpb->attributes |= MPB_ATTRIB_RAID10_EXT; break; } } imsm_write_signature(mpb); } /** * imsm_check_name() - check imsm naming criteria. * @super: &intel_super pointer, not NULL. * @name: name to check. * @verbose: verbose level. * * Name must be no longer than &MAX_RAID_SERIAL_LEN and must be unique across volumes. * * Returns: &true if @name matches, &false otherwise. */ static bool imsm_is_name_allowed(struct intel_super *super, const char * const name, const int verbose) { struct imsm_super *mpb = super->anchor; int i; if (is_string_lq(name, MAX_RAID_SERIAL_LEN + 1) == false) { pr_vrb("imsm: Name \"%s\" is too long\n", name); return false; } for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) { pr_vrb("imsm: Name \"%s\" already exists\n", name); return false; } } return true; } static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info, struct shape *s, char *name, char *homehost, int *uuid, long long data_offset) { /* We are creating a volume inside a pre-existing container. * so st->sb is already set. */ struct intel_super *super = st->sb; unsigned int sector_size = super->sector_size; struct imsm_super *mpb = super->anchor; struct intel_dev *dv; struct imsm_dev *dev; struct imsm_vol *vol; struct imsm_map *map; int idx = mpb->num_raid_devs; int i; int namelen; unsigned long long array_blocks; size_t size_old, size_new; unsigned int data_disks; unsigned long long size_per_member; if (super->orom && mpb->num_raid_devs >= super->orom->vpa) { pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa); return 0; } /* ensure the mpb is large enough for the new data */ size_old = __le32_to_cpu(mpb->mpb_size); size_new = disks_to_mpb_size(info->nr_disks); if (size_new > size_old) { void *mpb_new; size_t size_round = ROUND_UP(size_new, sector_size); if (posix_memalign(&mpb_new, sector_size, size_round) != 0) { pr_err("could not allocate new mpb\n"); return 0; } if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE, MIGR_REC_BUF_SECTORS* MAX_SECTOR_SIZE) != 0) { pr_err("could not allocate migr_rec buffer\n"); free(super->buf); free(super); free(mpb_new); return 0; } memcpy(mpb_new, mpb, size_old); free(mpb); mpb = mpb_new; super->anchor = mpb_new; mpb->mpb_size = __cpu_to_le32(size_new); memset(mpb_new + size_old, 0, size_round - size_old); super->len = size_round; } super->current_vol = idx; /* handle 'failed_disks' by either: * a) create dummy disk entries in the table if this the first * volume in the array. We add them here as this is the only * opportunity to add them. add_to_super_imsm_volume() * handles the non-failed disks and continues incrementing * mpb->num_disks. * b) validate that 'failed_disks' matches the current number * of missing disks if the container is populated */ if (super->current_vol == 0) { mpb->num_disks = 0; for (i = 0; i < info->failed_disks; i++) { struct imsm_disk *disk; mpb->num_disks++; disk = __get_imsm_disk(mpb, i); disk->status = CONFIGURED_DISK | FAILED_DISK; disk->scsi_id = __cpu_to_le32(~(__u32)0); snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN, "missing:%d", (__u8)i); } find_missing(super); } else { int missing = 0; struct dl *d; for (d = super->missing; d; d = d->next) missing++; if (info->failed_disks > missing) { pr_err("unable to add 'missing' disk to container\n"); return 0; } } if (imsm_is_name_allowed(super, name, 1) == false) return 0; dv = xmalloc(sizeof(*dv)); dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1)); /* * Explicitly allow truncating to not confuse gcc's * -Werror=stringop-truncation */ namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN); memcpy(dev->volume, name, namelen); array_blocks = calc_array_size(info->level, info->raid_disks, info->layout, info->chunk_size, s->size * BLOCKS_PER_KB); data_disks = get_data_disks(info->level, info->layout, info->raid_disks); array_blocks = round_size_to_mb(array_blocks, data_disks); size_per_member = array_blocks / data_disks; set_imsm_dev_size(dev, array_blocks); dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING); vol = &dev->vol; vol->migr_state = MIGR_STATE_NORMAL; set_migr_type(dev, MIGR_INIT); vol->dirty = !info->state; set_vol_curr_migr_unit(dev, 0); map = get_imsm_map(dev, MAP_0); set_pba_of_lba0(map, super->create_offset); map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info)); map->failed_disk_num = ~0; if (info->level > IMSM_T_RAID0) map->map_state = (info->state ? IMSM_T_STATE_NORMAL : IMSM_T_STATE_UNINITIALIZED); else map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED : IMSM_T_STATE_NORMAL; map->ddf = 1; if (info->level == IMSM_T_RAID1 && info->raid_disks > 2) { free(dev); free(dv); pr_err("imsm does not support more than 2 disks in a raid1 volume\n"); return 0; } map->num_members = info->raid_disks; update_imsm_raid_level(map, info->level); set_num_domains(map); size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION; set_blocks_per_member(map, info_to_blocks_per_member(info, size_per_member / BLOCKS_PER_KB)); update_num_data_stripes(map, array_blocks); for (i = 0; i < map->num_members; i++) { /* initialized in add_to_super */ set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD); } mpb->num_raid_devs++; mpb->num_raid_devs_created++; dev->my_vol_raid_dev_num = mpb->num_raid_devs_created; if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) { dev->rwh_policy = RWH_MULTIPLE_OFF; } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) { dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED; } else { free(dev); free(dv); pr_err("imsm does not support consistency policy %s\n", map_num_s(consistency_policies, s->consistency_policy)); return 0; } dv->dev = dev; dv->index = super->current_vol; dv->next = super->devlist; super->devlist = dv; imsm_update_version_info(super); return 1; } static int init_super_imsm(struct supertype *st, mdu_array_info_t *info, struct shape *s, char *name, char *homehost, int *uuid, unsigned long long data_offset) { /* This is primarily called by Create when creating a new array. * We will then get add_to_super called for each component, and then * write_init_super called to write it out to each device. * For IMSM, Create can create on fresh devices or on a pre-existing * array. * To create on a pre-existing array a different method will be called. * This one is just for fresh drives. */ struct intel_super *super; struct imsm_super *mpb; size_t mpb_size; if (data_offset != INVALID_SECTORS) { pr_err("data-offset not supported by imsm\n"); return 0; } if (st->sb) return init_super_imsm_volume(st, info, s, name, homehost, uuid, data_offset); if (info) mpb_size = disks_to_mpb_size(info->nr_disks); else mpb_size = MAX_SECTOR_SIZE; super = alloc_super(); if (super && posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) { free_imsm(super); super = NULL; } if (!super) { pr_err("could not allocate superblock\n"); return 0; } if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) { pr_err("could not allocate migr_rec buffer\n"); free(super->buf); free_imsm(super); return 0; } memset(super->buf, 0, mpb_size); mpb = super->buf; mpb->mpb_size = __cpu_to_le32(mpb_size); st->sb = super; if (info == NULL) { /* zeroing superblock */ return 0; } imsm_update_version_info(super); return 1; } static int drive_validate_sector_size(struct intel_super *super, struct dl *dl) { unsigned int member_sector_size; if (!is_fd_valid(dl->fd)) { pr_err("Invalid file descriptor for %s\n", dl->devname); return 0; } if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size)) return 0; if (member_sector_size != super->sector_size) return 0; return 1; } static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk, int fd, char *devname) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; struct imsm_disk *_disk; struct imsm_dev *dev; struct imsm_map *map; struct dl *dl, *df; int slot; int autolayout = 0; if (!is_fd_valid(fd)) autolayout = 1; dev = get_imsm_dev(super, super->current_vol); map = get_imsm_map(dev, MAP_0); if (! (dk->state & (1<disks; dl ; dl = dl->next) { if (autolayout) { if (dl->raiddisk == dk->raid_disk) break; } else if (dl->major == dk->major && dl->minor == dk->minor) break; } if (!dl) { if (!autolayout) pr_err("%s is not a member of the same container.\n", devname); return 1; } if (!autolayout && super->current_vol > 0) { int _slot = get_disk_slot_in_dev(super, 0, dl->index); if (_slot != dk->raid_disk) { pr_err("Member %s is in %d slot for the first volume, but is in %d slot for a new volume.\n", dl->devname, _slot, dk->raid_disk); pr_err("Raid members are in different order than for the first volume, aborting.\n"); return 1; } } if (mpb->num_disks == 0) if (!get_dev_sector_size(dl->fd, dl->devname, &super->sector_size)) return 1; if (!drive_validate_sector_size(super, dl)) { pr_err("Combining drives of different sector size in one volume is not allowed\n"); return 1; } /* add a pristine spare to the metadata */ if (dl->index < 0) { dl->index = super->anchor->num_disks; super->anchor->num_disks++; } /* Check the device has not already been added */ slot = get_imsm_disk_slot(map, dl->index); if (slot >= 0 && (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) { pr_err("%s has been included in this array twice\n", devname); return 1; } set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index); dl->disk.status = CONFIGURED_DISK; /* update size of 'missing' disks to be at least as large as the * largest acitve member (we only have dummy missing disks when * creating the first volume) */ if (super->current_vol == 0) { for (df = super->missing; df; df = df->next) { if (total_blocks(&dl->disk) > total_blocks(&df->disk)) set_total_blocks(&df->disk, total_blocks(&dl->disk)); _disk = __get_imsm_disk(mpb, df->index); *_disk = df->disk; } } /* refresh unset/failed slots to point to valid 'missing' entries */ for (df = super->missing; df; df = df->next) for (slot = 0; slot < mpb->num_disks; slot++) { __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X); if ((ord & IMSM_ORD_REBUILD) == 0) continue; set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD); if (is_gen_migration(dev)) { struct imsm_map *map2 = get_imsm_map(dev, MAP_1); int slot2 = get_imsm_disk_slot(map2, df->index); if (slot2 < map2->num_members && slot2 >= 0) { __u32 ord2 = get_imsm_ord_tbl_ent(dev, slot2, MAP_1); if ((unsigned)df->index == ord_to_idx(ord2)) set_imsm_ord_tbl_ent(map2, slot2, df->index | IMSM_ORD_REBUILD); } } dprintf("set slot:%d to missing disk:%d\n", slot, df->index); break; } /* if we are creating the first raid device update the family number */ if (super->current_vol == 0) { __u32 sum; struct imsm_dev *_dev = __get_imsm_dev(mpb, 0); _disk = __get_imsm_disk(mpb, dl->index); if (!_disk) { pr_err("BUG mpb setup error\n"); return 1; } *_dev = *dev; *_disk = dl->disk; sum = random32(); sum += __gen_imsm_checksum(mpb); mpb->family_num = __cpu_to_le32(sum); mpb->orig_family_num = mpb->family_num; mpb->creation_time = __cpu_to_le64((__u64)time(NULL)); } super->current_disk = dl; return 0; } /* mark_spare() * Function marks disk as spare and restores disk serial * in case it was previously marked as failed by takeover operation * reruns: * -1 : critical error * 0 : disk is marked as spare but serial is not set * 1 : success */ int mark_spare(struct dl *disk) { __u8 serial[MAX_RAID_SERIAL_LEN]; int ret_val = -1; if (!disk) return ret_val; ret_val = 0; if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) { /* Restore disk serial number, because takeover marks disk * as failed and adds to serial ':0' before it becomes * a spare disk. */ serialcpy(disk->serial, serial); serialcpy(disk->disk.serial, serial); ret_val = 1; } disk->disk.status = SPARE_DISK; disk->index = -1; return ret_val; } static int write_super_imsm_spare(struct intel_super *super, struct dl *d); static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk, int fd, char *devname, unsigned long long data_offset) { struct intel_super *super = st->sb; unsigned int member_sector_size; unsigned long long size; struct stat stb; struct dl *dd; __u32 id; int rv; /* If we are on an RAID enabled platform check that the disk is * attached to the raid controller. * We do not need to test disks attachment for container based additions, * they shall be already tested when container was created/assembled. */ rv = find_intel_hba_capability(fd, super, devname); /* no orom/efi or non-intel hba of the disk */ if (rv != 0) { dprintf("capability: %p fd: %d ret: %d\n", super->orom, fd, rv); return MDADM_STATUS_ERROR; } if (super->current_vol >= 0) return add_to_super_imsm_volume(st, dk, fd, devname); if (fstat(fd, &stb) != 0) return MDADM_STATUS_ERROR; dd = xcalloc(sizeof(*dd), 1); if (devname) dd->devname = xstrdup(devname); if (sysfs_disk_to_scsi_id(fd, &id) == 0) dd->disk.scsi_id = __cpu_to_le32(id); dd->major = major(stb.st_rdev); dd->minor = minor(stb.st_rdev); dd->action = DISK_ADD; dd->fd = fd; rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN); if (rv) { pr_err("failed to retrieve scsi serial, aborting\n"); goto error; } if (super->hba && ((super->hba->type == SYS_DEV_NVME) || (super->hba->type == SYS_DEV_VMD))) { char pci_dev_path[PATH_MAX]; char cntrl_path[PATH_MAX]; if (!diskfd_to_devpath(fd, 2, pci_dev_path) || !diskfd_to_devpath(fd, 1, cntrl_path)) { pr_err("failed to get dev paths, aborting\n"); goto error; } if (is_multipath_nvme(fd)) pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n", basename(cntrl_path)); if (super->orom && devpath_to_vendor(pci_dev_path) != 0x8086 && !imsm_orom_has_tpv_support(super->orom)) { pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n" "\tPlease refer to Intel(R) RSTe/VROC user guide.\n"); goto error; } } if (!get_dev_size(fd, NULL, &size) || !get_dev_sector_size(fd, NULL, &member_sector_size)) goto error; if (super->sector_size == 0) /* this a first device, so sector_size is not set yet */ super->sector_size = member_sector_size; /* clear migr_rec when adding disk to container */ memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS * MAX_SECTOR_SIZE); if (lseek64(fd, (size - MIGR_REC_SECTOR_POSITION * member_sector_size), SEEK_SET) >= 0) { unsigned int nbytes = MIGR_REC_BUF_SECTORS * member_sector_size; if ((unsigned int)write(fd, super->migr_rec_buf, nbytes) != nbytes) perror("Write migr_rec failed"); } size /= 512; serialcpy(dd->disk.serial, dd->serial); set_total_blocks(&dd->disk, size); if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) { struct imsm_super *mpb = super->anchor; mpb->attributes |= MPB_ATTRIB_2TB_DISK; } mark_spare(dd); if (st->update_tail) { dd->next = super->disk_mgmt_list; super->disk_mgmt_list = dd; } else { /* this is called outside of mdmon * write initial spare metadata * mdmon will overwrite it. */ dd->next = super->disks; super->disks = dd; write_super_imsm_spare(super, dd); } return MDADM_STATUS_SUCCESS; error: __free_imsm_disk(dd, 0); return MDADM_STATUS_ERROR; } static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk) { struct intel_super *super = st->sb; struct dl *dd; /* remove from super works only in mdmon - for communication * manager - monitor. Check if communication memory buffer * is prepared. */ if (!st->update_tail) { pr_err("shall be used in mdmon context only\n"); return 1; } dd = xcalloc(1, sizeof(*dd)); dd->major = dk->major; dd->minor = dk->minor; dd->fd = -1; mark_spare(dd); dd->action = DISK_REMOVE; dd->next = super->disk_mgmt_list; super->disk_mgmt_list = dd; return 0; } static int store_imsm_mpb(int fd, struct imsm_super *mpb); static union { char buf[MAX_SECTOR_SIZE]; struct imsm_super anchor; } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE))); static int write_super_imsm_spare(struct intel_super *super, struct dl *d) { struct imsm_super *spare = &spare_record.anchor; __u32 sum; if (d->index != -1) return 1; spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)); spare->generation_num = __cpu_to_le32(1UL); spare->num_disks = 1; spare->num_raid_devs = 0; spare->pwr_cycle_count = __cpu_to_le32(1); imsm_write_signature(spare); spare->disk[0] = d->disk; if (__le32_to_cpu(d->disk.total_blocks_hi) > 0) spare->attributes |= MPB_ATTRIB_2TB_DISK; if (super->sector_size == 4096) convert_to_4k_imsm_disk(&spare->disk[0]); sum = __gen_imsm_checksum(spare); spare->family_num = __cpu_to_le32(sum); spare->orig_family_num = 0; sum = __gen_imsm_checksum(spare); spare->check_sum = __cpu_to_le32(sum); if (store_imsm_mpb(d->fd, spare)) { pr_err("failed for device %d:%d %s\n", d->major, d->minor, strerror(errno)); return 1; } return 0; } /* spare records have their own family number and do not have any defined raid * devices */ static int write_super_imsm_spares(struct intel_super *super, int doclose) { struct dl *d; for (d = super->disks; d; d = d->next) { if (d->index != -1) continue; if (write_super_imsm_spare(super, d)) return 1; if (doclose) close_fd(&d->fd); } return 0; } static int write_super_imsm(struct supertype *st, int doclose) { struct intel_super *super = st->sb; unsigned int sector_size = super->sector_size; struct imsm_super *mpb = super->anchor; struct dl *d; __u32 generation; __u32 sum; int spares = 0; int i; __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk); int num_disks = 0; int clear_migration_record = 1; __u32 bbm_log_size; /* 'generation' is incremented everytime the metadata is written */ generation = __le32_to_cpu(mpb->generation_num); generation++; mpb->generation_num = __cpu_to_le32(generation); /* fix up cases where previous mdadm releases failed to set * orig_family_num */ if (mpb->orig_family_num == 0) mpb->orig_family_num = mpb->family_num; for (d = super->disks; d; d = d->next) { if (d->index == -1) spares++; else { mpb->disk[d->index] = d->disk; num_disks++; } } for (d = super->missing; d; d = d->next) { mpb->disk[d->index] = d->disk; num_disks++; } mpb->num_disks = num_disks; mpb_size += sizeof(struct imsm_disk) * mpb->num_disks; for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = __get_imsm_dev(mpb, i); struct imsm_dev *dev2 = get_imsm_dev(super, i); imsm_copy_dev(dev, dev2); mpb_size += sizeof_imsm_dev(dev, 0); if (is_gen_migration(dev2)) clear_migration_record = 0; } bbm_log_size = get_imsm_bbm_log_size(super->bbm_log); if (bbm_log_size) { memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size); mpb->attributes |= MPB_ATTRIB_BBM; } else mpb->attributes &= ~MPB_ATTRIB_BBM; super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size); mpb_size += bbm_log_size; mpb->mpb_size = __cpu_to_le32(mpb_size); #ifdef DEBUG assert(super->len == 0 || mpb_size <= super->len); #endif /* recalculate checksum */ sum = __gen_imsm_checksum(mpb); mpb->check_sum = __cpu_to_le32(sum); if (super->clean_migration_record_by_mdmon) { clear_migration_record = 1; super->clean_migration_record_by_mdmon = 0; } if (clear_migration_record) memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE); if (sector_size == 4096) convert_to_4k(super); /* write the mpb for disks that compose raid devices */ for (d = super->disks; d ; d = d->next) { if (d->index < 0 || is_failed(&d->disk)) continue; if (clear_migration_record) { unsigned long long dsize; get_dev_size(d->fd, NULL, &dsize); if (lseek64(d->fd, dsize - sector_size, SEEK_SET) >= 0) { if ((unsigned int)write(d->fd, super->migr_rec_buf, MIGR_REC_BUF_SECTORS*sector_size) != MIGR_REC_BUF_SECTORS*sector_size) perror("Write migr_rec failed"); } } if (store_imsm_mpb(d->fd, mpb)) fprintf(stderr, "failed for device %d:%d (fd: %d)%s\n", d->major, d->minor, d->fd, strerror(errno)); if (doclose) close_fd(&d->fd); } if (spares) return write_super_imsm_spares(super, doclose); return 0; } static int create_array(struct supertype *st, int dev_idx) { size_t len; struct imsm_update_create_array *u; struct intel_super *super = st->sb; struct imsm_dev *dev = get_imsm_dev(super, dev_idx); struct imsm_map *map = get_imsm_map(dev, MAP_0); struct disk_info *inf; struct imsm_disk *disk; int i; len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) + sizeof(*inf) * map->num_members; u = xmalloc(len); u->type = update_create_array; u->dev_idx = dev_idx; imsm_copy_dev(&u->dev, dev); inf = get_disk_info(u); for (i = 0; i < map->num_members; i++) { int idx = get_imsm_disk_idx(dev, i, MAP_X); disk = get_imsm_disk(super, idx); if (!disk) disk = get_imsm_missing(super, idx); serialcpy(inf[i].serial, disk->serial); } append_metadata_update(st, u, len); return 0; } static int mgmt_disk(struct supertype *st) { struct intel_super *super = st->sb; size_t len; struct imsm_update_add_remove_disk *u; if (!super->disk_mgmt_list) return 0; len = sizeof(*u); u = xmalloc(len); u->type = update_add_remove_disk; append_metadata_update(st, u, len); return 0; } __u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len); static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf) { struct ppl_header *ppl_hdr = buf; int ret; ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE)); if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) { ret = -errno; perror("Failed to seek to PPL header location"); return ret; } if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) { ret = -errno; perror("Write PPL header failed"); return ret; } fsync(fd); return 0; } static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd) { struct intel_super *super = st->sb; void *buf; struct ppl_header *ppl_hdr; int ret; /* first clear entire ppl space */ ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size); if (ret) return ret; ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE); if (ret) { pr_err("Failed to allocate PPL header buffer\n"); return -ret; } memset(buf, 0, PPL_HEADER_SIZE); ppl_hdr = buf; memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED); ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num); if (info->mismatch_cnt) { /* * We are overwriting an invalid ppl. Make one entry with wrong * checksum to prevent the kernel from skipping resync. */ ppl_hdr->entries_count = __cpu_to_le32(1); ppl_hdr->entries[0].checksum = ~0; } ret = write_ppl_header(info->ppl_sector, fd, buf); free(buf); return ret; } static int is_rebuilding(struct imsm_dev *dev); static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info, struct mdinfo *disk) { struct intel_super *super = st->sb; struct dl *d; void *buf_orig, *buf, *buf_prev = NULL; int ret = 0; struct ppl_header *ppl_hdr = NULL; __u32 crc; struct imsm_dev *dev; __u32 idx; unsigned int i; unsigned long long ppl_offset = 0; unsigned long long prev_gen_num = 0; if (disk->disk.raid_disk < 0) return 0; dev = get_imsm_dev(super, info->container_member); idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0); d = get_imsm_dl_disk(super, idx); if (!d || d->index < 0 || is_failed(&d->disk)) return 0; if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) { pr_err("Failed to allocate PPL header buffer\n"); return -1; } buf = buf_orig; ret = 1; while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) { void *tmp; dprintf("Checking potential PPL at offset: %llu\n", ppl_offset); if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset, SEEK_SET) < 0) { perror("Failed to seek to PPL header location"); ret = -1; break; } if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) { perror("Read PPL header failed"); ret = -1; break; } ppl_hdr = buf; crc = __le32_to_cpu(ppl_hdr->checksum); ppl_hdr->checksum = 0; if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) { dprintf("Wrong PPL header checksum on %s\n", d->devname); break; } if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) { /* previous was newest, it was already checked */ break; } if ((__le32_to_cpu(ppl_hdr->signature) != super->anchor->orig_family_num)) { dprintf("Wrong PPL header signature on %s\n", d->devname); ret = 1; break; } ret = 0; prev_gen_num = __le64_to_cpu(ppl_hdr->generation); ppl_offset += PPL_HEADER_SIZE; for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++) ppl_offset += __le32_to_cpu(ppl_hdr->entries[i].pp_size); if (!buf_prev) buf_prev = buf + PPL_HEADER_SIZE; tmp = buf_prev; buf_prev = buf; buf = tmp; } if (buf_prev) { buf = buf_prev; ppl_hdr = buf_prev; } /* * Update metadata to use mutliple PPLs area (1MB). * This is done once for all RAID members */ if (info->consistency_policy == CONSISTENCY_POLICY_PPL && info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) { char subarray[20]; struct mdinfo *member_dev; sprintf(subarray, "%d", info->container_member); if (mdmon_running(st->container_devnm)) st->update_tail = &st->updates; if (st->ss->update_subarray(st, subarray, UOPT_PPL, NULL)) { pr_err("Failed to update subarray %s\n", subarray); } else { if (st->update_tail) flush_metadata_updates(st); else st->ss->sync_metadata(st); info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9); for (member_dev = info->devs; member_dev; member_dev = member_dev->next) member_dev->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9); } } if (ret == 1) { struct imsm_map *map = get_imsm_map(dev, MAP_X); if (map->map_state == IMSM_T_STATE_UNINITIALIZED || (map->map_state == IMSM_T_STATE_NORMAL && !(dev->vol.dirty & RAIDVOL_DIRTY)) || (is_rebuilding(dev) && vol_curr_migr_unit(dev) == 0 && get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx)) ret = st->ss->write_init_ppl(st, info, d->fd); else info->mismatch_cnt++; } else if (ret == 0 && ppl_hdr->entries_count == 0 && is_rebuilding(dev) && info->resync_start == 0) { /* * The header has no entries - add a single empty entry and * rewrite the header to prevent the kernel from going into * resync after an interrupted rebuild. */ ppl_hdr->entries_count = __cpu_to_le32(1); ret = write_ppl_header(info->ppl_sector, d->fd, buf); } free(buf_orig); return ret; } static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info) { struct intel_super *super = st->sb; struct dl *d; int ret = 0; if (info->consistency_policy != CONSISTENCY_POLICY_PPL || info->array.level != 5) return 0; for (d = super->disks; d ; d = d->next) { if (d->index < 0 || is_failed(&d->disk)) continue; ret = st->ss->write_init_ppl(st, info, d->fd); if (ret) break; } return ret; } /******************************************************************************* * Function: write_init_bitmap_imsm_vol * Description: Write a bitmap header and prepares the area for the bitmap. * Parameters: * st : supertype information * vol_idx : the volume index to use * * Returns: * 0 : success * -1 : fail ******************************************************************************/ static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx) { struct intel_super *super = st->sb; int prev_current_vol = super->current_vol; struct dl *d; int ret = 0; super->current_vol = vol_idx; for (d = super->disks; d; d = d->next) { if (d->index < 0 || is_failed(&d->disk)) continue; ret = st->ss->write_bitmap(st, d->fd, NoUpdate); if (ret) break; } super->current_vol = prev_current_vol; return ret; } /******************************************************************************* * Function: write_init_bitmap_imsm_all * Description: Write a bitmap header and prepares the area for the bitmap. * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP. * Parameters: * st : supertype information * info : info about the volume where the bitmap should be written * vol_idx : the volume index to use * * Returns: * 0 : success * -1 : fail ******************************************************************************/ static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info, int vol_idx) { int ret = 0; if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP)) ret = write_init_bitmap_imsm_vol(st, vol_idx); return ret; } static int write_init_super_imsm(struct supertype *st) { struct intel_super *super = st->sb; int current_vol = super->current_vol; int rv = 0; struct mdinfo info; getinfo_super_imsm(st, &info, NULL); /* we are done with current_vol reset it to point st at the container */ super->current_vol = -1; if (st->update_tail) { /* queue the recently created array / added disk * as a metadata update */ /* determine if we are creating a volume or adding a disk */ if (current_vol < 0) { /* in the mgmt (add/remove) disk case we are running * in mdmon context, so don't close fd's */ rv = mgmt_disk(st); } else { /* adding the second volume to the array */ rv = write_init_ppl_imsm_all(st, &info); if (!rv) rv = write_init_bitmap_imsm_all(st, &info, current_vol); if (!rv) rv = create_array(st, current_vol); } } else { struct dl *d; for (d = super->disks; d; d = d->next) Kill(d->devname, NULL, 0, -1, 1); if (current_vol >= 0) { rv = write_init_ppl_imsm_all(st, &info); if (!rv) rv = write_init_bitmap_imsm_all(st, &info, current_vol); } if (!rv) rv = write_super_imsm(st, 1); } return rv; } static int store_super_imsm(struct supertype *st, int fd) { struct intel_super *super = st->sb; struct imsm_super *mpb = super ? super->anchor : NULL; if (!mpb) return 1; if (super->sector_size == 4096) convert_to_4k(super); return store_imsm_mpb(fd, mpb); } static int validate_geometry_imsm_container(struct supertype *st, int level, int raiddisks, unsigned long long data_offset, char *dev, unsigned long long *freesize, int verbose) { int fd; unsigned long long ldsize; struct intel_super *super = NULL; int rv = 0; if (!is_container(level)) return 0; if (!dev) return 1; fd = dev_open(dev, O_RDONLY|O_EXCL); if (!is_fd_valid(fd)) { pr_vrb("imsm: Cannot open %s: %s\n", dev, strerror(errno)); return 0; } if (!get_dev_size(fd, dev, &ldsize)) goto exit; /* capabilities retrieve could be possible * note that there is no fd for the disks in array. */ super = alloc_super(); if (!super) goto exit; if (!get_dev_sector_size(fd, NULL, &super->sector_size)) goto exit; rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL); if (rv != 0) { #if DEBUG char str[256]; fd2devname(fd, str); dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n", fd, str, super->orom, rv, raiddisks); #endif /* no orom/efi or non-intel hba of the disk */ rv = 0; goto exit; } if (super->orom) { if (raiddisks > super->orom->tds) { if (verbose) pr_err("%d exceeds maximum number of platform supported disks: %d\n", raiddisks, super->orom->tds); goto exit; } if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 && (ldsize >> 9) >> 32 > 0) { if (verbose) pr_err("%s exceeds maximum platform supported size\n", dev); goto exit; } if (super->hba->type == SYS_DEV_VMD || super->hba->type == SYS_DEV_NVME) { if (!imsm_is_nvme_namespace_supported(fd, 1)) { if (verbose) pr_err("NVMe namespace %s is not supported by IMSM\n", basename(dev)); goto exit; } } } if (freesize) *freesize = avail_size_imsm(st, ldsize >> 9, data_offset); rv = 1; exit: if (super) free_imsm(super); close(fd); return rv; } static unsigned long long find_size(struct extent *e, int *idx, int num_extents) { const unsigned long long base_start = e[*idx].start; unsigned long long end = base_start + e[*idx].size; int i; if (base_start == end) return 0; *idx = *idx + 1; for (i = *idx; i < num_extents; i++) { /* extend overlapping extents */ if (e[i].start >= base_start && e[i].start <= end) { if (e[i].size == 0) return 0; if (e[i].start + e[i].size > end) end = e[i].start + e[i].size; } else if (e[i].start > end) { *idx = i; break; } } return end - base_start; } /** merge_extents() - analyze extents and get free size. * @super: Intel metadata, not NULL. * @expanding: if set, we are expanding &super->current_vol. * * Build a composite disk with all known extents and generate a size given the * "all disks in an array must share a common start offset" constraint. * If a volume is expanded, then return free space after the volume. * * Return: Free space or 0 on failure. */ static unsigned long long merge_extents(struct intel_super *super, const bool expanding) { struct extent *e; struct dl *dl; int i, j, pos_vol_idx = -1; int extent_idx = 0; int sum_extents = 0; unsigned long long pos = 0; unsigned long long start = 0; unsigned long long free_size = 0; unsigned long pre_reservation = 0; unsigned long post_reservation = IMSM_RESERVED_SECTORS; unsigned long reservation_size; for (dl = super->disks; dl; dl = dl->next) if (dl->e) sum_extents += dl->extent_cnt; e = xcalloc(sum_extents, sizeof(struct extent)); /* coalesce and sort all extents. also, check to see if we need to * reserve space between member arrays */ j = 0; for (dl = super->disks; dl; dl = dl->next) { if (!dl->e) continue; for (i = 0; i < dl->extent_cnt; i++) e[j++] = dl->e[i]; } qsort(e, sum_extents, sizeof(*e), cmp_extent); /* merge extents */ i = 0; j = 0; while (i < sum_extents) { e[j].start = e[i].start; e[j].vol = e[i].vol; e[j].size = find_size(e, &i, sum_extents); j++; if (e[j-1].size == 0) break; } i = 0; do { unsigned long long esize = e[i].start - pos; if (expanding ? pos_vol_idx == super->current_vol : esize >= free_size) { free_size = esize; start = pos; extent_idx = i; } pos = e[i].start + e[i].size; pos_vol_idx = e[i].vol; i++; } while (e[i-1].size); if (free_size == 0) { dprintf("imsm: Cannot find free size.\n"); free(e); return 0; } if (!expanding && extent_idx != 0) /* * Not a real first volume in a container is created, pre_reservation is needed. */ pre_reservation = IMSM_RESERVED_SECTORS; if (e[extent_idx].size == 0) /* * extent_idx points to the metadata, post_reservation is allready done. */ post_reservation = 0; free(e); reservation_size = pre_reservation + post_reservation; if (free_size < reservation_size) { dprintf("imsm: Reservation size is greater than free space.\n"); return 0; } super->create_offset = start + pre_reservation; return free_size - reservation_size; } /** * is_raid_level_supported() - check if this count of drives and level is supported by platform. * @orom: hardware properties, could be NULL. * @level: requested raid level. * @raiddisks: requested disk count. * * IMSM UEFI/OROM does not provide information about supported count of raid disks * for particular level. That is why it is hardcoded. * It is recommended to not allow of usage other levels than supported, * IMSM code is not tested against different level implementations. * * Return: true if supported, false otherwise. */ static bool is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks) { int idx; for (idx = 0; imsm_level_ops[idx].name; idx++) { if (imsm_level_ops[idx].level == level) break; } if (!imsm_level_ops[idx].name) return false; if (!imsm_level_ops[idx].is_raiddisks_count_supported(raiddisks)) return false; if (!orom) return true; if (imsm_level_ops[idx].is_level_supported(orom)) return true; return false; } static int active_arrays_by_format(char *name, char* hba, struct md_list **devlist, int dpa, int verbose) { struct mdstat_ent *mdstat = mdstat_read(0, 0); struct mdstat_ent *memb; int count = 0; int num = 0; struct md_list *dv; int found; for (memb = mdstat ; memb ; memb = memb->next) { if (is_mdstat_ent_external(memb) && !is_subarray(memb->metadata_version + 9) && strcmp(&memb->metadata_version[9], name) == 0 && memb->members) { struct dev_member *dev = memb->members; int fd = -1; while (dev && !is_fd_valid(fd)) { char path[PATH_MAX]; num = snprintf(path, PATH_MAX, "%s%s", "/dev/", dev->name); if (num > 0) fd = open(path, O_RDONLY, 0); if (num <= 0 || !is_fd_valid(fd)) { pr_vrb("Cannot open %s: %s\n", dev->name, strerror(errno)); } dev = dev->next; } found = 0; if (is_fd_valid(fd) && disk_attached_to_hba(fd, hba)) { struct mdstat_ent *vol; for (vol = mdstat ; vol ; vol = vol->next) { if (vol->active > 0 && is_container_member(vol, memb->devnm)) { found++; count++; } } if (*devlist && (found < dpa)) { dv = xcalloc(1, sizeof(*dv)); dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1); sprintf(dv->devname, "%s%s", "/dev/", memb->devnm); dv->found = found; dv->used = 0; dv->next = *devlist; *devlist = dv; } } close_fd(&fd); } } free_mdstat(mdstat); return count; } #ifdef DEBUG_LOOP static struct md_list* get_loop_devices(void) { int i; struct md_list *devlist = NULL; struct md_list *dv; for(i = 0; i < 12; i++) { dv = xcalloc(1, sizeof(*dv)); dv->devname = xmalloc(40); sprintf(dv->devname, "/dev/loop%d", i); dv->next = devlist; devlist = dv; } return devlist; } #endif static struct md_list* get_devices(const char *hba_path) { struct md_list *devlist = NULL; struct md_list *dv; struct dirent *ent; DIR *dir; #if DEBUG_LOOP devlist = get_loop_devices(); return devlist; #endif /* scroll through /sys/dev/block looking for devices attached to * this hba */ dir = opendir("/sys/dev/block"); for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) { int fd; char buf[1024]; int major, minor; char *path = NULL; if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2) continue; path = devt_to_devpath(makedev(major, minor), 1, NULL); if (!path) continue; if (!is_path_attached_to_hba(path, hba_path)) { free(path); path = NULL; continue; } free(path); path = NULL; fd = dev_open(ent->d_name, O_RDONLY); if (is_fd_valid(fd)) { fd2devname(fd, buf); close(fd); } else { pr_err("cannot open device: %s\n", ent->d_name); continue; } dv = xcalloc(1, sizeof(*dv)); dv->devname = xstrdup(buf); dv->next = devlist; devlist = dv; } closedir(dir); return devlist; } static int count_volumes_list(struct md_list *devlist, char *homehost, int verbose, int *found) { struct md_list *tmpdev; int count = 0; struct supertype *st; /* first walk the list of devices to find a consistent set * that match the criterea, if that is possible. * We flag the ones we like with 'used'. */ *found = 0; st = match_metadata_desc_imsm("imsm"); if (st == NULL) { pr_vrb("cannot allocate memory for imsm supertype\n"); return 0; } for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) { char *devname = tmpdev->devname; dev_t rdev; struct supertype *tst; int dfd; if (tmpdev->used > 1) continue; tst = dup_super(st); if (tst == NULL) { pr_vrb("cannot allocate memory for imsm supertype\n"); goto err_1; } tmpdev->container = 0; dfd = dev_open(devname, O_RDONLY|O_EXCL); if (!is_fd_valid(dfd)) { dprintf("cannot open device %s: %s\n", devname, strerror(errno)); tmpdev->used = 2; } else if (!fstat_is_blkdev(dfd, devname, &rdev)) { tmpdev->used = 2; } else if (must_be_container(dfd)) { struct supertype *cst; cst = super_by_fd(dfd, NULL); if (cst == NULL) { dprintf("cannot recognize container type %s\n", devname); tmpdev->used = 2; } else if (tst->ss != st->ss) { dprintf("non-imsm container - ignore it: %s\n", devname); tmpdev->used = 2; } else if (!tst->ss->load_container || tst->ss->load_container(tst, dfd, NULL)) tmpdev->used = 2; else { tmpdev->container = 1; } if (cst) cst->ss->free_super(cst); } else { tmpdev->st_rdev = rdev; if (tst->ss->load_super(tst,dfd, NULL)) { dprintf("no RAID superblock on %s\n", devname); tmpdev->used = 2; } else if (tst->ss->compare_super == NULL) { dprintf("Cannot assemble %s metadata on %s\n", tst->ss->name, devname); tmpdev->used = 2; } } close_fd(&dfd); if (tmpdev->used == 2 || tmpdev->used == 4) { /* Ignore unrecognised devices during auto-assembly */ goto loop; } else { struct mdinfo info; tst->ss->getinfo_super(tst, &info, NULL); if (st->minor_version == -1) st->minor_version = tst->minor_version; if (memcmp(info.uuid, uuid_zero, sizeof(int[4])) == 0) { /* this is a floating spare. It cannot define * an array unless there are no more arrays of * this type to be found. It can be included * in an array of this type though. */ tmpdev->used = 3; goto loop; } if (st->ss != tst->ss || st->minor_version != tst->minor_version || st->ss->compare_super(st, tst, 1) != 0) { /* Some mismatch. If exactly one array matches this host, * we can resolve on that one. * Or, if we are auto assembling, we just ignore the second * for now. */ dprintf("superblock on %s doesn't match others - assembly aborted\n", devname); goto loop; } tmpdev->used = 1; *found = 1; dprintf("found: devname: %s\n", devname); } loop: if (tst) tst->ss->free_super(tst); } if (*found != 0) { int err; if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) { struct mdinfo *iter, *head = st->ss->container_content(st, NULL); for (iter = head; iter; iter = iter->next) { dprintf("content->text_version: %s vol\n", iter->text_version); if (iter->array.state & (1<text_version); } else count++; } sysfs_free(head); } else { dprintf("No valid super block on device list: err: %d %p\n", err, st->sb); } } else { dprintf("no more devices to examine\n"); } for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) { if (tmpdev->used == 1 && tmpdev->found) { if (count) { if (count < tmpdev->found) count = 0; else count -= tmpdev->found; } } if (tmpdev->used == 1) tmpdev->used = 4; } err_1: if (st) st->ss->free_super(st); return count; } static int __count_volumes(char *hba_path, int dpa, int verbose, int cmp_hba_path) { struct sys_dev *idev, *intel_devices = find_intel_devices(); int count = 0; const struct orom_entry *entry; struct devid_list *dv, *devid_list; if (!hba_path) return 0; for (idev = intel_devices; idev; idev = idev->next) { if (strstr(idev->path, hba_path)) break; } if (!idev || !idev->dev_id) return 0; entry = get_orom_entry_by_device_id(idev->dev_id); if (!entry || !entry->devid_list) return 0; devid_list = entry->devid_list; for (dv = devid_list; dv; dv = dv->next) { struct md_list *devlist; struct sys_dev *device = NULL; char *hpath; int found = 0; if (cmp_hba_path) device = device_by_id_and_path(dv->devid, hba_path); else device = device_by_id(dv->devid); if (device) hpath = device->path; else return 0; devlist = get_devices(hpath); /* if no intel devices return zero volumes */ if (devlist == NULL) return 0; count += active_arrays_by_format("imsm", hpath, &devlist, dpa, verbose); dprintf("path: %s active arrays: %d\n", hpath, count); if (devlist == NULL) return 0; do { found = 0; count += count_volumes_list(devlist, NULL, verbose, &found); dprintf("found %d count: %d\n", found, count); } while (found); dprintf("path: %s total number of volumes: %d\n", hpath, count); while (devlist) { struct md_list *dv = devlist; devlist = devlist->next; free(dv->devname); free(dv); } } return count; } static int count_volumes(struct intel_hba *hba, int dpa, int verbose) { if (!hba) return 0; if (hba->type == SYS_DEV_VMD) { struct sys_dev *dev; int count = 0; for (dev = find_intel_devices(); dev; dev = dev->next) { if (dev->type == SYS_DEV_VMD) count += __count_volumes(dev->path, dpa, verbose, 1); } return count; } return __count_volumes(hba->path, dpa, verbose, 0); } static int imsm_default_chunk(const struct imsm_orom *orom) { /* up to 512 if the plaform supports it, otherwise the platform max. * 128 if no platform detected */ int fs = max(7, orom ? fls(orom->sss) : 0); return min(512, (1 << fs)); } static int validate_geometry_imsm_orom(struct intel_super *super, int level, int layout, int raiddisks, int *chunk, unsigned long long size, int verbose) { /* check/set platform and metadata limits/defaults */ if (super->orom && raiddisks > super->orom->dpa) { pr_vrb("platform supports a maximum of %d disks per array\n", super->orom->dpa); return 0; } /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */ if (!is_raid_level_supported(super->orom, level, raiddisks)) { pr_vrb("platform does not support raid%d with %d disk%s\n", level, raiddisks, raiddisks > 1 ? "s" : ""); return 0; } if (*chunk == 0 || *chunk == UnSet) *chunk = imsm_default_chunk(super->orom); if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) { pr_vrb("platform does not support a chunk size of: %d\n", *chunk); return 0; } if (layout != imsm_level_to_layout(level)) { if (level == 5) pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n"); else if (level == 10) pr_vrb("imsm raid 10 only supports the n2 layout\n"); else pr_vrb("imsm unknown layout %#x for this raid level %d\n", layout, level); return 0; } if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 && (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) { pr_vrb("platform does not support a volume size over 2TB\n"); return 0; } return 1; } /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd * FIX ME add ahci details */ static int validate_geometry_imsm_volume(struct supertype *st, int level, int layout, int raiddisks, int *chunk, unsigned long long size, unsigned long long data_offset, char *dev, unsigned long long *freesize, int verbose) { dev_t rdev; struct intel_super *super = st->sb; struct imsm_super *mpb; struct dl *dl; unsigned long long pos = 0; unsigned long long maxsize; struct extent *e; int i; /* We must have the container info already read in. */ if (!super) return 0; mpb = super->anchor; if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) { pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n"); return 0; } if (!dev) { /* General test: make sure there is space for * 'raiddisks' device extents of size 'size' at a given * offset */ unsigned long long minsize = size; unsigned long long start_offset = MaxSector; int dcnt = 0; if (minsize == 0) minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS; for (dl = super->disks; dl ; dl = dl->next) { int found = 0; pos = 0; i = 0; e = get_extents(super, dl, 0); if (!e) continue; do { unsigned long long esize; esize = e[i].start - pos; if (esize >= minsize) found = 1; if (found && start_offset == MaxSector) { start_offset = pos; break; } else if (found && pos != start_offset) { found = 0; break; } pos = e[i].start + e[i].size; i++; } while (e[i-1].size); if (found) dcnt++; free(e); } if (dcnt < raiddisks) { if (verbose) pr_err("imsm: Not enough devices with space for this array (%d < %d)\n", dcnt, raiddisks); return 0; } return 1; } /* This device must be a member of the set */ if (!stat_is_blkdev(dev, &rdev)) return 0; for (dl = super->disks ; dl ; dl = dl->next) { if (dl->major == (int)major(rdev) && dl->minor == (int)minor(rdev)) break; } if (!dl) { if (verbose) pr_err("%s is not in the same imsm set\n", dev); return 0; } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) { /* If a volume is present then the current creation attempt * cannot incorporate new spares because the orom may not * understand this configuration (all member disks must be * members of each array in the container). */ pr_err("%s is a spare and a volume is already defined for this container\n", dev); pr_err("The option-rom requires all member disks to be a member of all volumes\n"); return 0; } else if (super->orom && mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) { pr_err("The option-rom requires all member disks to be a member of all volumes\n"); return 0; } /* retrieve the largest free space block */ e = get_extents(super, dl, 0); maxsize = 0; i = 0; if (e) { do { unsigned long long esize; esize = e[i].start - pos; if (esize >= maxsize) maxsize = esize; pos = e[i].start + e[i].size; i++; } while (e[i-1].size); dl->e = e; dl->extent_cnt = i; } else { if (verbose) pr_err("unable to determine free space for: %s\n", dev); return 0; } if (maxsize < size) { if (verbose) pr_err("%s not enough space (%llu < %llu)\n", dev, maxsize, size); return 0; } maxsize = merge_extents(super, false); if (mpb->num_raid_devs > 0 && size && size != maxsize) pr_err("attempting to create a second volume with size less then remaining space.\n"); if (maxsize < size || maxsize == 0) { if (verbose) { if (maxsize == 0) pr_err("no free space left on device. Aborting...\n"); else pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n", maxsize, size); } return 0; } *freesize = maxsize; if (super->orom) { int count = count_volumes(super->hba, super->orom->dpa, verbose); if (super->orom->vphba <= count) { pr_vrb("platform does not support more than %d raid volumes.\n", super->orom->vphba); return 0; } } return 1; } /** * imsm_get_free_size() - get the biggest, common free space from members. * @super: &intel_super pointer, not NULL. * @raiddisks: number of raid disks. * @size: requested size, could be 0 (means max size). * @chunk: requested chunk size in KiB. * @freesize: pointer for returned size value. * * Return: &IMSM_STATUS_OK or &IMSM_STATUS_ERROR. * * @freesize is set to meaningful value, this can be @size, or calculated * max free size. * super->create_offset value is modified and set appropriately in * merge_extends() for further creation. */ static imsm_status_t imsm_get_free_size(struct intel_super *super, const int raiddisks, unsigned long long size, const int chunk, unsigned long long *freesize, bool expanding) { struct imsm_super *mpb = super->anchor; struct dl *dl; int i; struct extent *e; int cnt = 0; int used = 0; unsigned long long maxsize; unsigned long long minsize = size; if (minsize == 0) minsize = chunk * 2; /* find the largest common start free region of the possible disks */ for (dl = super->disks; dl; dl = dl->next) { dl->raiddisk = -1; if (dl->index >= 0) used++; /* don't activate new spares if we are orom constrained * and there is already a volume active in the container */ if (super->orom && dl->index < 0 && mpb->num_raid_devs) continue; e = get_extents(super, dl, 0); if (!e) continue; for (i = 1; e[i-1].size; i++) ; dl->e = e; dl->extent_cnt = i; cnt++; } maxsize = merge_extents(super, expanding); if (maxsize < minsize) { pr_err("imsm: Free space is %llu but must be equal or larger than %llu.\n", maxsize, minsize); return IMSM_STATUS_ERROR; } if (cnt < raiddisks || (super->orom && used && used != raiddisks)) { pr_err("imsm: Not enough devices with space to create array.\n"); return IMSM_STATUS_ERROR; } if (size == 0) { size = maxsize; if (chunk) { size /= 2 * chunk; size *= 2 * chunk; } maxsize = size; } if (mpb->num_raid_devs > 0 && size && size != maxsize) pr_err("attempting to create a second volume with size less then remaining space.\n"); *freesize = size; dprintf("imsm: imsm_get_free_size() returns : %llu\n", size); return IMSM_STATUS_OK; } /** * autolayout_imsm() - automatically layout a new volume. * @super: &intel_super pointer, not NULL. * @raiddisks: number of raid disks. * @size: requested size, could be 0 (means max size). * @chunk: requested chunk. * @freesize: pointer for returned size value. * * We are being asked to automatically layout a new volume based on the current * contents of the container. If the parameters can be satisfied autolayout_imsm * will record the disks, start offset, and will return size of the volume to * be created. See imsm_get_free_size() for details. * add_to_super() and getinfo_super() detect when autolayout is in progress. * If first volume exists, slots are set consistently to it. * * Return: &IMSM_STATUS_OK on success, &IMSM_STATUS_ERROR otherwise. * * Disks are marked for creation via dl->raiddisk. */ static imsm_status_t autolayout_imsm(struct intel_super *super, const int raiddisks, unsigned long long size, const int chunk, unsigned long long *freesize) { int curr_slot = 0; struct dl *disk; int vol_cnt = super->anchor->num_raid_devs; imsm_status_t rv; rv = imsm_get_free_size(super, raiddisks, size, chunk, freesize, false); if (rv != IMSM_STATUS_OK) return IMSM_STATUS_ERROR; for (disk = super->disks; disk; disk = disk->next) { if (!disk->e) continue; if (curr_slot == raiddisks) break; if (vol_cnt == 0) { disk->raiddisk = curr_slot; } else { int _slot = get_disk_slot_in_dev(super, 0, disk->index); if (_slot == -1) { pr_err("Disk %s is not used in first volume, aborting\n", disk->devname); return IMSM_STATUS_ERROR; } disk->raiddisk = _slot; } curr_slot++; } return IMSM_STATUS_OK; } static int validate_geometry_imsm(struct supertype *st, int level, int layout, int raiddisks, int *chunk, unsigned long long size, unsigned long long data_offset, char *dev, unsigned long long *freesize, int consistency_policy, int verbose) { struct intel_super *super = st->sb; struct mdinfo *sra; int is_member = 0; imsm_status_t rv; int fd, cfd; /* load capability * if given unused devices create a container * if given given devices in a container create a member volume */ if (is_container(level)) /* Must be a fresh device to add to a container */ return validate_geometry_imsm_container(st, level, raiddisks, data_offset, dev, freesize, verbose); /* * Size is given in sectors. */ if (size && (size < 2048)) { pr_err("Given size must be greater than 1M.\n"); /* Depends on algorithm in Create.c : * if container was given (dev == NULL) return -1, * if block device was given ( dev != NULL) return 0. */ return dev ? -1 : 0; } if (!dev) { /* * Autolayout mode, st->sb must be set. */ if (!super) { pr_vrb("superblock must be set for autolayout, aborting\n"); return 0; } if (!validate_geometry_imsm_orom(st->sb, level, layout, raiddisks, chunk, size, verbose)) return 0; if (super->orom) { int count = count_volumes(super->hba, super->orom->dpa, verbose); if (super->orom->vphba <= count) { pr_vrb("platform does not support more than %d raid volumes.\n", super->orom->vphba); return 0; } } if (freesize) { rv = autolayout_imsm(super, raiddisks, size, *chunk, freesize); if (rv != IMSM_STATUS_OK) return 0; } return 1; } if (st->sb) { /* creating in a given container */ return validate_geometry_imsm_volume(st, level, layout, raiddisks, chunk, size, data_offset, dev, freesize, verbose); } /* This device needs to be a device in an 'imsm' container */ fd = open(dev, O_RDONLY|O_EXCL, 0); if (is_fd_valid(fd)) { pr_vrb("Cannot create this array on device %s\n", dev); close(fd); return 0; } if (errno == EBUSY) fd = open(dev, O_RDONLY, 0); if (!is_fd_valid(fd)) { pr_vrb("Cannot open %s: %s\n", dev, strerror(errno)); return 0; } /* Well, it is in use by someone, maybe an 'imsm' container. */ cfd = open_container(fd); close_fd(&fd); if (!is_fd_valid(cfd)) { pr_vrb("Cannot use %s: It is busy\n", dev); return 0; } sra = sysfs_read(cfd, NULL, GET_VERSION); if (sra && sra->array.major_version == -1 && strcmp(sra->text_version, "imsm") == 0) is_member = 1; sysfs_free(sra); if (is_member) { /* This is a member of a imsm container. Load the container * and try to create a volume */ struct intel_super *super; if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) { st->sb = super; strcpy(st->container_devnm, fd2devnm(cfd)); close(cfd); return validate_geometry_imsm_volume(st, level, layout, raiddisks, chunk, size, data_offset, dev, freesize, 1) ? 1 : -1; } } if (verbose) pr_err("failed container membership check\n"); close(cfd); return 0; } static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk) { struct intel_super *super = st->sb; if (level && *level == UnSet) *level = LEVEL_CONTAINER; if (level && layout && *layout == UnSet) *layout = imsm_level_to_layout(*level); if (chunk && (*chunk == UnSet || *chunk == 0)) *chunk = imsm_default_chunk(super->orom); } static void handle_missing(struct intel_super *super, struct imsm_dev *dev); static int kill_subarray_imsm(struct supertype *st, char *subarray_id) { /* remove the subarray currently referenced by subarray_id */ __u8 i; struct intel_dev **dp; struct intel_super *super = st->sb; __u8 current_vol = strtoul(subarray_id, NULL, 10); struct imsm_super *mpb = super->anchor; if (mpb->num_raid_devs == 0) return 2; /* block deletions that would change the uuid of active subarrays * * FIXME when immutable ids are available, but note that we'll * also need to fixup the invalidated/active subarray indexes in * mdstat */ for (i = 0; i < mpb->num_raid_devs; i++) { char subarray[4]; if (i < current_vol) continue; snprintf(subarray, sizeof(subarray), "%u", i); if (is_subarray_active(subarray, st->devnm)) { pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n", current_vol, i); return 2; } } if (st->update_tail) { struct imsm_update_kill_array *u = xmalloc(sizeof(*u)); u->type = update_kill_array; u->dev_idx = current_vol; append_metadata_update(st, u, sizeof(*u)); return 0; } for (dp = &super->devlist; *dp;) if ((*dp)->index == current_vol) { *dp = (*dp)->next; } else { handle_missing(super, (*dp)->dev); if ((*dp)->index > current_vol) (*dp)->index--; dp = &(*dp)->next; } /* no more raid devices, all active components are now spares, * but of course failed are still failed */ if (--mpb->num_raid_devs == 0) { struct dl *d; for (d = super->disks; d; d = d->next) if (d->index > -2) mark_spare(d); } super->updates_pending++; return 0; } /** * get_rwh_policy_from_update() - Get the rwh policy for update option. * @update: Update option. */ static int get_rwh_policy_from_update(enum update_opt update) { switch (update) { case UOPT_PPL: return RWH_MULTIPLE_DISTRIBUTED; case UOPT_NO_PPL: return RWH_MULTIPLE_OFF; case UOPT_BITMAP: return RWH_BITMAP; case UOPT_NO_BITMAP: return RWH_OFF; default: break; } return UOPT_UNDEFINED; } static int update_subarray_imsm(struct supertype *st, char *subarray, enum update_opt update, struct mddev_ident *ident) { /* update the subarray currently referenced by ->current_vol */ struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; if (update == UOPT_NAME) { char *name = ident->name; char *ep; int vol; if (imsm_is_name_allowed(super, name, 1) == false) return 2; vol = strtoul(subarray, &ep, 10); if (*ep != '\0' || vol >= super->anchor->num_raid_devs) return 2; if (st->update_tail) { struct imsm_update_rename_array *u = xmalloc(sizeof(*u)); u->type = update_rename_array; u->dev_idx = vol; strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN); u->name[MAX_RAID_SERIAL_LEN-1] = '\0'; append_metadata_update(st, u, sizeof(*u)); } else { struct imsm_dev *dev; int i, namelen; dev = get_imsm_dev(super, vol); memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN); namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN); memcpy(dev->volume, name, namelen); for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); handle_missing(super, dev); } super->updates_pending++; } } else if (get_rwh_policy_from_update(update) != UOPT_UNDEFINED) { int new_policy; char *ep; int vol = strtoul(subarray, &ep, 10); if (*ep != '\0' || vol >= super->anchor->num_raid_devs) return 2; new_policy = get_rwh_policy_from_update(update); if (st->update_tail) { struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u)); u->type = update_rwh_policy; u->dev_idx = vol; u->new_policy = new_policy; append_metadata_update(st, u, sizeof(*u)); } else { struct imsm_dev *dev; dev = get_imsm_dev(super, vol); dev->rwh_policy = new_policy; super->updates_pending++; } if (new_policy == RWH_BITMAP) return write_init_bitmap_imsm_vol(st, vol); } else return 2; return 0; } static bool is_gen_migration(struct imsm_dev *dev) { if (dev && dev->vol.migr_state && migr_type(dev) == MIGR_GEN_MIGR) return true; return false; } static int is_rebuilding(struct imsm_dev *dev) { struct imsm_map *migr_map; if (!dev->vol.migr_state) return 0; if (migr_type(dev) != MIGR_REBUILD) return 0; migr_map = get_imsm_map(dev, MAP_1); if (migr_map->map_state == IMSM_T_STATE_DEGRADED) return 1; else return 0; } static int is_initializing(struct imsm_dev *dev) { struct imsm_map *migr_map; if (!dev->vol.migr_state) return 0; if (migr_type(dev) != MIGR_INIT) return 0; migr_map = get_imsm_map(dev, MAP_1); if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED) return 1; return 0; } static void update_recovery_start(struct intel_super *super, struct imsm_dev *dev, struct mdinfo *array) { struct mdinfo *rebuild = NULL; struct mdinfo *d; __u32 units; if (!is_rebuilding(dev)) return; /* Find the rebuild target, but punt on the dual rebuild case */ for (d = array->devs; d; d = d->next) if (d->recovery_start == 0) { if (rebuild) return; rebuild = d; } if (!rebuild) { /* (?) none of the disks are marked with * IMSM_ORD_REBUILD, so assume they are missing and the * disk_ord_tbl was not correctly updated */ dprintf("failed to locate out-of-sync disk\n"); return; } units = vol_curr_migr_unit(dev); rebuild->recovery_start = units * blocks_per_migr_unit(super, dev); } static int recover_backup_imsm(struct supertype *st, struct mdinfo *info); static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray) { /* Given a container loaded by load_super_imsm_all, * extract information about all the arrays into * an mdinfo tree. * If 'subarray' is given, just extract info about that array. * * For each imsm_dev create an mdinfo, fill it in, * then look for matching devices in super->disks * and create appropriate device mdinfo. */ struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; struct mdinfo *rest = NULL; unsigned int i; int sb_errors = 0; struct dl *d; int spare_disks = 0; int current_vol = super->current_vol; /* do not assemble arrays when not all attributes are supported */ if (imsm_check_attributes(mpb->attributes) == false) { sb_errors = 1; pr_err("Unsupported attributes in IMSM metadata. Arrays activation is blocked.\n"); } /* count spare devices, not used in maps */ for (d = super->disks; d; d = d->next) if (d->index == -1) spare_disks++; for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev; struct imsm_map *map; struct imsm_map *map2; struct mdinfo *this; int slot; int chunk; char *ep; int level; if (subarray && (i != strtoul(subarray, &ep, 10) || *ep != '\0')) continue; dev = get_imsm_dev(super, i); map = get_imsm_map(dev, MAP_0); map2 = get_imsm_map(dev, MAP_1); level = get_imsm_raid_level(map); /* do not publish arrays that are in the middle of an * unsupported migration */ if (dev->vol.migr_state && (migr_type(dev) == MIGR_STATE_CHANGE)) { pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n", dev->volume); continue; } /* do not publish arrays that are not support by controller's * OROM/EFI */ this = xmalloc(sizeof(*this)); super->current_vol = i; getinfo_super_imsm_volume(st, this, NULL); this->next = rest; chunk = __le16_to_cpu(map->blocks_per_strip) >> 1; /* mdadm does not support all metadata features- set the bit in all arrays state */ if (!validate_geometry_imsm_orom(super, level, /* RAID level */ imsm_level_to_layout(level), map->num_members, /* raid disks */ &chunk, imsm_dev_size(dev), 1 /* verbose */)) { pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n", dev->volume); this->array.state |= (1<array.state |= (1<num_members; slot++) { unsigned long long recovery_start; struct mdinfo *info_d; struct dl *d; int idx; int skip; __u32 ord; int missing = 0; skip = 0; idx = get_imsm_disk_idx(dev, slot, MAP_0); ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X); for (d = super->disks; d ; d = d->next) if (d->index == idx) break; recovery_start = MaxSector; if (d == NULL) skip = 1; if (d && is_failed(&d->disk)) skip = 1; if (!skip && (ord & IMSM_ORD_REBUILD)) recovery_start = 0; if (!(ord & IMSM_ORD_REBUILD)) this->array.working_disks++; /* * if we skip some disks the array will be assmebled degraded; * reset resync start to avoid a dirty-degraded * situation when performing the intial sync */ if (skip) missing++; if (!(dev->vol.dirty & RAIDVOL_DIRTY)) { if ((!able_to_resync(level, missing) || recovery_start == 0)) this->resync_start = MaxSector; } if (skip) continue; info_d = xcalloc(1, sizeof(*info_d)); info_d->next = this->devs; this->devs = info_d; info_d->disk.number = d->index; info_d->disk.major = d->major; info_d->disk.minor = d->minor; info_d->disk.raid_disk = slot; info_d->recovery_start = recovery_start; if (map2) { if (slot < map2->num_members) info_d->disk.state = (1 << MD_DISK_ACTIVE); else this->array.spare_disks++; } else { if (slot < map->num_members) info_d->disk.state = (1 << MD_DISK_ACTIVE); else this->array.spare_disks++; } info_d->events = __le32_to_cpu(mpb->generation_num); info_d->data_offset = pba_of_lba0(map); info_d->component_size = calc_component_size(map, dev); if (map->raid_level == IMSM_T_RAID5) { info_d->ppl_sector = this->ppl_sector; info_d->ppl_size = this->ppl_size; if (this->consistency_policy == CONSISTENCY_POLICY_PPL && recovery_start == 0) this->resync_start = 0; } info_d->bb.supported = 1; get_volume_badblocks(super->bbm_log, ord_to_idx(ord), info_d->data_offset, info_d->component_size, &info_d->bb); } /* now that the disk list is up-to-date fixup recovery_start */ update_recovery_start(super, dev, this); this->array.spare_disks += spare_disks; /* check for reshape */ if (this->reshape_active == 1) recover_backup_imsm(st, this); rest = this; } super->current_vol = current_vol; return rest; } static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed, int look_in_map) { struct imsm_map *map; map = get_imsm_map(dev, look_in_map); if (!failed) return map->map_state == IMSM_T_STATE_UNINITIALIZED ? IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL; switch (get_imsm_raid_level(map)) { case 0: return IMSM_T_STATE_FAILED; break; case 1: if (failed < map->num_members) return IMSM_T_STATE_DEGRADED; else return IMSM_T_STATE_FAILED; break; case 10: { /** * check to see if any mirrors have failed, otherwise we * are degraded. Even numbered slots are mirrored on * slot+1 */ int i; /* gcc -Os complains that this is unused */ int insync = insync; for (i = 0; i < map->num_members; i++) { __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X); int idx = ord_to_idx(ord); struct imsm_disk *disk; /* reset the potential in-sync count on even-numbered * slots. num_copies is always 2 for imsm raid10 */ if ((i & 1) == 0) insync = 2; disk = get_imsm_disk(super, idx); if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD) insync--; /* no in-sync disks left in this mirror the * array has failed */ if (insync == 0) return IMSM_T_STATE_FAILED; } return IMSM_T_STATE_DEGRADED; } case 5: if (failed < 2) return IMSM_T_STATE_DEGRADED; else return IMSM_T_STATE_FAILED; break; default: break; } return map->map_state; } static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev, int look_in_map) { int i; int failed = 0; struct imsm_disk *disk; struct imsm_map *map = get_imsm_map(dev, MAP_0); struct imsm_map *prev = get_imsm_map(dev, MAP_1); struct imsm_map *map_for_loop; __u32 ord; int idx; int idx_1; /* at the beginning of migration we set IMSM_ORD_REBUILD on * disks that are being rebuilt. New failures are recorded to * map[0]. So we look through all the disks we started with and * see if any failures are still present, or if any new ones * have arrived */ map_for_loop = map; if (prev && (map->num_members < prev->num_members)) map_for_loop = prev; for (i = 0; i < map_for_loop->num_members; i++) { idx_1 = -255; /* when MAP_X is passed both maps failures are counted */ if (prev && (look_in_map == MAP_1 || look_in_map == MAP_X) && i < prev->num_members) { ord = __le32_to_cpu(prev->disk_ord_tbl[i]); idx_1 = ord_to_idx(ord); disk = get_imsm_disk(super, idx_1); if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD) failed++; } if ((look_in_map == MAP_0 || look_in_map == MAP_X) && i < map->num_members) { ord = __le32_to_cpu(map->disk_ord_tbl[i]); idx = ord_to_idx(ord); if (idx != idx_1) { disk = get_imsm_disk(super, idx); if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD) failed++; } } } return failed; } static int imsm_open_new(struct supertype *c, struct active_array *a, int inst) { struct intel_super *super = c->sb; struct imsm_super *mpb = super->anchor; struct imsm_update_prealloc_bb_mem u; if (inst >= mpb->num_raid_devs) { pr_err("subarry index %d, out of range\n", inst); return -ENODEV; } dprintf("imsm: open_new %d\n", inst); a->info.container_member = inst; u.type = update_prealloc_badblocks_mem; imsm_update_metadata_locally(c, &u, sizeof(u)); return 0; } static int is_resyncing(struct imsm_dev *dev) { struct imsm_map *migr_map; if (!dev->vol.migr_state) return 0; if (migr_type(dev) == MIGR_INIT || migr_type(dev) == MIGR_REPAIR) return 1; if (migr_type(dev) == MIGR_GEN_MIGR) return 0; migr_map = get_imsm_map(dev, MAP_1); if (migr_map->map_state == IMSM_T_STATE_NORMAL && dev->vol.migr_type != MIGR_GEN_MIGR) return 1; else return 0; } /* return true if we recorded new information */ static int mark_failure(struct intel_super *super, struct imsm_dev *dev, struct imsm_disk *disk, int idx) { __u32 ord; int slot; struct imsm_map *map; char buf[MAX_RAID_SERIAL_LEN+3]; unsigned int len, shift = 0; /* new failures are always set in map[0] */ map = get_imsm_map(dev, MAP_0); slot = get_imsm_disk_slot(map, idx); if (slot < 0) return 0; ord = __le32_to_cpu(map->disk_ord_tbl[slot]); if (is_failed(disk) && (ord & IMSM_ORD_REBUILD)) return 0; memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN); buf[MAX_RAID_SERIAL_LEN] = '\000'; strcat(buf, ":0"); if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN) shift = len - MAX_RAID_SERIAL_LEN + 1; memcpy(disk->serial, &buf[shift], len + 1 - shift); disk->status |= FAILED_DISK; set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD); /* mark failures in second map if second map exists and this disk * in this slot. * This is valid for migration, initialization and rebuild */ if (dev->vol.migr_state) { struct imsm_map *map2 = get_imsm_map(dev, MAP_1); int slot2 = get_imsm_disk_slot(map2, idx); if (slot2 < map2->num_members && slot2 >= 0) set_imsm_ord_tbl_ent(map2, slot2, idx | IMSM_ORD_REBUILD); } if (map->failed_disk_num == 0xff || (!is_rebuilding(dev) && map->failed_disk_num > slot)) map->failed_disk_num = slot; clear_disk_badblocks(super->bbm_log, ord_to_idx(ord)); return 1; } static void mark_missing(struct intel_super *super, struct imsm_dev *dev, struct imsm_disk *disk, int idx) { mark_failure(super, dev, disk, idx); if (disk->scsi_id == __cpu_to_le32(~(__u32)0)) return; disk->scsi_id = __cpu_to_le32(~(__u32)0); memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1); } static void handle_missing(struct intel_super *super, struct imsm_dev *dev) { struct dl *dl; if (!super->missing) return; /* When orom adds replacement for missing disk it does * not remove entry of missing disk, but just updates map with * new added disk. So it is not enough just to test if there is * any missing disk, we have to look if there are any failed disks * in map to stop migration */ dprintf("imsm: mark missing\n"); /* end process for initialization and rebuild only */ if (is_gen_migration(dev) == false) { int failed = imsm_count_failed(super, dev, MAP_0); if (failed) { __u8 map_state; struct imsm_map *map = get_imsm_map(dev, MAP_0); struct imsm_map *map1; int i, ord, ord_map1; int rebuilt = 1; for (i = 0; i < map->num_members; i++) { ord = get_imsm_ord_tbl_ent(dev, i, MAP_0); if (!(ord & IMSM_ORD_REBUILD)) continue; map1 = get_imsm_map(dev, MAP_1); if (!map1) continue; ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]); if (ord_map1 & IMSM_ORD_REBUILD) rebuilt = 0; } if (rebuilt) { map_state = imsm_check_degraded(super, dev, failed, MAP_0); end_migration(dev, super, map_state); } } } for (dl = super->missing; dl; dl = dl->next) mark_missing(super, dev, &dl->disk, dl->index); super->updates_pending++; } static unsigned long long imsm_set_array_size(struct imsm_dev *dev, long long new_size) { unsigned long long array_blocks; struct imsm_map *map = get_imsm_map(dev, MAP_0); int used_disks = imsm_num_data_members(map); if (used_disks == 0) { /* when problems occures * return current array_blocks value */ array_blocks = imsm_dev_size(dev); return array_blocks; } /* set array size in metadata */ if (new_size <= 0) /* OLCE size change is caused by added disks */ array_blocks = per_dev_array_size(map) * used_disks; else /* Online Volume Size Change * Using available free space */ array_blocks = new_size; array_blocks = round_size_to_mb(array_blocks, used_disks); set_imsm_dev_size(dev, array_blocks); return array_blocks; } static void imsm_set_disk(struct active_array *a, int n, int state); static void imsm_progress_container_reshape(struct intel_super *super) { /* if no device has a migr_state, but some device has a * different number of members than the previous device, start * changing the number of devices in this device to match * previous. */ struct imsm_super *mpb = super->anchor; int prev_disks = -1; int i; int copy_map_size; for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); struct imsm_map *map = get_imsm_map(dev, MAP_0); struct imsm_map *map2; int prev_num_members; if (dev->vol.migr_state) return; if (prev_disks == -1) prev_disks = map->num_members; if (prev_disks == map->num_members) continue; /* OK, this array needs to enter reshape mode. * i.e it needs a migr_state */ copy_map_size = sizeof_imsm_map(map); prev_num_members = map->num_members; map->num_members = prev_disks; dev->vol.migr_state = MIGR_STATE_MIGRATING; set_vol_curr_migr_unit(dev, 0); set_migr_type(dev, MIGR_GEN_MIGR); for (i = prev_num_members; i < map->num_members; i++) set_imsm_ord_tbl_ent(map, i, i); map2 = get_imsm_map(dev, MAP_1); /* Copy the current map */ memcpy(map2, map, copy_map_size); map2->num_members = prev_num_members; imsm_set_array_size(dev, -1); super->clean_migration_record_by_mdmon = 1; super->updates_pending++; } } /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild * states are handled in imsm_set_disk() with one exception, when a * resync is stopped due to a new failure this routine will set the * 'degraded' state for the array. */ static int imsm_set_array_state(struct active_array *a, int consistent) { int inst = a->info.container_member; struct intel_super *super = a->container->sb; struct imsm_dev *dev = get_imsm_dev(super, inst); struct imsm_map *map = get_imsm_map(dev, MAP_0); int failed = imsm_count_failed(super, dev, MAP_0); __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0); __u32 blocks_per_unit; if (dev->vol.migr_state && dev->vol.migr_type == MIGR_GEN_MIGR) { /* array state change is blocked due to reshape action * We might need to * - abort the reshape (if last_checkpoint is 0 and action!= reshape) * - finish the reshape (if last_checkpoint is big and action != reshape) * - update vol_curr_migr_unit */ if (a->curr_action == reshape) { /* still reshaping, maybe update vol_curr_migr_unit */ goto mark_checkpoint; } else { if (a->last_checkpoint >= a->info.component_size) { unsigned long long array_blocks; int used_disks; struct mdinfo *mdi; used_disks = imsm_num_data_members(map); if (used_disks > 0) { array_blocks = per_dev_array_size(map) * used_disks; array_blocks = round_size_to_mb(array_blocks, used_disks); a->info.custom_array_size = array_blocks; /* encourage manager to update array * size */ a->check_reshape = 1; } /* finalize online capacity expansion/reshape */ for (mdi = a->info.devs; mdi; mdi = mdi->next) imsm_set_disk(a, mdi->disk.raid_disk, mdi->curr_state); imsm_progress_container_reshape(super); } } } /* before we activate this array handle any missing disks */ if (consistent == 2) handle_missing(super, dev); if (consistent == 2 && (!is_resync_complete(&a->info) || map_state != IMSM_T_STATE_NORMAL || dev->vol.migr_state)) consistent = 0; if (is_resync_complete(&a->info)) { /* complete intialization / resync, * recovery and interrupted recovery is completed in * ->set_disk */ if (is_resyncing(dev)) { dprintf("imsm: mark resync done\n"); end_migration(dev, super, map_state); super->updates_pending++; a->last_checkpoint = 0; } } else if ((!is_resyncing(dev) && !failed) && (imsm_reshape_blocks_arrays_changes(super) == 0)) { /* mark the start of the init process if nothing is failed */ dprintf("imsm: mark resync start\n"); if (map->map_state == IMSM_T_STATE_UNINITIALIZED) migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT); else migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR); super->updates_pending++; } if (a->prev_action == idle) goto skip_mark_checkpoint; mark_checkpoint: /* skip checkpointing for general migration, * it is controlled in mdadm */ if (is_gen_migration(dev)) goto skip_mark_checkpoint; /* check if we can update vol_curr_migr_unit from resync_start, * recovery_start */ blocks_per_unit = blocks_per_migr_unit(super, dev); if (blocks_per_unit) { set_vol_curr_migr_unit(dev, a->last_checkpoint / blocks_per_unit); dprintf("imsm: mark checkpoint (%llu)\n", vol_curr_migr_unit(dev)); super->updates_pending++; } skip_mark_checkpoint: /* mark dirty / clean */ if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) || (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) { dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty"); if (consistent) { dev->vol.dirty = RAIDVOL_CLEAN; } else { dev->vol.dirty = RAIDVOL_DIRTY; if (dev->rwh_policy == RWH_DISTRIBUTED || dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED) dev->vol.dirty |= RAIDVOL_DSRECORD_VALID; } super->updates_pending++; } return consistent; } static int imsm_disk_slot_to_ord(struct active_array *a, int slot) { int inst = a->info.container_member; struct intel_super *super = a->container->sb; struct imsm_dev *dev = get_imsm_dev(super, inst); struct imsm_map *map = get_imsm_map(dev, MAP_0); if (slot > map->num_members) { pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n", slot, map->num_members - 1); return -1; } if (slot < 0) return -1; return get_imsm_ord_tbl_ent(dev, slot, MAP_0); } static void imsm_set_disk(struct active_array *a, int n, int state) { int inst = a->info.container_member; struct intel_super *super = a->container->sb; struct imsm_dev *dev = get_imsm_dev(super, inst); struct imsm_map *map = get_imsm_map(dev, MAP_0); struct imsm_disk *disk; struct mdinfo *mdi; int recovery_not_finished = 0; int failed; int ord; __u8 map_state; int rebuild_done = 0; int i; ord = get_imsm_ord_tbl_ent(dev, n, MAP_X); if (ord < 0) return; dprintf("imsm: set_disk %d:%x\n", n, state); disk = get_imsm_disk(super, ord_to_idx(ord)); /* check for new failures */ if (disk && (state & DS_FAULTY)) { if (mark_failure(super, dev, disk, ord_to_idx(ord))) super->updates_pending++; } /* check if in_sync */ if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) { struct imsm_map *migr_map = get_imsm_map(dev, MAP_1); set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord)); rebuild_done = 1; super->updates_pending++; } failed = imsm_count_failed(super, dev, MAP_0); map_state = imsm_check_degraded(super, dev, failed, MAP_0); /* check if recovery complete, newly degraded, or failed */ dprintf("imsm: Detected transition to state "); switch (map_state) { case IMSM_T_STATE_NORMAL: /* transition to normal state */ dprintf("normal: "); if (is_rebuilding(dev)) { dprintf_cont("while rebuilding"); /* check if recovery is really finished */ for (mdi = a->info.devs; mdi ; mdi = mdi->next) if (mdi->recovery_start != MaxSector) { recovery_not_finished = 1; break; } if (recovery_not_finished) { dprintf_cont("\n"); dprintf("Rebuild has not finished yet, state not changed"); if (a->last_checkpoint < mdi->recovery_start) { a->last_checkpoint = mdi->recovery_start; super->updates_pending++; } break; } end_migration(dev, super, map_state); map->failed_disk_num = ~0; super->updates_pending++; a->last_checkpoint = 0; break; } if (is_gen_migration(dev)) { dprintf_cont("while general migration"); if (a->last_checkpoint >= a->info.component_size) end_migration(dev, super, map_state); else map->map_state = map_state; map->failed_disk_num = ~0; super->updates_pending++; break; } break; case IMSM_T_STATE_DEGRADED: /* transition to degraded state */ dprintf_cont("degraded: "); if (map->map_state != map_state && !dev->vol.migr_state) { dprintf_cont("mark degraded"); map->map_state = map_state; super->updates_pending++; a->last_checkpoint = 0; break; } if (is_rebuilding(dev)) { dprintf_cont("while rebuilding "); if (state & DS_FAULTY) { dprintf_cont("removing failed drive "); if (n == map->failed_disk_num) { dprintf_cont("end migration"); end_migration(dev, super, map_state); a->last_checkpoint = 0; } else { dprintf_cont("fail detected during rebuild, changing map state"); map->map_state = map_state; } super->updates_pending++; } if (!rebuild_done) break; /* check if recovery is really finished */ for (mdi = a->info.devs; mdi ; mdi = mdi->next) if (mdi->recovery_start != MaxSector) { recovery_not_finished = 1; break; } if (recovery_not_finished) { dprintf_cont("\n"); dprintf_cont("Rebuild has not finished yet"); if (a->last_checkpoint < mdi->recovery_start) { a->last_checkpoint = mdi->recovery_start; super->updates_pending++; } break; } dprintf_cont(" Rebuild done, still degraded"); end_migration(dev, super, map_state); a->last_checkpoint = 0; super->updates_pending++; for (i = 0; i < map->num_members; i++) { int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0); if (idx & IMSM_ORD_REBUILD) map->failed_disk_num = i; } super->updates_pending++; break; } if (is_gen_migration(dev)) { dprintf_cont("while general migration"); if (a->last_checkpoint >= a->info.component_size) end_migration(dev, super, map_state); else { map->map_state = map_state; manage_second_map(super, dev); } super->updates_pending++; break; } if (is_initializing(dev)) { dprintf_cont("while initialization."); map->map_state = map_state; super->updates_pending++; break; } break; case IMSM_T_STATE_FAILED: /* transition to failed state */ dprintf_cont("failed: "); if (is_gen_migration(dev)) { dprintf_cont("while general migration"); map->map_state = map_state; super->updates_pending++; break; } if (map->map_state != map_state) { dprintf_cont("mark failed"); end_migration(dev, super, map_state); super->updates_pending++; a->last_checkpoint = 0; break; } break; default: dprintf_cont("state %i\n", map_state); } dprintf_cont("\n"); } static int store_imsm_mpb(int fd, struct imsm_super *mpb) { void *buf = mpb; __u32 mpb_size = __le32_to_cpu(mpb->mpb_size); unsigned long long dsize; unsigned long long sectors; unsigned int sector_size; if (!get_dev_sector_size(fd, NULL, §or_size)) return 1; get_dev_size(fd, NULL, &dsize); if (mpb_size > sector_size) { /* -1 to account for anchor */ sectors = mpb_sectors(mpb, sector_size) - 1; /* write the extended mpb to the sectors preceeding the anchor */ if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) return 1; if ((unsigned long long)write(fd, buf + sector_size, sector_size * sectors) != sector_size * sectors) return 1; } /* first block is stored on second to last sector of the disk */ if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) return 1; if ((unsigned int)write(fd, buf, sector_size) != sector_size) return 1; return 0; } static void imsm_sync_metadata(struct supertype *container) { struct intel_super *super = container->sb; dprintf("sync metadata: %d\n", super->updates_pending); if (!super->updates_pending) return; write_super_imsm(container, 0); super->updates_pending = 0; } static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a) { struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member); int i = get_imsm_disk_idx(dev, idx, MAP_X); struct dl *dl; for (dl = super->disks; dl; dl = dl->next) if (dl->index == i) break; if (dl && is_failed(&dl->disk)) dl = NULL; if (dl) dprintf("found %x:%x\n", dl->major, dl->minor); return dl; } static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a, int activate_new, struct mdinfo *additional_test_list) { struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member); int idx = get_imsm_disk_idx(dev, slot, MAP_X); struct imsm_super *mpb = super->anchor; struct imsm_map *map; unsigned long long pos; struct mdinfo *d; struct extent *ex; int i, j; int found; __u32 array_start = 0; __u32 array_end = 0; struct dl *dl; struct mdinfo *test_list; for (dl = super->disks; dl; dl = dl->next) { /* If in this array, skip */ for (d = a->info.devs ; d ; d = d->next) if (is_fd_valid(d->state_fd) && d->disk.major == dl->major && d->disk.minor == dl->minor) { dprintf("%x:%x already in array\n", dl->major, dl->minor); break; } if (d) continue; test_list = additional_test_list; while (test_list) { if (test_list->disk.major == dl->major && test_list->disk.minor == dl->minor) { dprintf("%x:%x already in additional test list\n", dl->major, dl->minor); break; } test_list = test_list->next; } if (test_list) continue; /* skip in use or failed drives */ if (is_failed(&dl->disk) || idx == dl->index || dl->index == -2) { dprintf("%x:%x status (failed: %d index: %d)\n", dl->major, dl->minor, is_failed(&dl->disk), idx); continue; } /* skip pure spares when we are looking for partially * assimilated drives */ if (dl->index == -1 && !activate_new) continue; if (!drive_validate_sector_size(super, dl)) continue; /* Does this unused device have the requisite free space? * It needs to be able to cover all member volumes */ ex = get_extents(super, dl, 1); if (!ex) { dprintf("cannot get extents\n"); continue; } for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); map = get_imsm_map(dev, MAP_0); /* check if this disk is already a member of * this array */ if (get_imsm_disk_slot(map, dl->index) >= 0) continue; found = 0; j = 0; pos = 0; array_start = pba_of_lba0(map); array_end = array_start + per_dev_array_size(map) - 1; do { /* check that we can start at pba_of_lba0 with * num_data_stripes*blocks_per_stripe of space */ if (array_start >= pos && array_end < ex[j].start) { found = 1; break; } pos = ex[j].start + ex[j].size; j++; } while (ex[j-1].size); if (!found) break; } free(ex); if (i < mpb->num_raid_devs) { dprintf("%x:%x does not have %u to %u available\n", dl->major, dl->minor, array_start, array_end); /* No room */ continue; } return dl; } return dl; } static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed) { struct imsm_dev *dev2; struct imsm_map *map; struct dl *idisk; int slot; int idx; __u8 state; dev2 = get_imsm_dev(cont->sb, dev_idx); state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0); if (state == IMSM_T_STATE_FAILED) { map = get_imsm_map(dev2, MAP_0); for (slot = 0; slot < map->num_members; slot++) { /* * Check if failed disks are deleted from intel * disk list or are marked to be deleted */ idx = get_imsm_disk_idx(dev2, slot, MAP_X); idisk = get_imsm_dl_disk(cont->sb, idx); /* * Do not rebuild the array if failed disks * from failed sub-array are not removed from * container. */ if (idisk && is_failed(&idisk->disk) && (idisk->action != DISK_REMOVE)) return 0; } } return 1; } static struct mdinfo *imsm_activate_spare(struct active_array *a, struct metadata_update **updates) { /** * Find a device with unused free space and use it to replace a * failed/vacant region in an array. We replace failed regions one a * array at a time. The result is that a new spare disk will be added * to the first failed array and after the monitor has finished * propagating failures the remainder will be consumed. * * FIXME add a capability for mdmon to request spares from another * container. */ struct intel_super *super = a->container->sb; int inst = a->info.container_member; struct imsm_dev *dev = get_imsm_dev(super, inst); struct imsm_map *map = get_imsm_map(dev, MAP_0); int failed = a->info.array.raid_disks; struct mdinfo *rv = NULL; struct mdinfo *d; struct mdinfo *di; struct metadata_update *mu; struct dl *dl; struct imsm_update_activate_spare *u; int num_spares = 0; int i; int allowed; for (d = a->info.devs ; d; d = d->next) { if (!is_fd_valid(d->state_fd)) continue; if (d->curr_state & DS_FAULTY) /* wait for Removal to happen */ return NULL; failed--; } dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n", inst, failed, a->info.array.raid_disks, a->info.array.level); if (imsm_reshape_blocks_arrays_changes(super)) return NULL; /* Cannot activate another spare if rebuild is in progress already */ if (is_rebuilding(dev)) { dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n"); return NULL; } if (a->info.array.level == 4) /* No repair for takeovered array * imsm doesn't support raid4 */ return NULL; if (imsm_check_degraded(super, dev, failed, MAP_0) != IMSM_T_STATE_DEGRADED) return NULL; if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) { dprintf("imsm: No spare activation allowed. Volume is not initialized.\n"); return NULL; } /* * If there are any failed disks check state of the other volume. * Block rebuild if the another one is failed until failed disks * are removed from container. */ if (failed) { dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n", MAX_RAID_SERIAL_LEN, dev->volume); /* check if states of the other volumes allow for rebuild */ for (i = 0; i < super->anchor->num_raid_devs; i++) { if (i != inst) { allowed = imsm_rebuild_allowed(a->container, i, failed); if (!allowed) return NULL; } } } /* For each slot, if it is not working, find a spare */ for (i = 0; i < a->info.array.raid_disks; i++) { for (d = a->info.devs ; d ; d = d->next) if (d->disk.raid_disk == i) break; dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0); if (d && is_fd_valid(d->state_fd)) continue; /* * OK, this device needs recovery. Try to re-add the * previous occupant of this slot, if this fails see if * we can continue the assimilation of a spare that was * partially assimilated, finally try to activate a new * spare. */ dl = imsm_readd(super, i, a); if (!dl) dl = imsm_add_spare(super, i, a, 0, rv); if (!dl) dl = imsm_add_spare(super, i, a, 1, rv); if (!dl) continue; /* found a usable disk with enough space */ di = xcalloc(1, sizeof(*di)); /* dl->index will be -1 in the case we are activating a * pristine spare. imsm_process_update() will create a * new index in this case. Once a disk is found to be * failed in all member arrays it is kicked from the * metadata */ di->disk.number = dl->index; /* (ab)use di->devs to store a pointer to the device * we chose */ di->devs = (struct mdinfo *) dl; di->disk.raid_disk = i; di->disk.major = dl->major; di->disk.minor = dl->minor; di->disk.state = 0; di->recovery_start = 0; di->data_offset = pba_of_lba0(map); di->component_size = a->info.component_size; di->container_member = inst; di->bb.supported = 1; if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) { di->ppl_sector = get_ppl_sector(super, inst); di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9; } super->random = random32(); di->next = rv; rv = di; num_spares++; dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor, i, di->data_offset); } if (!rv) /* No spares found */ return rv; /* Now 'rv' has a list of devices to return. * Create a metadata_update record to update the * disk_ord_tbl for the array */ mu = xmalloc(sizeof(*mu)); mu->buf = xcalloc(num_spares, sizeof(struct imsm_update_activate_spare)); mu->space = NULL; mu->space_list = NULL; mu->len = sizeof(struct imsm_update_activate_spare) * num_spares; mu->next = *updates; u = (struct imsm_update_activate_spare *) mu->buf; for (di = rv ; di ; di = di->next) { u->type = update_activate_spare; u->dl = (struct dl *) di->devs; di->devs = NULL; u->slot = di->disk.raid_disk; u->array = inst; u->next = u + 1; u++; } (u-1)->next = NULL; *updates = mu; return rv; } static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u) { struct imsm_dev *dev = get_imsm_dev(super, idx); struct imsm_map *map = get_imsm_map(dev, MAP_0); struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0); struct disk_info *inf = get_disk_info(u); struct imsm_disk *disk; int i; int j; for (i = 0; i < map->num_members; i++) { disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X)); for (j = 0; j < new_map->num_members; j++) if (serialcmp(disk->serial, inf[j].serial) == 0) return 1; } return 0; } static struct dl *get_disk_super(struct intel_super *super, int major, int minor) { struct dl *dl; for (dl = super->disks; dl; dl = dl->next) if (dl->major == major && dl->minor == minor) return dl; return NULL; } static int remove_disk_super(struct intel_super *super, int major, int minor) { struct dl *prev; struct dl *dl; prev = NULL; for (dl = super->disks; dl; dl = dl->next) { if (dl->major == major && dl->minor == minor) { /* remove */ if (prev) prev->next = dl->next; else super->disks = dl->next; dl->next = NULL; __free_imsm_disk(dl, 1); dprintf("removed %x:%x\n", major, minor); break; } prev = dl; } return 0; } static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index); static int add_remove_disk_update(struct intel_super *super) { int check_degraded = 0; struct dl *disk; /* add/remove some spares to/from the metadata/contrainer */ while (super->disk_mgmt_list) { struct dl *disk_cfg; disk_cfg = super->disk_mgmt_list; super->disk_mgmt_list = disk_cfg->next; disk_cfg->next = NULL; if (disk_cfg->action == DISK_ADD) { disk_cfg->next = super->disks; super->disks = disk_cfg; check_degraded = 1; dprintf("added %x:%x\n", disk_cfg->major, disk_cfg->minor); } else if (disk_cfg->action == DISK_REMOVE) { dprintf("Disk remove action processed: %x.%x\n", disk_cfg->major, disk_cfg->minor); disk = get_disk_super(super, disk_cfg->major, disk_cfg->minor); if (disk) { /* store action status */ disk->action = DISK_REMOVE; /* remove spare disks only */ if (disk->index == -1) { remove_disk_super(super, disk_cfg->major, disk_cfg->minor); } else { disk_cfg->fd = disk->fd; disk->fd = -1; } } /* release allocate disk structure */ __free_imsm_disk(disk_cfg, 1); } } return check_degraded; } static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u, struct intel_super *super, void ***space_list) { struct intel_dev *id; void **tofree = NULL; int ret_val = 0; dprintf("(enter)\n"); if (u->subdev < 0 || u->subdev > 1) { dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev); return ret_val; } if (space_list == NULL || *space_list == NULL) { dprintf("imsm: Error: Memory is not allocated\n"); return ret_val; } for (id = super->devlist ; id; id = id->next) { if (id->index == (unsigned)u->subdev) { struct imsm_dev *dev = get_imsm_dev(super, u->subdev); struct imsm_map *map; struct imsm_dev *new_dev = (struct imsm_dev *)*space_list; struct imsm_map *migr_map = get_imsm_map(dev, MAP_1); int to_state; struct dl *new_disk; if (new_dev == NULL) return ret_val; *space_list = **space_list; memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0)); map = get_imsm_map(new_dev, MAP_0); if (migr_map) { dprintf("imsm: Error: migration in progress"); return ret_val; } to_state = map->map_state; if ((u->new_level == IMSM_T_RAID5) && (map->raid_level == IMSM_T_RAID0)) { map->num_members++; /* this should not happen */ if (u->new_disks[0] < 0) { map->failed_disk_num = map->num_members - 1; to_state = IMSM_T_STATE_DEGRADED; } else to_state = IMSM_T_STATE_NORMAL; } migrate(new_dev, super, to_state, MIGR_GEN_MIGR); if (u->new_level > -1) update_imsm_raid_level(map, u->new_level); migr_map = get_imsm_map(new_dev, MAP_1); if ((u->new_level == IMSM_T_RAID5) && (migr_map->raid_level == IMSM_T_RAID0)) { int ord = map->num_members - 1; migr_map->num_members--; if (u->new_disks[0] < 0) ord |= IMSM_ORD_REBUILD; set_imsm_ord_tbl_ent(map, map->num_members - 1, ord); } id->dev = new_dev; tofree = (void **)dev; /* update chunk size */ if (u->new_chunksize > 0) { struct imsm_map *dest_map = get_imsm_map(dev, MAP_0); int used_disks = imsm_num_data_members(dest_map); if (used_disks == 0) return ret_val; map->blocks_per_strip = __cpu_to_le16(u->new_chunksize * 2); update_num_data_stripes(map, imsm_dev_size(dev)); } /* ensure blocks_per_member has valid value */ set_blocks_per_member(map, per_dev_array_size(map) + NUM_BLOCKS_DIRTY_STRIPE_REGION); /* add disk */ if (u->new_level != IMSM_T_RAID5 || migr_map->raid_level != IMSM_T_RAID0 || migr_map->raid_level == map->raid_level) goto skip_disk_add; if (u->new_disks[0] >= 0) { /* use passes spare */ new_disk = get_disk_super(super, major(u->new_disks[0]), minor(u->new_disks[0])); dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n", major(u->new_disks[0]), minor(u->new_disks[0]), new_disk, new_disk->index); if (new_disk == NULL) goto error_disk_add; new_disk->index = map->num_members - 1; /* slot to fill in autolayout */ new_disk->raiddisk = new_disk->index; new_disk->disk.status |= CONFIGURED_DISK; new_disk->disk.status &= ~SPARE_DISK; } else goto error_disk_add; skip_disk_add: *tofree = *space_list; /* calculate new size */ imsm_set_array_size(new_dev, -1); ret_val = 1; } } if (tofree) *space_list = tofree; return ret_val; error_disk_add: dprintf("Error: imsm: Cannot find disk.\n"); return ret_val; } static int apply_size_change_update(struct imsm_update_size_change *u, struct intel_super *super) { struct intel_dev *id; int ret_val = 0; dprintf("(enter)\n"); if (u->subdev < 0 || u->subdev > 1) { dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev); return ret_val; } for (id = super->devlist ; id; id = id->next) { if (id->index == (unsigned)u->subdev) { struct imsm_dev *dev = get_imsm_dev(super, u->subdev); struct imsm_map *map = get_imsm_map(dev, MAP_0); int used_disks = imsm_num_data_members(map); unsigned long long blocks_per_member; unsigned long long new_size_per_disk; if (used_disks == 0) return 0; /* calculate new size */ new_size_per_disk = u->new_size / used_disks; blocks_per_member = new_size_per_disk + NUM_BLOCKS_DIRTY_STRIPE_REGION; imsm_set_array_size(dev, u->new_size); set_blocks_per_member(map, blocks_per_member); update_num_data_stripes(map, u->new_size); ret_val = 1; break; } } return ret_val; } static int prepare_spare_to_activate(struct supertype *st, struct imsm_update_activate_spare *u) { struct intel_super *super = st->sb; int prev_current_vol = super->current_vol; struct active_array *a; int ret = 1; for (a = st->arrays; a; a = a->next) /* * Additional initialization (adding bitmap header, filling * the bitmap area with '1's to force initial rebuild for a whole * data-area) is required when adding the spare to the volume * with write-intent bitmap. */ if (a->info.container_member == u->array && a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) { struct dl *dl; for (dl = super->disks; dl; dl = dl->next) if (dl == u->dl) break; if (!dl) break; super->current_vol = u->array; if (st->ss->write_bitmap(st, dl->fd, NoUpdate)) ret = 0; super->current_vol = prev_current_vol; } return ret; } static int apply_update_activate_spare(struct imsm_update_activate_spare *u, struct intel_super *super, struct active_array *active_array) { struct imsm_super *mpb = super->anchor; struct imsm_dev *dev = get_imsm_dev(super, u->array); struct imsm_map *map = get_imsm_map(dev, MAP_0); struct imsm_map *migr_map; struct active_array *a; struct imsm_disk *disk; __u8 to_state; struct dl *dl; unsigned int found; int failed; int victim; int i; int second_map_created = 0; for (; u; u = u->next) { victim = get_imsm_disk_idx(dev, u->slot, MAP_X); if (victim < 0) return 0; for (dl = super->disks; dl; dl = dl->next) if (dl == u->dl) break; if (!dl) { pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n", u->dl->index); return 0; } /* count failures (excluding rebuilds and the victim) * to determine map[0] state */ failed = 0; for (i = 0; i < map->num_members; i++) { if (i == u->slot) continue; disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X)); if (!disk || is_failed(disk)) failed++; } /* adding a pristine spare, assign a new index */ if (dl->index < 0) { dl->index = super->anchor->num_disks; super->anchor->num_disks++; } disk = &dl->disk; disk->status |= CONFIGURED_DISK; disk->status &= ~SPARE_DISK; /* mark rebuild */ to_state = imsm_check_degraded(super, dev, failed, MAP_0); if (!second_map_created) { second_map_created = 1; map->map_state = IMSM_T_STATE_DEGRADED; migrate(dev, super, to_state, MIGR_REBUILD); } else map->map_state = to_state; migr_map = get_imsm_map(dev, MAP_1); set_imsm_ord_tbl_ent(map, u->slot, dl->index); set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD); /* update the family_num to mark a new container * generation, being careful to record the existing * family_num in orig_family_num to clean up after * earlier mdadm versions that neglected to set it. */ if (mpb->orig_family_num == 0) mpb->orig_family_num = mpb->family_num; mpb->family_num += super->random; /* count arrays using the victim in the metadata */ found = 0; for (a = active_array; a ; a = a->next) { int dev_idx = a->info.container_member; if (get_disk_slot_in_dev(super, dev_idx, victim) >= 0) found++; } /* delete the victim if it is no longer being * utilized anywhere */ if (!found) { struct dl **dlp; /* We know that 'manager' isn't touching anything, * so it is safe to delete */ for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next) if ((*dlp)->index == victim) break; /* victim may be on the missing list */ if (!*dlp) for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next) if ((*dlp)->index == victim) break; imsm_delete(super, dlp, victim); } } return 1; } static int apply_reshape_container_disks_update(struct imsm_update_reshape *u, struct intel_super *super, void ***space_list) { struct dl *new_disk; struct intel_dev *id; int i; int delta_disks = u->new_raid_disks - u->old_raid_disks; int disk_count = u->old_raid_disks; void **tofree = NULL; int devices_to_reshape = 1; struct imsm_super *mpb = super->anchor; int ret_val = 0; unsigned int dev_id; dprintf("(enter)\n"); /* enable spares to use in array */ for (i = 0; i < delta_disks; i++) { new_disk = get_disk_super(super, major(u->new_disks[i]), minor(u->new_disks[i])); dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n", major(u->new_disks[i]), minor(u->new_disks[i]), new_disk, new_disk->index); if (new_disk == NULL || (new_disk->index >= 0 && new_disk->index < u->old_raid_disks)) goto update_reshape_exit; new_disk->index = disk_count++; /* slot to fill in autolayout */ new_disk->raiddisk = new_disk->index; new_disk->disk.status |= CONFIGURED_DISK; new_disk->disk.status &= ~SPARE_DISK; } dprintf("imsm: volume set mpb->num_raid_devs = %i\n", mpb->num_raid_devs); /* manage changes in volume */ for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) { void **sp = *space_list; struct imsm_dev *newdev; struct imsm_map *newmap, *oldmap; for (id = super->devlist ; id; id = id->next) { if (id->index == dev_id) break; } if (id == NULL) break; if (!sp) continue; *space_list = *sp; newdev = (void*)sp; /* Copy the dev, but not (all of) the map */ memcpy(newdev, id->dev, sizeof(*newdev)); oldmap = get_imsm_map(id->dev, MAP_0); newmap = get_imsm_map(newdev, MAP_0); /* Copy the current map */ memcpy(newmap, oldmap, sizeof_imsm_map(oldmap)); /* update one device only */ if (devices_to_reshape) { dprintf("imsm: modifying subdev: %i\n", id->index); devices_to_reshape--; newdev->vol.migr_state = MIGR_STATE_MIGRATING; set_vol_curr_migr_unit(newdev, 0); set_migr_type(newdev, MIGR_GEN_MIGR); newmap->num_members = u->new_raid_disks; for (i = 0; i < delta_disks; i++) { set_imsm_ord_tbl_ent(newmap, u->old_raid_disks + i, u->old_raid_disks + i); } /* New map is correct, now need to save old map */ newmap = get_imsm_map(newdev, MAP_1); memcpy(newmap, oldmap, sizeof_imsm_map(oldmap)); imsm_set_array_size(newdev, -1); } sp = (void **)id->dev; id->dev = newdev; *sp = tofree; tofree = sp; /* Clear migration record */ memset(super->migr_rec, 0, sizeof(struct migr_record)); } if (tofree) *space_list = tofree; ret_val = 1; update_reshape_exit: return ret_val; } static int apply_takeover_update(struct imsm_update_takeover *u, struct intel_super *super, void ***space_list) { struct imsm_dev *dev = NULL; struct intel_dev *dv; struct imsm_dev *dev_new; struct imsm_map *map; struct dl *dm, *du; int i; for (dv = super->devlist; dv; dv = dv->next) if (dv->index == (unsigned int)u->subarray) { dev = dv->dev; break; } if (dev == NULL) return 0; map = get_imsm_map(dev, MAP_0); if (u->direction == R10_TO_R0) { /* Number of failed disks must be half of initial disk number */ if (imsm_count_failed(super, dev, MAP_0) != (map->num_members / 2)) return 0; /* iterate through devices to mark removed disks as spare */ for (dm = super->disks; dm; dm = dm->next) { if (dm->disk.status & FAILED_DISK) { int idx = dm->index; /* update indexes on the disk list */ /* FIXME this loop-with-the-loop looks wrong, I'm not convinced the index values will end up being correct.... NB */ for (du = super->disks; du; du = du->next) if (du->index > idx) du->index--; /* mark as spare disk */ mark_spare(dm); } } /* update map */ map->num_members /= map->num_domains; map->map_state = IMSM_T_STATE_NORMAL; update_imsm_raid_level(map, IMSM_T_RAID0); set_num_domains(map); update_num_data_stripes(map, imsm_dev_size(dev)); map->failed_disk_num = -1; } if (u->direction == R0_TO_R10) { void **space; /* update slots in current disk list */ for (dm = super->disks; dm; dm = dm->next) { if (dm->index >= 0) dm->index *= 2; } /* create new *missing* disks */ for (i = 0; i < map->num_members; i++) { space = *space_list; if (!space) continue; *space_list = *space; du = (void *)space; memcpy(du, super->disks, sizeof(*du)); du->fd = -1; du->minor = 0; du->major = 0; du->index = (i * 2) + 1; sprintf((char *)du->disk.serial, " MISSING_%d", du->index); sprintf((char *)du->serial, "MISSING_%d", du->index); du->next = super->missing; super->missing = du; } /* create new dev and map */ space = *space_list; if (!space) return 0; *space_list = *space; dev_new = (void *)space; memcpy(dev_new, dev, sizeof(*dev)); /* update new map */ map = get_imsm_map(dev_new, MAP_0); map->map_state = IMSM_T_STATE_DEGRADED; update_imsm_raid_level(map, IMSM_T_RAID10); set_num_domains(map); map->num_members = map->num_members * map->num_domains; update_num_data_stripes(map, imsm_dev_size(dev)); /* replace dev<->dev_new */ dv->dev = dev_new; } /* update disk order table */ for (du = super->disks; du; du = du->next) if (du->index >= 0) set_imsm_ord_tbl_ent(map, du->index, du->index); for (du = super->missing; du; du = du->next) if (du->index >= 0) { set_imsm_ord_tbl_ent(map, du->index, du->index); mark_missing(super, dv->dev, &du->disk, du->index); } return 1; } static void imsm_process_update(struct supertype *st, struct metadata_update *update) { /** * crack open the metadata_update envelope to find the update record * update can be one of: * update_reshape_container_disks - all the arrays in the container * are being reshaped to have more devices. We need to mark * the arrays for general migration and convert selected spares * into active devices. * update_activate_spare - a spare device has replaced a failed * device in an array, update the disk_ord_tbl. If this disk is * present in all member arrays then also clear the SPARE_DISK * flag * update_create_array * update_kill_array * update_rename_array * update_add_remove_disk */ struct intel_super *super = st->sb; struct imsm_super *mpb; enum imsm_update_type type = *(enum imsm_update_type *) update->buf; /* update requires a larger buf but the allocation failed */ if (super->next_len && !super->next_buf) { super->next_len = 0; return; } if (super->next_buf) { memcpy(super->next_buf, super->buf, super->len); free(super->buf); super->len = super->next_len; super->buf = super->next_buf; super->next_len = 0; super->next_buf = NULL; } mpb = super->anchor; switch (type) { case update_general_migration_checkpoint: { struct intel_dev *id; struct imsm_update_general_migration_checkpoint *u = (void *)update->buf; dprintf("called for update_general_migration_checkpoint\n"); /* find device under general migration */ for (id = super->devlist ; id; id = id->next) { if (is_gen_migration(id->dev)) { set_vol_curr_migr_unit(id->dev, u->curr_migr_unit); super->updates_pending++; } } break; } case update_takeover: { struct imsm_update_takeover *u = (void *)update->buf; if (apply_takeover_update(u, super, &update->space_list)) { imsm_update_version_info(super); super->updates_pending++; } break; } case update_reshape_container_disks: { struct imsm_update_reshape *u = (void *)update->buf; if (apply_reshape_container_disks_update( u, super, &update->space_list)) super->updates_pending++; break; } case update_reshape_migration: { struct imsm_update_reshape_migration *u = (void *)update->buf; if (apply_reshape_migration_update( u, super, &update->space_list)) super->updates_pending++; break; } case update_size_change: { struct imsm_update_size_change *u = (void *)update->buf; if (apply_size_change_update(u, super)) super->updates_pending++; break; } case update_activate_spare: { struct imsm_update_activate_spare *u = (void *) update->buf; if (prepare_spare_to_activate(st, u) && apply_update_activate_spare(u, super, st->arrays)) super->updates_pending++; break; } case update_create_array: { /* someone wants to create a new array, we need to be aware of * a few races/collisions: * 1/ 'Create' called by two separate instances of mdadm * 2/ 'Create' versus 'activate_spare': mdadm has chosen * devices that have since been assimilated via * activate_spare. * In the event this update can not be carried out mdadm will * (FIX ME) notice that its update did not take hold. */ struct imsm_update_create_array *u = (void *) update->buf; struct intel_dev *dv; struct imsm_dev *dev; struct imsm_map *map, *new_map; unsigned long long start, end; unsigned long long new_start, new_end; int i; struct disk_info *inf; struct dl *dl; /* handle racing creates: first come first serve */ if (u->dev_idx < mpb->num_raid_devs) { dprintf("subarray %d already defined\n", u->dev_idx); goto create_error; } /* check update is next in sequence */ if (u->dev_idx != mpb->num_raid_devs) { dprintf("can not create array %d expected index %d\n", u->dev_idx, mpb->num_raid_devs); goto create_error; } new_map = get_imsm_map(&u->dev, MAP_0); new_start = pba_of_lba0(new_map); new_end = new_start + per_dev_array_size(new_map); inf = get_disk_info(u); /* handle activate_spare versus create race: * check to make sure that overlapping arrays do not include * overalpping disks */ for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); map = get_imsm_map(dev, MAP_0); start = pba_of_lba0(map); end = start + per_dev_array_size(map); if ((new_start >= start && new_start <= end) || (start >= new_start && start <= new_end)) /* overlap */; else continue; if (disks_overlap(super, i, u)) { dprintf("arrays overlap\n"); goto create_error; } } /* check that prepare update was successful */ if (!update->space) { dprintf("prepare update failed\n"); goto create_error; } /* check that all disks are still active before committing * changes. FIXME: could we instead handle this by creating a * degraded array? That's probably not what the user expects, * so better to drop this update on the floor. */ for (i = 0; i < new_map->num_members; i++) { dl = serial_to_dl(inf[i].serial, super); if (!dl) { dprintf("disk disappeared\n"); goto create_error; } } super->updates_pending++; /* convert spares to members and fixup ord_tbl */ for (i = 0; i < new_map->num_members; i++) { dl = serial_to_dl(inf[i].serial, super); if (dl->index == -1) { dl->index = mpb->num_disks; mpb->num_disks++; dl->disk.status |= CONFIGURED_DISK; dl->disk.status &= ~SPARE_DISK; } set_imsm_ord_tbl_ent(new_map, i, dl->index); } dv = update->space; dev = dv->dev; update->space = NULL; imsm_copy_dev(dev, &u->dev); dv->index = u->dev_idx; dv->next = super->devlist; super->devlist = dv; mpb->num_raid_devs++; imsm_update_version_info(super); break; create_error: /* mdmon knows how to release update->space, but not * ((struct intel_dev *) update->space)->dev */ if (update->space) { dv = update->space; free(dv->dev); } break; } case update_kill_array: { struct imsm_update_kill_array *u = (void *) update->buf; int victim = u->dev_idx; struct active_array *a; struct intel_dev **dp; /* sanity check that we are not affecting the uuid of * active arrays, or deleting an active array * * FIXME when immutable ids are available, but note that * we'll also need to fixup the invalidated/active * subarray indexes in mdstat */ for (a = st->arrays; a; a = a->next) if (a->info.container_member >= victim) break; /* by definition if mdmon is running at least one array * is active in the container, so checking * mpb->num_raid_devs is just extra paranoia */ if (a || mpb->num_raid_devs == 1 || victim >= super->anchor->num_raid_devs) { dprintf("failed to delete subarray-%d\n", victim); break; } for (dp = &super->devlist; *dp;) if ((*dp)->index == (unsigned)super->current_vol) { *dp = (*dp)->next; } else { if ((*dp)->index > (unsigned)victim) (*dp)->index--; dp = &(*dp)->next; } mpb->num_raid_devs--; super->updates_pending++; break; } case update_rename_array: { struct imsm_update_rename_array *u = (void *) update->buf; char name[MAX_RAID_SERIAL_LEN+1]; int target = u->dev_idx; struct active_array *a; struct imsm_dev *dev; /* sanity check that we are not affecting the uuid of * an active array */ memset(name, 0, sizeof(name)); snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name); name[MAX_RAID_SERIAL_LEN] = '\0'; for (a = st->arrays; a; a = a->next) if (a->info.container_member == target) break; dev = get_imsm_dev(super, u->dev_idx); if (a || !dev || imsm_is_name_allowed(super, name, 0) == false) { dprintf("failed to rename subarray-%d\n", target); break; } memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN); super->updates_pending++; break; } case update_add_remove_disk: { /* we may be able to repair some arrays if disks are * being added, check the status of add_remove_disk * if discs has been added. */ if (add_remove_disk_update(super)) { struct active_array *a; super->updates_pending++; for (a = st->arrays; a; a = a->next) a->check_degraded = 1; } break; } case update_prealloc_badblocks_mem: break; case update_rwh_policy: { struct imsm_update_rwh_policy *u = (void *)update->buf; int target = u->dev_idx; struct imsm_dev *dev = get_imsm_dev(super, target); if (dev->rwh_policy != u->new_policy) { dev->rwh_policy = u->new_policy; super->updates_pending++; } break; } default: pr_err("error: unsupported process update type:(type: %d)\n", type); } } static struct mdinfo *get_spares_for_grow(struct supertype *st); static int imsm_prepare_update(struct supertype *st, struct metadata_update *update) { /** * Allocate space to hold new disk entries, raid-device entries or a new * mpb if necessary. The manager synchronously waits for updates to * complete in the monitor, so new mpb buffers allocated here can be * integrated by the monitor thread without worrying about live pointers * in the manager thread. */ enum imsm_update_type type; struct intel_super *super = st->sb; unsigned int sector_size = super->sector_size; struct imsm_super *mpb = super->anchor; size_t buf_len; size_t len = 0; if (update->len < (int)sizeof(type)) return 0; type = *(enum imsm_update_type *) update->buf; switch (type) { case update_general_migration_checkpoint: if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint)) return 0; dprintf("called for update_general_migration_checkpoint\n"); break; case update_takeover: { struct imsm_update_takeover *u = (void *)update->buf; if (update->len < (int)sizeof(*u)) return 0; if (u->direction == R0_TO_R10) { void **tail = (void **)&update->space_list; struct imsm_dev *dev = get_imsm_dev(super, u->subarray); struct imsm_map *map = get_imsm_map(dev, MAP_0); int num_members = map->num_members; void *space; int size, i; /* allocate memory for added disks */ for (i = 0; i < num_members; i++) { size = sizeof(struct dl); space = xmalloc(size); *tail = space; tail = space; *tail = NULL; } /* allocate memory for new device */ size = sizeof_imsm_dev(super->devlist->dev, 0) + (num_members * sizeof(__u32)); space = xmalloc(size); *tail = space; tail = space; *tail = NULL; len = disks_to_mpb_size(num_members * 2); } break; } case update_reshape_container_disks: { /* Every raid device in the container is about to * gain some more devices, and we will enter a * reconfiguration. * So each 'imsm_map' will be bigger, and the imsm_vol * will now hold 2 of them. * Thus we need new 'struct imsm_dev' allocations sized * as sizeof_imsm_dev but with more devices in both maps. */ struct imsm_update_reshape *u = (void *)update->buf; struct intel_dev *dl; void **space_tail = (void**)&update->space_list; if (update->len < (int)sizeof(*u)) return 0; dprintf("for update_reshape\n"); for (dl = super->devlist; dl; dl = dl->next) { int size = sizeof_imsm_dev(dl->dev, 1); void *s; if (u->new_raid_disks > u->old_raid_disks) size += sizeof(__u32)*2* (u->new_raid_disks - u->old_raid_disks); s = xmalloc(size); *space_tail = s; space_tail = s; *space_tail = NULL; } len = disks_to_mpb_size(u->new_raid_disks); dprintf("New anchor length is %llu\n", (unsigned long long)len); break; } case update_reshape_migration: { /* for migration level 0->5 we need to add disks * so the same as for container operation we will copy * device to the bigger location. * in memory prepared device and new disk area are prepared * for usage in process update */ struct imsm_update_reshape_migration *u = (void *)update->buf; struct intel_dev *id; void **space_tail = (void **)&update->space_list; int size; void *s; int current_level = -1; if (update->len < (int)sizeof(*u)) return 0; dprintf("for update_reshape\n"); /* add space for bigger array in update */ for (id = super->devlist; id; id = id->next) { if (id->index == (unsigned)u->subdev) { size = sizeof_imsm_dev(id->dev, 1); if (u->new_raid_disks > u->old_raid_disks) size += sizeof(__u32)*2* (u->new_raid_disks - u->old_raid_disks); s = xmalloc(size); *space_tail = s; space_tail = s; *space_tail = NULL; break; } } if (update->space_list == NULL) break; /* add space for disk in update */ size = sizeof(struct dl); s = xmalloc(size); *space_tail = s; space_tail = s; *space_tail = NULL; /* add spare device to update */ for (id = super->devlist ; id; id = id->next) if (id->index == (unsigned)u->subdev) { struct imsm_dev *dev; struct imsm_map *map; dev = get_imsm_dev(super, u->subdev); map = get_imsm_map(dev, MAP_0); current_level = map->raid_level; break; } if (u->new_level == 5 && u->new_level != current_level) { struct mdinfo *spares; spares = get_spares_for_grow(st); if (spares) { struct dl *dl; struct mdinfo *dev; dev = spares->devs; if (dev) { u->new_disks[0] = makedev(dev->disk.major, dev->disk.minor); dl = get_disk_super(super, dev->disk.major, dev->disk.minor); dl->index = u->old_raid_disks; dev = dev->next; } sysfs_free(spares); } } len = disks_to_mpb_size(u->new_raid_disks); dprintf("New anchor length is %llu\n", (unsigned long long)len); break; } case update_size_change: { if (update->len < (int)sizeof(struct imsm_update_size_change)) return 0; break; } case update_activate_spare: { if (update->len < (int)sizeof(struct imsm_update_activate_spare)) return 0; break; } case update_create_array: { struct imsm_update_create_array *u = (void *) update->buf; struct intel_dev *dv; struct imsm_dev *dev = &u->dev; struct imsm_map *map = get_imsm_map(dev, MAP_0); struct dl *dl; struct disk_info *inf; int i; int activate = 0; if (update->len < (int)sizeof(*u)) return 0; inf = get_disk_info(u); len = sizeof_imsm_dev(dev, 1); /* allocate a new super->devlist entry */ dv = xmalloc(sizeof(*dv)); dv->dev = xmalloc(len); update->space = dv; /* count how many spares will be converted to members */ for (i = 0; i < map->num_members; i++) { dl = serial_to_dl(inf[i].serial, super); if (!dl) { /* hmm maybe it failed?, nothing we can do about * it here */ continue; } if (count_memberships(dl, super) == 0) activate++; } len += activate * sizeof(struct imsm_disk); break; } case update_kill_array: { if (update->len < (int)sizeof(struct imsm_update_kill_array)) return 0; break; } case update_rename_array: { if (update->len < (int)sizeof(struct imsm_update_rename_array)) return 0; break; } case update_add_remove_disk: /* no update->len needed */ break; case update_prealloc_badblocks_mem: super->extra_space += sizeof(struct bbm_log) - get_imsm_bbm_log_size(super->bbm_log); break; case update_rwh_policy: { if (update->len < (int)sizeof(struct imsm_update_rwh_policy)) return 0; break; } default: return 0; } /* check if we need a larger metadata buffer */ if (super->next_buf) buf_len = super->next_len; else buf_len = super->len; if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) { /* ok we need a larger buf than what is currently allocated * if this allocation fails process_update will notice that * ->next_len is set and ->next_buf is NULL */ buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + super->extra_space + len, sector_size); if (super->next_buf) free(super->next_buf); super->next_len = buf_len; if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0) memset(super->next_buf, 0, buf_len); else super->next_buf = NULL; } return 1; } /* must be called while manager is quiesced */ static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index) { struct imsm_super *mpb = super->anchor; struct dl *iter; struct imsm_dev *dev; struct imsm_map *map; unsigned int i, j, num_members; __u32 ord, ord_map0; struct bbm_log *log = super->bbm_log; dprintf("deleting device[%d] from imsm_super\n", index); /* shift all indexes down one */ for (iter = super->disks; iter; iter = iter->next) if (iter->index > (int)index) iter->index--; for (iter = super->missing; iter; iter = iter->next) if (iter->index > (int)index) iter->index--; for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); map = get_imsm_map(dev, MAP_0); num_members = map->num_members; for (j = 0; j < num_members; j++) { /* update ord entries being careful not to propagate * ord-flags to the first map */ ord = get_imsm_ord_tbl_ent(dev, j, MAP_X); ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0); if (ord_to_idx(ord) <= index) continue; map = get_imsm_map(dev, MAP_0); set_imsm_ord_tbl_ent(map, j, ord_map0 - 1); map = get_imsm_map(dev, MAP_1); if (map) set_imsm_ord_tbl_ent(map, j, ord - 1); } } for (i = 0; i < log->entry_count; i++) { struct bbm_log_entry *entry = &log->marked_block_entries[i]; if (entry->disk_ordinal <= index) continue; entry->disk_ordinal--; } mpb->num_disks--; super->updates_pending++; if (*dlp) { struct dl *dl = *dlp; *dlp = (*dlp)->next; __free_imsm_disk(dl, 1); } } static int imsm_get_allowed_degradation(int level, int raid_disks, struct intel_super *super, struct imsm_dev *dev) { switch (level) { case 1: case 10:{ int ret_val = 0; struct imsm_map *map; int i; ret_val = raid_disks/2; /* check map if all disks pairs not failed * in both maps */ map = get_imsm_map(dev, MAP_0); for (i = 0; i < ret_val; i++) { int degradation = 0; if (get_imsm_disk(super, i) == NULL) degradation++; if (get_imsm_disk(super, i + 1) == NULL) degradation++; if (degradation == 2) return 0; } map = get_imsm_map(dev, MAP_1); /* if there is no second map * result can be returned */ if (map == NULL) return ret_val; /* check degradation in second map */ for (i = 0; i < ret_val; i++) { int degradation = 0; if (get_imsm_disk(super, i) == NULL) degradation++; if (get_imsm_disk(super, i + 1) == NULL) degradation++; if (degradation == 2) return 0; } return ret_val; } case 5: return 1; case 6: return 2; default: return 0; } } /******************************************************************************* * Function: validate_container_imsm * Description: This routine validates container after assemble, * eg. if devices in container are under the same controller. * * Parameters: * info : linked list with info about devices used in array * Returns: * 1 : HBA mismatch * 0 : Success ******************************************************************************/ int validate_container_imsm(struct mdinfo *info) { if (check_no_platform()) return 0; struct sys_dev *idev; struct sys_dev *hba = NULL; struct sys_dev *intel_devices = find_intel_devices(); char *dev_path = devt_to_devpath(makedev(info->disk.major, info->disk.minor), 1, NULL); for (idev = intel_devices; idev; idev = idev->next) { if (dev_path && strstr(dev_path, idev->path)) { hba = idev; break; } } if (dev_path) free(dev_path); if (!hba) { pr_err("WARNING - Cannot detect HBA for device %s!\n", devid2kname(makedev(info->disk.major, info->disk.minor))); return 1; } const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id); struct mdinfo *dev; for (dev = info->next; dev; dev = dev->next) { dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor), 1, NULL); struct sys_dev *hba2 = NULL; for (idev = intel_devices; idev; idev = idev->next) { if (dev_path && strstr(dev_path, idev->path)) { hba2 = idev; break; } } if (dev_path) free(dev_path); const struct imsm_orom *orom2 = hba2 == NULL ? NULL : get_orom_by_device_id(hba2->dev_id); if (hba2 && hba->type != hba2->type) { pr_err("WARNING - HBAs of devices do not match %s != %s\n", get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type)); return 1; } if (orom != orom2) { pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n" " This operation is not supported and can lead to data loss.\n"); return 1; } if (!orom) { pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n" " This operation is not supported and can lead to data loss.\n"); return 1; } } return 0; } /******************************************************************************* * Function: imsm_record_badblock * Description: This routine stores new bad block record in BBM log * * Parameters: * a : array containing a bad block * slot : disk number containing a bad block * sector : bad block sector * length : bad block sectors range * Returns: * 1 : Success * 0 : Error ******************************************************************************/ static int imsm_record_badblock(struct active_array *a, int slot, unsigned long long sector, int length) { struct intel_super *super = a->container->sb; int ord; int ret; ord = imsm_disk_slot_to_ord(a, slot); if (ord < 0) return 0; ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector, length); if (ret) super->updates_pending++; return ret; } /******************************************************************************* * Function: imsm_clear_badblock * Description: This routine clears bad block record from BBM log * * Parameters: * a : array containing a bad block * slot : disk number containing a bad block * sector : bad block sector * length : bad block sectors range * Returns: * 1 : Success * 0 : Error ******************************************************************************/ static int imsm_clear_badblock(struct active_array *a, int slot, unsigned long long sector, int length) { struct intel_super *super = a->container->sb; int ord; int ret; ord = imsm_disk_slot_to_ord(a, slot); if (ord < 0) return 0; ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length); if (ret) super->updates_pending++; return ret; } /******************************************************************************* * Function: imsm_get_badblocks * Description: This routine get list of bad blocks for an array * * Parameters: * a : array * slot : disk number * Returns: * bb : structure containing bad blocks * NULL : error ******************************************************************************/ static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot) { int inst = a->info.container_member; struct intel_super *super = a->container->sb; struct imsm_dev *dev = get_imsm_dev(super, inst); struct imsm_map *map = get_imsm_map(dev, MAP_0); int ord; ord = imsm_disk_slot_to_ord(a, slot); if (ord < 0) return NULL; get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map), per_dev_array_size(map), &super->bb); return &super->bb; } /******************************************************************************* * Function: examine_badblocks_imsm * Description: Prints list of bad blocks on a disk to the standard output * * Parameters: * st : metadata handler * fd : open file descriptor for device * devname : device name * Returns: * 0 : Success * 1 : Error ******************************************************************************/ static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname) { struct intel_super *super = st->sb; struct bbm_log *log = super->bbm_log; struct dl *d = NULL; int any = 0; for (d = super->disks; d ; d = d->next) { if (strcmp(d->devname, devname) == 0) break; } if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */ pr_err("%s doesn't appear to be part of a raid array\n", devname); return 1; } if (log != NULL) { unsigned int i; struct bbm_log_entry *entry = &log->marked_block_entries[0]; for (i = 0; i < log->entry_count; i++) { if (entry[i].disk_ordinal == d->index) { unsigned long long sector = __le48_to_cpu( &entry[i].defective_block_start); int cnt = entry[i].marked_count + 1; if (!any) { printf("Bad-blocks on %s:\n", devname); any = 1; } printf("%20llu for %d sectors\n", sector, cnt); } } } if (!any) printf("No bad-blocks list configured on %s\n", devname); return 0; } /******************************************************************************* * Function: init_migr_record_imsm * Description: Function inits imsm migration record * Parameters: * super : imsm internal array info * dev : device under migration * info : general array info to find the smallest device * Returns: * none ******************************************************************************/ void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev, struct mdinfo *info) { struct intel_super *super = st->sb; struct migr_record *migr_rec = super->migr_rec; int new_data_disks; unsigned long long dsize, dev_sectors; long long unsigned min_dev_sectors = -1LLU; struct imsm_map *map_dest = get_imsm_map(dev, MAP_0); struct imsm_map *map_src = get_imsm_map(dev, MAP_1); unsigned long long num_migr_units; unsigned long long array_blocks; struct dl *dl_disk = NULL; memset(migr_rec, 0, sizeof(struct migr_record)); migr_rec->family_num = __cpu_to_le32(super->anchor->family_num); /* only ascending reshape supported now */ migr_rec->ascending_migr = __cpu_to_le32(1); migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE / max(map_dest->blocks_per_strip, map_src->blocks_per_strip); migr_rec->dest_depth_per_unit *= max(map_dest->blocks_per_strip, map_src->blocks_per_strip); new_data_disks = imsm_num_data_members(map_dest); migr_rec->blocks_per_unit = __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks); migr_rec->dest_depth_per_unit = __cpu_to_le32(migr_rec->dest_depth_per_unit); array_blocks = info->component_size * new_data_disks; num_migr_units = array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit); if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit)) num_migr_units++; set_num_migr_units(migr_rec, num_migr_units); migr_rec->post_migr_vol_cap = dev->size_low; migr_rec->post_migr_vol_cap_hi = dev->size_high; /* Find the smallest dev */ for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) { /* ignore spares in container */ if (dl_disk->index < 0) continue; get_dev_size(dl_disk->fd, NULL, &dsize); dev_sectors = dsize / 512; if (dev_sectors < min_dev_sectors) min_dev_sectors = dev_sectors; } set_migr_chkp_area_pba(migr_rec, min_dev_sectors - RAID_DISK_RESERVED_BLOCKS_IMSM_HI); write_imsm_migr_rec(st); return; } /******************************************************************************* * Function: save_backup_imsm * Description: Function saves critical data stripes to Migration Copy Area * and updates the current migration unit status. * Use restore_stripes() to form a destination stripe, * and to write it to the Copy Area. * Parameters: * st : supertype information * dev : imsm device that backup is saved for * info : general array info * buf : input buffer * length : length of data to backup (blocks_per_unit) * Returns: * 0 : success *, -1 : fail ******************************************************************************/ int save_backup_imsm(struct supertype *st, struct imsm_dev *dev, struct mdinfo *info, void *buf, int length) { int rv = -1; struct intel_super *super = st->sb; int i; struct imsm_map *map_dest = get_imsm_map(dev, MAP_0); int new_disks = map_dest->num_members; int dest_layout = 0; int dest_chunk, targets[new_disks]; unsigned long long start, target_offsets[new_disks]; int data_disks = imsm_num_data_members(map_dest); for (i = 0; i < new_disks; i++) { struct dl *dl_disk = get_imsm_dl_disk(super, i); if (dl_disk && is_fd_valid(dl_disk->fd)) targets[i] = dl_disk->fd; else goto abort; } start = info->reshape_progress * 512; for (i = 0; i < new_disks; i++) { target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512; /* move back copy area adderss, it will be moved forward * in restore_stripes() using start input variable */ target_offsets[i] -= start/data_disks; } dest_layout = imsm_level_to_layout(map_dest->raid_level); dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512; if (restore_stripes(targets, /* list of dest devices */ target_offsets, /* migration record offsets */ new_disks, dest_chunk, map_dest->raid_level, dest_layout, -1, /* source backup file descriptor */ 0, /* input buf offset * always 0 buf is already offseted */ start, length, buf) != 0) { pr_err("Error restoring stripes\n"); goto abort; } rv = 0; abort: return rv; } /******************************************************************************* * Function: save_checkpoint_imsm * Description: Function called for current unit status update * in the migration record. It writes it to disk. * Parameters: * super : imsm internal array info * info : general array info * Returns: * 0: success * 1: failure * 2: failure, means no valid migration record * / no general migration in progress / ******************************************************************************/ int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state) { struct intel_super *super = st->sb; unsigned long long blocks_per_unit; unsigned long long curr_migr_unit; if (load_imsm_migr_rec(super) != 0) { dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n"); return 1; } blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit); if (blocks_per_unit == 0) { dprintf("imsm: no migration in progress.\n"); return 2; } curr_migr_unit = info->reshape_progress / blocks_per_unit; /* check if array is alligned to copy area * if it is not alligned, add one to current migration unit value * this can happend on array reshape finish only */ if (info->reshape_progress % blocks_per_unit) curr_migr_unit++; set_current_migr_unit(super->migr_rec, curr_migr_unit); super->migr_rec->rec_status = __cpu_to_le32(state); set_migr_dest_1st_member_lba(super->migr_rec, super->migr_rec->dest_depth_per_unit * curr_migr_unit); if (write_imsm_migr_rec(st) < 0) { dprintf("imsm: Cannot write migration record outside backup area\n"); return 1; } return 0; } /******************************************************************************* * Function: recover_backup_imsm * Description: Function recovers critical data from the Migration Copy Area * while assembling an array. * Parameters: * super : imsm internal array info * info : general array info * Returns: * 0 : success (or there is no data to recover) * 1 : fail ******************************************************************************/ int recover_backup_imsm(struct supertype *st, struct mdinfo *info) { struct intel_super *super = st->sb; struct migr_record *migr_rec = super->migr_rec; struct imsm_map *map_dest; struct intel_dev *id = NULL; unsigned long long read_offset; unsigned long long write_offset; unsigned unit_len; int new_disks, err; char *buf = NULL; int retval = 1; unsigned int sector_size = super->sector_size; unsigned long long curr_migr_unit = current_migr_unit(migr_rec); unsigned long long num_migr_units = get_num_migr_units(migr_rec); char buffer[SYSFS_MAX_BUF_SIZE]; int skipped_disks = 0; struct dl *dl_disk; err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, sizeof(buffer)); if (err < 1) return 1; /* recover data only during assemblation */ if (strncmp(buffer, "inactive", 8) != 0) return 0; /* no data to recover */ if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL) return 0; if (curr_migr_unit >= num_migr_units) return 1; /* find device during reshape */ for (id = super->devlist; id; id = id->next) if (is_gen_migration(id->dev)) break; if (id == NULL) return 1; map_dest = get_imsm_map(id->dev, MAP_0); new_disks = map_dest->num_members; read_offset = migr_chkp_area_pba(migr_rec) * 512; write_offset = (migr_dest_1st_member_lba(migr_rec) + pba_of_lba0(map_dest)) * 512; unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512; if (posix_memalign((void **)&buf, sector_size, unit_len) != 0) goto abort; for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) { if (dl_disk->index < 0) continue; if (!is_fd_valid(dl_disk->fd)) { skipped_disks++; continue; } if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) { pr_err("Cannot seek to block: %s\n", strerror(errno)); skipped_disks++; continue; } if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) { pr_err("Cannot read copy area block: %s\n", strerror(errno)); skipped_disks++; continue; } if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) { pr_err("Cannot seek to block: %s\n", strerror(errno)); skipped_disks++; continue; } if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) { pr_err("Cannot restore block: %s\n", strerror(errno)); skipped_disks++; continue; } } if (skipped_disks > imsm_get_allowed_degradation(info->new_level, new_disks, super, id->dev)) { pr_err("Cannot restore data from backup. Too many failed disks\n"); goto abort; } if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) { /* ignore error == 2, this can mean end of reshape here */ dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n"); } else retval = 0; abort: free(buf); return retval; } /** * test_and_add_drive_controller_policy_imsm() - add disk controller to policies list. * @type: Policy type to search on list. * @pols: List of currently recorded policies. * @disk_fd: File descriptor of the device to check. * @hba: The hba disk is attached, could be NULL if verification is disabled. * @verbose: verbose flag. * * IMSM cares about drive physical placement. If @hba is not set, it adds unknown policy. * If there is no controller policy on pols we are free to add first one. If there is a policy then, * new must be the same - no controller mixing allowed. */ static mdadm_status_t test_and_add_drive_controller_policy_imsm(const char * const type, dev_policy_t **pols, int disk_fd, struct sys_dev *hba, const int verbose) { const char *controller_policy = get_sys_dev_type(SYS_DEV_UNKNOWN); struct dev_policy *pol = pol_find(*pols, (char *)type); char devname[MAX_RAID_SERIAL_LEN]; if (hba) controller_policy = get_sys_dev_type(hba->type); if (!pol) { pol_add(pols, (char *)type, (char *)controller_policy, "imsm"); return MDADM_STATUS_SUCCESS; } if (strcmp(pol->value, controller_policy) == 0) return MDADM_STATUS_SUCCESS; fd2devname(disk_fd, devname); pr_vrb("Intel(R) raid controller \"%s\" found for %s, but \"%s\" was detected earlier\n", controller_policy, devname, pol->value); pr_vrb("Disks under different controllers cannot be used, aborting\n"); return MDADM_STATUS_ERROR; } /** * test_and_add_drive_encryption_policy_imsm() - add disk encryption to policies list. * @type: policy type to search in the list. * @pols: list of currently recorded policies. * @disk_fd: file descriptor of the device to check. * @hba: The hba to which the drive is attached, could be NULL if verification is disabled. * @verbose: verbose flag. * * IMSM cares about drive encryption state. It is not allowed to mix disks with different * encryption state within one md device. * If there is no encryption policy on pols we are free to add first one. * If there is a policy then, new must be the same. */ static mdadm_status_t test_and_add_drive_encryption_policy_imsm(const char * const type, dev_policy_t **pols, int disk_fd, struct sys_dev *hba, const int verbose) { struct dev_policy *expected_policy = pol_find(*pols, (char *)type); struct encryption_information information = {0}; char *encryption_state = "Unknown"; int status = MDADM_STATUS_SUCCESS; bool encryption_checked = true; char devname[PATH_MAX]; if (!hba) goto check_policy; switch (hba->type) { case SYS_DEV_NVME: case SYS_DEV_VMD: status = get_nvme_opal_encryption_information(disk_fd, &information, verbose); break; case SYS_DEV_SATA: case SYS_DEV_SATA_VMD: status = get_ata_encryption_information(disk_fd, &information, verbose); break; default: encryption_checked = false; } if (status) { fd2devname(disk_fd, devname); pr_vrb("Failed to read encryption information of device %s\n", devname); return MDADM_STATUS_ERROR; } if (encryption_checked) { if (information.status == ENC_STATUS_LOCKED) { fd2devname(disk_fd, devname); pr_vrb("Device %s is in Locked state, cannot use. Aborting.\n", devname); return MDADM_STATUS_ERROR; } encryption_state = (char *)get_encryption_status_string(information.status); } check_policy: if (expected_policy) { if (strcmp(expected_policy->value, encryption_state) == 0) return MDADM_STATUS_SUCCESS; fd2devname(disk_fd, devname); pr_vrb("Encryption status \"%s\" detected for disk %s, but \"%s\" status was detected earlier.\n", encryption_state, devname, expected_policy->value); pr_vrb("Disks with different encryption status cannot be used.\n"); return MDADM_STATUS_ERROR; } pol_add(pols, (char *)type, encryption_state, "imsm"); return MDADM_STATUS_SUCCESS; } struct imsm_drive_policy { char *type; mdadm_status_t (*test_and_add_drive_policy)(const char * const type, struct dev_policy **pols, int disk_fd, struct sys_dev *hba, const int verbose); }; struct imsm_drive_policy imsm_policies[] = { {"controller", test_and_add_drive_controller_policy_imsm}, {"encryption", test_and_add_drive_encryption_policy_imsm} }; mdadm_status_t test_and_add_drive_policies_imsm(struct dev_policy **pols, int disk_fd, const int verbose) { struct imsm_drive_policy *imsm_pol; struct sys_dev *hba = NULL; char path[PATH_MAX]; mdadm_status_t ret; unsigned int i; /* If imsm platform verification is disabled, do not search for hba. */ if (check_no_platform() != 1) { if (!diskfd_to_devpath(disk_fd, 1, path)) { pr_vrb("IMSM: Failed to retrieve device path by file descriptor.\n"); return MDADM_STATUS_ERROR; } hba = find_disk_attached_hba(disk_fd, path); if (!hba) { pr_vrb("IMSM: Failed to find hba for %s\n", path); return MDADM_STATUS_ERROR; } } for (i = 0; i < ARRAY_SIZE(imsm_policies); i++) { imsm_pol = &imsm_policies[i]; ret = imsm_pol->test_and_add_drive_policy(imsm_pol->type, pols, disk_fd, hba, verbose); if (ret != MDADM_STATUS_SUCCESS) /* Inherit error code */ return ret; } return MDADM_STATUS_SUCCESS; } /** * get_spare_criteria_imsm() - set spare criteria. * @st: supertype. * @mddev_path: path to md device devnode, it must be container. * @c: spare_criteria struct to fill, not NULL. * * If superblock is not loaded, use mddev_path to load_container. It must be given in this case. * Filles size and sector size accordingly to superblock. */ mdadm_status_t get_spare_criteria_imsm(struct supertype *st, char *mddev_path, struct spare_criteria *c) { mdadm_status_t ret = MDADM_STATUS_ERROR; bool free_superblock = false; unsigned long long size = 0; struct intel_super *super; struct extent *e; struct dl *dl; int i; /* If no superblock and no mddev_path, we cannot load superblock. */ assert(st->sb || mddev_path); if (mddev_path) { int fd = open(mddev_path, O_RDONLY); mdadm_status_t rv; if (!is_fd_valid(fd)) return MDADM_STATUS_ERROR; if (!st->sb) { if (load_container_imsm(st, fd, st->devnm)) { close(fd); return MDADM_STATUS_ERROR; } free_superblock = true; } rv = mddev_test_and_add_drive_policies(st, &c->pols, fd, 0); close(fd); if (rv != MDADM_STATUS_SUCCESS) goto out; } super = st->sb; /* find first active disk in array */ dl = super->disks; while (dl && (is_failed(&dl->disk) || dl->index == -1)) dl = dl->next; if (!dl) goto out; /* find last lba used by subarrays */ e = get_extents(super, dl, 0); if (!e) goto out; for (i = 0; e[i].size; i++) continue; if (i > 0) size = e[i - 1].start + e[i - 1].size; free(e); /* add the amount of space needed for metadata */ size += imsm_min_reserved_sectors(super); c->min_size = size * 512; c->sector_size = super->sector_size; c->criteria_set = true; ret = MDADM_STATUS_SUCCESS; out: if (free_superblock) free_super_imsm(st); if (ret != MDADM_STATUS_SUCCESS) c->criteria_set = false; return ret; } static char *imsm_find_array_devnm_by_subdev(int subdev, char *container) { static char devnm[32]; char subdev_name[20]; struct mdstat_ent *mdstat; sprintf(subdev_name, "%d", subdev); mdstat = mdstat_by_subdev(subdev_name, container); if (!mdstat) return NULL; strcpy(devnm, mdstat->devnm); free_mdstat(mdstat); return devnm; } static int imsm_reshape_is_allowed_on_container(struct supertype *st, struct geo_params *geo, int *old_raid_disks, int direction) { /* currently we only support increasing the number of devices * for a container. This increases the number of device for each * member array. They must all be RAID0 or RAID5. */ int ret_val = 0; struct mdinfo *info, *member; int devices_that_can_grow = 0; dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm); if (geo->size > 0 || geo->level != UnSet || geo->layout != UnSet || geo->chunksize != 0 || geo->raid_disks == UnSet) { dprintf("imsm: Container operation is allowed for raid disks number change only.\n"); return ret_val; } if (direction == ROLLBACK_METADATA_CHANGES) { dprintf("imsm: Metadata changes rollback is not supported for container operation.\n"); return ret_val; } info = container_content_imsm(st, NULL); for (member = info; member; member = member->next) { char *result; dprintf("imsm: checking device_num: %i\n", member->container_member); if (geo->raid_disks <= member->array.raid_disks) { /* we work on container for Online Capacity Expansion * only so raid_disks has to grow */ dprintf("imsm: for container operation raid disks increase is required\n"); break; } if (info->array.level != 0 && info->array.level != 5) { /* we cannot use this container with other raid level */ dprintf("imsm: for container operation wrong raid level (%i) detected\n", info->array.level); break; } else { /* check for platform support * for this raid level configuration */ struct intel_super *super = st->sb; if (!is_raid_level_supported(super->orom, member->array.level, geo->raid_disks)) { dprintf("platform does not support raid%d with %d disk%s\n", info->array.level, geo->raid_disks, geo->raid_disks > 1 ? "s" : ""); break; } /* check if component size is aligned to chunk size */ if (info->component_size % (info->array.chunk_size/512)) { dprintf("Component size is not aligned to chunk size\n"); break; } } if (*old_raid_disks && info->array.raid_disks != *old_raid_disks) break; *old_raid_disks = info->array.raid_disks; /* All raid5 and raid0 volumes in container * have to be ready for Online Capacity Expansion * so they need to be assembled. We have already * checked that no recovery etc is happening. */ result = imsm_find_array_devnm_by_subdev(member->container_member, st->container_devnm); if (result == NULL) { dprintf("imsm: cannot find array\n"); break; } devices_that_can_grow++; } sysfs_free(info); if (!member && devices_that_can_grow) ret_val = 1; if (ret_val) dprintf("Container operation allowed\n"); else dprintf("Error: %i\n", ret_val); return ret_val; } /* Function: get_spares_for_grow * Description: Allocates memory and creates list of spare devices * avaliable in container. Checks if spare drive size is acceptable. * Parameters: Pointer to the supertype structure * Returns: Pointer to the list of spare devices (mdinfo structure) on success, * NULL if fail */ static struct mdinfo *get_spares_for_grow(struct supertype *st) { struct spare_criteria sc = {0}; struct mdinfo *spares; get_spare_criteria_imsm(st, NULL, &sc); spares = container_choose_spares(st, &sc, NULL, NULL, NULL, 0); dev_policy_free(sc.pols); return spares; } /****************************************************************************** * function: imsm_create_metadata_update_for_reshape * Function creates update for whole IMSM container. * ******************************************************************************/ static int imsm_create_metadata_update_for_reshape( struct supertype *st, struct geo_params *geo, int old_raid_disks, struct imsm_update_reshape **updatep) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; int update_memory_size; struct imsm_update_reshape *u; struct mdinfo *spares; int i; int delta_disks; struct mdinfo *dev; dprintf("(enter) raid_disks = %i\n", geo->raid_disks); delta_disks = geo->raid_disks - old_raid_disks; /* size of all update data without anchor */ update_memory_size = sizeof(struct imsm_update_reshape); /* now add space for spare disks that we need to add. */ update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1); u = xcalloc(1, update_memory_size); u->type = update_reshape_container_disks; u->old_raid_disks = old_raid_disks; u->new_raid_disks = geo->raid_disks; /* now get spare disks list */ spares = get_spares_for_grow(st); if (spares == NULL || delta_disks > spares->array.spare_disks) { pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name); i = -1; goto abort; } /* we have got spares * update disk list in imsm_disk list table in anchor */ dprintf("imsm: %i spares are available.\n\n", spares->array.spare_disks); dev = spares->devs; for (i = 0; i < delta_disks; i++) { struct dl *dl; if (dev == NULL) break; u->new_disks[i] = makedev(dev->disk.major, dev->disk.minor); dl = get_disk_super(super, dev->disk.major, dev->disk.minor); dl->index = mpb->num_disks; mpb->num_disks++; dev = dev->next; } abort: /* free spares */ sysfs_free(spares); dprintf("imsm: reshape update preparation :"); if (i == delta_disks) { dprintf_cont(" OK\n"); *updatep = u; return update_memory_size; } free(u); dprintf_cont(" Error\n"); return 0; } /****************************************************************************** * function: imsm_create_metadata_update_for_size_change() * Creates update for IMSM array for array size change. * ******************************************************************************/ static int imsm_create_metadata_update_for_size_change( struct supertype *st, struct geo_params *geo, struct imsm_update_size_change **updatep) { struct intel_super *super = st->sb; int update_memory_size; struct imsm_update_size_change *u; dprintf("(enter) New size = %llu\n", geo->size); /* size of all update data without anchor */ update_memory_size = sizeof(struct imsm_update_size_change); u = xcalloc(1, update_memory_size); u->type = update_size_change; u->subdev = super->current_vol; u->new_size = geo->size; dprintf("imsm: reshape update preparation : OK\n"); *updatep = u; return update_memory_size; } /****************************************************************************** * function: imsm_create_metadata_update_for_migration() * Creates update for IMSM array. * ******************************************************************************/ static int imsm_create_metadata_update_for_migration( struct supertype *st, struct geo_params *geo, struct imsm_update_reshape_migration **updatep) { struct intel_super *super = st->sb; int update_memory_size; int current_chunk_size; struct imsm_update_reshape_migration *u; struct imsm_dev *dev = get_imsm_dev(super, super->current_vol); struct imsm_map *map = get_imsm_map(dev, MAP_0); int previous_level = -1; dprintf("(enter) New Level = %i\n", geo->level); /* size of all update data without anchor */ update_memory_size = sizeof(struct imsm_update_reshape_migration); u = xcalloc(1, update_memory_size); u->type = update_reshape_migration; u->subdev = super->current_vol; u->new_level = geo->level; u->new_layout = geo->layout; u->new_raid_disks = u->old_raid_disks = geo->raid_disks; u->new_disks[0] = -1; u->new_chunksize = -1; current_chunk_size = __le16_to_cpu(map->blocks_per_strip) / 2; if (geo->chunksize != current_chunk_size) { u->new_chunksize = geo->chunksize / 1024; dprintf("imsm: chunk size change from %i to %i\n", current_chunk_size, u->new_chunksize); } previous_level = map->raid_level; if (geo->level == 5 && previous_level == 0) { struct mdinfo *spares = NULL; u->new_raid_disks++; spares = get_spares_for_grow(st); if (spares == NULL || spares->array.spare_disks < 1) { free(u); sysfs_free(spares); update_memory_size = 0; pr_err("cannot get spare device for requested migration\n"); return 0; } sysfs_free(spares); } dprintf("imsm: reshape update preparation : OK\n"); *updatep = u; return update_memory_size; } static void imsm_update_metadata_locally(struct supertype *st, void *buf, int len) { struct metadata_update mu; mu.buf = buf; mu.len = len; mu.space = NULL; mu.space_list = NULL; mu.next = NULL; if (imsm_prepare_update(st, &mu)) imsm_process_update(st, &mu); while (mu.space_list) { void **space = mu.space_list; mu.space_list = *space; free(space); } } /** * imsm_analyze_expand() - check expand properties and calculate new size. * @st: imsm supertype. * @geo: new geometry params. * @array: array info. * @direction: reshape direction. * * Obtain free space after the &array and verify if expand to requested size is * possible. If geo->size is set to %MAX_SIZE, assume that max free size is * requested. * * Return: * On success %IMSM_STATUS_OK is returned, geo->size and geo->raid_disks are * updated. * On error, %IMSM_STATUS_ERROR is returned. */ static imsm_status_t imsm_analyze_expand(struct supertype *st, struct geo_params *geo, struct mdinfo *array, int direction) { struct intel_super *super = st->sb; struct imsm_dev *dev = get_imsm_dev(super, super->current_vol); struct imsm_map *map = get_imsm_map(dev, MAP_0); int data_disks = imsm_num_data_members(map); unsigned long long current_size; unsigned long long free_size; unsigned long long new_size; unsigned long long max_size; const int chunk_kib = geo->chunksize / 1024; imsm_status_t rv; if (direction == ROLLBACK_METADATA_CHANGES) { /** * Accept size for rollback only. */ new_size = geo->size * 2; goto success; } if (data_disks == 0) { pr_err("imsm: Cannot retrieve data disks.\n"); return IMSM_STATUS_ERROR; } current_size = array->custom_array_size / data_disks; rv = imsm_get_free_size(super, dev->vol.map->num_members, 0, chunk_kib, &free_size, true); if (rv != IMSM_STATUS_OK) { pr_err("imsm: Cannot find free space for expand.\n"); return IMSM_STATUS_ERROR; } max_size = round_member_size_to_mb(free_size + current_size); if (geo->size == MAX_SIZE) new_size = max_size; else new_size = round_member_size_to_mb(geo->size * 2); if (new_size == 0) { pr_err("imsm: Rounded requested size is 0.\n"); return IMSM_STATUS_ERROR; } if (new_size > max_size) { pr_err("imsm: Rounded requested size (%llu) is larger than free space available (%llu).\n", new_size, max_size); return IMSM_STATUS_ERROR; } if (new_size == current_size) { pr_err("imsm: Rounded requested size (%llu) is same as current size (%llu).\n", new_size, current_size); return IMSM_STATUS_ERROR; } if (new_size < current_size) { pr_err("imsm: Size reduction is not supported, rounded requested size (%llu) is smaller than current (%llu).\n", new_size, current_size); return IMSM_STATUS_ERROR; } success: dprintf("imsm: New size per member is %llu.\n", new_size); geo->size = data_disks * new_size; geo->raid_disks = dev->vol.map->num_members; return IMSM_STATUS_OK; } /*************************************************************************** * Function: imsm_analyze_change * Description: Function analyze change for single volume * and validate if transition is supported * Parameters: Geometry parameters, supertype structure, * metadata change direction (apply/rollback) * Returns: Operation type code on success, -1 if fail ****************************************************************************/ enum imsm_reshape_type imsm_analyze_change(struct supertype *st, struct geo_params *geo, int direction, struct context *c) { struct mdinfo info; int change = -1; int check_devs = 0; int chunk; /* imsm compatible layout value for array geometry verification */ int imsm_layout = -1; int raid_disks = geo->raid_disks; imsm_status_t rv; getinfo_super_imsm_volume(st, &info, NULL); if (geo->level != info.array.level && geo->level >= IMSM_T_RAID0 && geo->level != UnSet) { switch (info.array.level) { case IMSM_T_RAID0: if (geo->level == IMSM_T_RAID5) { change = CH_MIGRATION; if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) { pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n"); change = -1; goto analyse_change_exit; } imsm_layout = geo->layout; check_devs = 1; raid_disks += 1; /* parity disk added */ } else if (geo->level == IMSM_T_RAID10) { if (geo->level == IMSM_T_RAID10 && geo->raid_disks > 2 && !c->force) { pr_err("Warning! VROC UEFI driver does not support RAID10 in requested layout.\n"); pr_err("Array won't be suitable as boot device.\n"); pr_err("Note: You can omit this check with \"--force\"\n"); if (ask("Do you want to continue") < 1) return CH_ABORT; } change = CH_TAKEOVER; check_devs = 1; raid_disks *= 2; /* mirrors added */ imsm_layout = 0x102; /* imsm supported layout */ } break; case IMSM_T_RAID1: case IMSM_T_RAID10: if (geo->level == 0) { change = CH_TAKEOVER; check_devs = 1; raid_disks /= 2; imsm_layout = 0; /* imsm raid0 layout */ } break; } if (change == -1) { pr_err("Error. Level Migration from %d to %d not supported!\n", info.array.level, geo->level); goto analyse_change_exit; } } else geo->level = info.array.level; if (geo->layout != info.array.layout && (geo->layout != UnSet && geo->layout != -1)) { change = CH_MIGRATION; if (info.array.layout == 0 && info.array.level == IMSM_T_RAID5 && geo->layout == 5) { /* reshape 5 -> 4 */ } else if (info.array.layout == 5 && info.array.level == IMSM_T_RAID5 && geo->layout == 0) { /* reshape 4 -> 5 */ geo->layout = 0; geo->level = 5; } else { pr_err("Error. Layout Migration from %d to %d not supported!\n", info.array.layout, geo->layout); change = -1; goto analyse_change_exit; } } else { geo->layout = info.array.layout; if (imsm_layout == -1) imsm_layout = info.array.layout; } if (geo->chunksize > 0 && geo->chunksize != UnSet && geo->chunksize != info.array.chunk_size) { if (info.array.level == IMSM_T_RAID10) { pr_err("Error. Chunk size change for RAID 10 is not supported.\n"); change = -1; goto analyse_change_exit; } else if (info.component_size % (geo->chunksize/512)) { pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n", geo->chunksize/1024, info.component_size/2); change = -1; goto analyse_change_exit; } change = CH_MIGRATION; } else { geo->chunksize = info.array.chunk_size; } if (geo->size > 0) { if (change != -1) { pr_err("Error. Size change should be the only one at a time.\n"); change = -1; goto analyse_change_exit; } rv = imsm_analyze_expand(st, geo, &info, direction); if (rv != IMSM_STATUS_OK) goto analyse_change_exit; raid_disks = geo->raid_disks; change = CH_ARRAY_SIZE; } chunk = geo->chunksize / 1024; if (!validate_geometry_imsm(st, geo->level, imsm_layout, raid_disks, &chunk, geo->size, INVALID_SECTORS, 0, 0, info.consistency_policy, 1)) change = -1; if (check_devs) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; if (mpb->num_raid_devs > 1) { pr_err("Error. Cannot perform operation on %s- for this operation " "it MUST be single array in container\n", geo->dev_name); change = -1; } } analyse_change_exit: if (direction == ROLLBACK_METADATA_CHANGES && (change == CH_MIGRATION || change == CH_TAKEOVER)) { dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n"); change = -1; } return change; } int imsm_takeover(struct supertype *st, struct geo_params *geo) { struct intel_super *super = st->sb; struct imsm_update_takeover *u; u = xmalloc(sizeof(struct imsm_update_takeover)); u->type = update_takeover; u->subarray = super->current_vol; /* 10->0 transition */ if (geo->level == 0) u->direction = R10_TO_R0; /* 0->10 transition */ if (geo->level == 10) u->direction = R0_TO_R10; /* update metadata locally */ imsm_update_metadata_locally(st, u, sizeof(struct imsm_update_takeover)); /* and possibly remotely */ if (st->update_tail) append_metadata_update(st, u, sizeof(struct imsm_update_takeover)); else free(u); return 0; } /* Flush size update if size calculated by num_data_stripes is higher than * imsm_dev_size to eliminate differences during reshape. * Mdmon will recalculate them correctly. * If subarray index is not set then check whole container. * Returns: * 0 - no error occurred * 1 - error detected */ static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index) { struct intel_super *super = st->sb; int tmp = super->current_vol; int ret_val = 1; int i; for (i = 0; i < super->anchor->num_raid_devs; i++) { if (subarray_index >= 0 && i != subarray_index) continue; super->current_vol = i; struct imsm_dev *dev = get_imsm_dev(super, super->current_vol); struct imsm_map *map = get_imsm_map(dev, MAP_0); unsigned int disc_count = imsm_num_data_members(map); struct geo_params geo; struct imsm_update_size_change *update; unsigned long long calc_size = per_dev_array_size(map) * disc_count; unsigned long long d_size = imsm_dev_size(dev); int u_size; if (calc_size == d_size) continue; /* There is a difference, confirm that imsm_dev_size is * smaller and push update. */ if (d_size > calc_size) { pr_err("imsm: dev size of subarray %d is incorrect\n", i); goto exit; } memset(&geo, 0, sizeof(struct geo_params)); geo.size = d_size; u_size = imsm_create_metadata_update_for_size_change(st, &geo, &update); imsm_update_metadata_locally(st, update, u_size); if (st->update_tail) { append_metadata_update(st, update, u_size); flush_metadata_updates(st); st->update_tail = &st->updates; } else { imsm_sync_metadata(st); free(update); } } ret_val = 0; exit: super->current_vol = tmp; return ret_val; } /** * shape_to_geo() - fill geo_params from shape. * * @shape: array details. * @geo: new geometry params. * Returns: 0 on success, 1 otherwise. */ static void shape_to_geo(struct shape *shape, struct geo_params *geo) { assert(shape); assert(geo); geo->dev_name = shape->dev; geo->size = shape->size; geo->level = shape->level; geo->layout = shape->layout; geo->chunksize = shape->chunk; geo->raid_disks = shape->raiddisks; } static int imsm_reshape_super(struct supertype *st, struct shape *shape, struct context *c) { int ret_val = 1; struct geo_params geo = {0}; dprintf("(enter)\n"); shape_to_geo(shape, &geo); strcpy(geo.devnm, st->devnm); if (shape->delta_disks != UnSet) geo.raid_disks += shape->delta_disks; dprintf("for level : %i\n", geo.level); dprintf("for raid_disks : %i\n", geo.raid_disks); if (strcmp(st->container_devnm, st->devnm) == 0) { /* On container level we can only increase number of devices. */ dprintf("imsm: info: Container operation\n"); int old_raid_disks = 0; if (imsm_reshape_is_allowed_on_container( st, &geo, &old_raid_disks, shape->direction)) { struct imsm_update_reshape *u = NULL; int len; if (imsm_fix_size_mismatch(st, -1)) { dprintf("imsm: Cannot fix size mismatch\n"); goto exit_imsm_reshape_super; } len = imsm_create_metadata_update_for_reshape( st, &geo, old_raid_disks, &u); if (len <= 0) { dprintf("imsm: Cannot prepare update\n"); goto exit_imsm_reshape_super; } ret_val = 0; /* update metadata locally */ imsm_update_metadata_locally(st, u, len); /* and possibly remotely */ if (st->update_tail) append_metadata_update(st, u, len); else free(u); } else { pr_err("(imsm) Operation is not allowed on this container\n"); } } else { /* On volume level we support following operations * - takeover: raid10 -> raid0; raid0 -> raid10 * - chunk size migration * - migration: raid5 -> raid0; raid0 -> raid5 */ struct intel_super *super = st->sb; struct intel_dev *dev = super->devlist; int change; dprintf("imsm: info: Volume operation\n"); /* find requested device */ while (dev) { char *devnm = imsm_find_array_devnm_by_subdev( dev->index, st->container_devnm); if (devnm && strcmp(devnm, geo.devnm) == 0) break; dev = dev->next; } if (dev == NULL) { pr_err("Cannot find %s (%s) subarray\n", geo.dev_name, geo.devnm); goto exit_imsm_reshape_super; } super->current_vol = dev->index; change = imsm_analyze_change(st, &geo, shape->direction, c); switch (change) { case CH_TAKEOVER: ret_val = imsm_takeover(st, &geo); break; case CH_MIGRATION: { struct imsm_update_reshape_migration *u = NULL; int len = imsm_create_metadata_update_for_migration( st, &geo, &u); if (len < 1) { dprintf("imsm: Cannot prepare update\n"); break; } ret_val = 0; /* update metadata locally */ imsm_update_metadata_locally(st, u, len); /* and possibly remotely */ if (st->update_tail) append_metadata_update(st, u, len); else free(u); } break; case CH_ARRAY_SIZE: { struct imsm_update_size_change *u = NULL; int len = imsm_create_metadata_update_for_size_change( st, &geo, &u); if (len < 1) { dprintf("imsm: Cannot prepare update\n"); break; } ret_val = 0; /* update metadata locally */ imsm_update_metadata_locally(st, u, len); /* and possibly remotely */ if (st->update_tail) append_metadata_update(st, u, len); else free(u); } break; case CH_ABORT: default: ret_val = 1; } } exit_imsm_reshape_super: dprintf("imsm: reshape_super Exit code = %i\n", ret_val); return ret_val; } #define COMPLETED_OK 0 #define COMPLETED_NONE 1 #define COMPLETED_DELAYED 2 static int read_completed(int fd, unsigned long long *val) { int ret; char buf[SYSFS_MAX_BUF_SIZE]; ret = sysfs_fd_get_str(fd, buf, sizeof(buf)); if (ret < 0) return ret; ret = COMPLETED_OK; if (str_is_none(buf) == true) { ret = COMPLETED_NONE; } else if (strncmp(buf, "delayed", 7) == 0) { ret = COMPLETED_DELAYED; } else { char *ep; *val = strtoull(buf, &ep, 0); if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' ')) ret = -1; } return ret; } /******************************************************************************* * Function: wait_for_reshape_imsm * Description: Function writes new sync_max value and waits until * reshape process reach new position * Parameters: * sra : general array info * ndata : number of disks in new array's layout * Returns: * 0 : success, * 1 : there is no reshape in progress, * -1 : fail ******************************************************************************/ int wait_for_reshape_imsm(struct mdinfo *sra, int ndata) { int fd = sysfs_get_fd(sra, NULL, "sync_completed"); int retry = 3; unsigned long long completed; /* to_complete : new sync_max position */ unsigned long long to_complete = sra->reshape_progress; unsigned long long position_to_set = to_complete / ndata; if (!is_fd_valid(fd)) { dprintf("cannot open reshape_position\n"); return 1; } do { if (sysfs_fd_get_ll(fd, &completed) < 0) { if (!retry) { dprintf("cannot read reshape_position (no reshape in progres)\n"); close(fd); return 1; } sleep_for(0, MSEC_TO_NSEC(30), true); } else break; } while (retry--); if (completed > position_to_set) { dprintf("wrong next position to set %llu (%llu)\n", to_complete, position_to_set); close(fd); return -1; } dprintf("Position set: %llu\n", position_to_set); if (sysfs_set_num(sra, NULL, "sync_max", position_to_set) != 0) { dprintf("cannot set reshape position to %llu\n", position_to_set); close(fd); return -1; } do { int rc; char action[SYSFS_MAX_BUF_SIZE]; int timeout = 3000; sysfs_wait(fd, &timeout); if (sysfs_get_str(sra, NULL, "sync_action", action, sizeof(action)) > 0 && strncmp(action, "reshape", 7) != 0) { if (strncmp(action, "idle", 4) == 0) break; close(fd); return -1; } rc = read_completed(fd, &completed); if (rc < 0) { dprintf("cannot read reshape_position (in loop)\n"); close(fd); return 1; } else if (rc == COMPLETED_NONE) break; } while (completed < position_to_set); close(fd); return 0; } /******************************************************************************* * Function: check_degradation_change * Description: Check that array hasn't become failed. * Parameters: * info : for sysfs access * sources : source disks descriptors * degraded: previous degradation level * Returns: * degradation level ******************************************************************************/ int check_degradation_change(struct mdinfo *info, int *sources, int degraded) { unsigned long long new_degraded; int rv; rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded); if (rv == -1 || (new_degraded != (unsigned long long)degraded)) { /* check each device to ensure it is still working */ struct mdinfo *sd; new_degraded = 0; for (sd = info->devs ; sd ; sd = sd->next) { if (sd->disk.state & (1<disk.state & (1<disk.raid_disk; if (sysfs_get_str(info, sd, "state", sbuf, sizeof(sbuf)) < 0 || strstr(sbuf, "faulty") || strstr(sbuf, "in_sync") == NULL) { /* this device is dead */ sd->disk.state = (1<= 0) close_fd(&sources[raid_disk]); new_degraded++; } } } } return new_degraded; } /******************************************************************************* * Function: imsm_manage_reshape * Description: Function finds array under reshape and it manages reshape * process. It creates stripes backups (if required) and sets * checkpoints. * Parameters: * afd : Backup handle (nattive) - not used * sra : general array info * reshape : reshape parameters - not used * st : supertype structure * blocks : size of critical section [blocks] * fds : table of source device descriptor * offsets : start of array (offest per devices) * dests : not used * destfd : table of destination device descriptor * destoffsets : table of destination offsets (per device) * Returns: * 1 : success, reshape is done * 0 : fail ******************************************************************************/ static int imsm_manage_reshape( int afd, struct mdinfo *sra, struct reshape *reshape, struct supertype *st, unsigned long backup_blocks, int *fds, unsigned long long *offsets, int dests, int *destfd, unsigned long long *destoffsets) { int ret_val = 0; struct intel_super *super = st->sb; struct intel_dev *dv; unsigned int sector_size = super->sector_size; struct imsm_dev *dev = NULL; struct imsm_map *map_src, *map_dest; int migr_vol_qan = 0; int ndata, odata; /* [bytes] */ int chunk; /* [bytes] */ struct migr_record *migr_rec; char *buf = NULL; unsigned int buf_size; /* [bytes] */ unsigned long long max_position; /* array size [bytes] */ unsigned long long next_step; /* [blocks]/[bytes] */ unsigned long long old_data_stripe_length; unsigned long long start_src; /* [bytes] */ unsigned long long start; /* [bytes] */ unsigned long long start_buf_shift; /* [bytes] */ int degraded = 0; int source_layout = 0; int subarray_index = -1; if (!sra) return ret_val; if (!fds || !offsets) goto abort; /* Find volume during the reshape */ for (dv = super->devlist; dv; dv = dv->next) { if (dv->dev->vol.migr_type == MIGR_GEN_MIGR && dv->dev->vol.migr_state == 1) { dev = dv->dev; migr_vol_qan++; subarray_index = dv->index; } } /* Only one volume can migrate at the same time */ if (migr_vol_qan != 1) { pr_err("%s", migr_vol_qan ? "Number of migrating volumes greater than 1\n" : "There is no volume during migrationg\n"); goto abort; } map_dest = get_imsm_map(dev, MAP_0); map_src = get_imsm_map(dev, MAP_1); if (map_src == NULL) goto abort; ndata = imsm_num_data_members(map_dest); odata = imsm_num_data_members(map_src); chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512; old_data_stripe_length = odata * chunk; migr_rec = super->migr_rec; /* initialize migration record for start condition */ if (sra->reshape_progress == 0) init_migr_record_imsm(st, dev, sra); else { if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) { dprintf("imsm: cannot restart migration when data are present in copy area.\n"); goto abort; } /* Save checkpoint to update migration record for current * reshape position (in md). It can be farther than current * reshape position in metadata. */ if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) { /* ignore error == 2, this can mean end of reshape here */ dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n"); goto abort; } } /* size for data */ buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512; /* extend buffer size for parity disk */ buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512; /* add space for stripe alignment */ buf_size += old_data_stripe_length; if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) { dprintf("imsm: Cannot allocate checkpoint buffer\n"); goto abort; } max_position = sra->component_size * ndata; source_layout = imsm_level_to_layout(map_src->raid_level); while (current_migr_unit(migr_rec) < get_num_migr_units(migr_rec)) { /* current reshape position [blocks] */ unsigned long long current_position = __le32_to_cpu(migr_rec->blocks_per_unit) * current_migr_unit(migr_rec); unsigned long long border; /* Check that array hasn't become failed. */ degraded = check_degradation_change(sra, fds, degraded); if (degraded > 1) { dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded); goto abort; } next_step = __le32_to_cpu(migr_rec->blocks_per_unit); if ((current_position + next_step) > max_position) next_step = max_position - current_position; start = current_position * 512; /* align reading start to old geometry */ start_buf_shift = start % old_data_stripe_length; start_src = start - start_buf_shift; border = (start_src / odata) - (start / ndata); border /= 512; if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) { /* save critical stripes to buf * start - start address of current unit * to backup [bytes] * start_src - start address of current unit * to backup alligned to source array * [bytes] */ unsigned long long next_step_filler; unsigned long long copy_length = next_step * 512; /* allign copy area length to stripe in old geometry */ next_step_filler = ((copy_length + start_buf_shift) % old_data_stripe_length); if (next_step_filler) next_step_filler = (old_data_stripe_length - next_step_filler); dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n", start, start_src, copy_length, start_buf_shift, next_step_filler); if (save_stripes(fds, offsets, map_src->num_members, chunk, map_src->raid_level, source_layout, 0, NULL, start_src, copy_length + next_step_filler + start_buf_shift, buf)) { dprintf("imsm: Cannot save stripes to buffer\n"); goto abort; } /* Convert data to destination format and store it * in backup general migration area */ if (save_backup_imsm(st, dev, sra, buf + start_buf_shift, copy_length)) { dprintf("imsm: Cannot save stripes to target devices\n"); goto abort; } if (save_checkpoint_imsm(st, sra, UNIT_SRC_IN_CP_AREA)) { dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n"); goto abort; } } else { /* set next step to use whole border area */ border /= next_step; if (border > 1) next_step *= border; } /* When data backed up, checkpoint stored, * kick the kernel to reshape unit of data */ next_step = next_step + sra->reshape_progress; /* limit next step to array max position */ if (next_step > max_position) next_step = max_position; sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress); sysfs_set_num(sra, NULL, "suspend_hi", next_step); sra->reshape_progress = next_step; /* wait until reshape finish */ if (wait_for_reshape_imsm(sra, ndata)) { dprintf("wait_for_reshape_imsm returned error!\n"); goto abort; } if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) { /* ignore error == 2, this can mean end of reshape here */ dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n"); goto abort; } if (sigterm) goto abort; } /* clear migr_rec on disks after successful migration */ struct dl *d; memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE); for (d = super->disks; d; d = d->next) { if (d->index < 0 || is_failed(&d->disk)) continue; unsigned long long dsize; get_dev_size(d->fd, NULL, &dsize); if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size, SEEK_SET) >= 0) { if ((unsigned int)write(d->fd, super->migr_rec_buf, MIGR_REC_BUF_SECTORS*sector_size) != MIGR_REC_BUF_SECTORS*sector_size) perror("Write migr_rec failed"); } } /* return '1' if done */ ret_val = 1; /* After the reshape eliminate size mismatch in metadata. * Don't update md/component_size here, volume hasn't * to take whole space. It is allowed by kernel. * md/component_size will be set propoperly after next assembly. */ imsm_fix_size_mismatch(st, subarray_index); abort: free(buf); /* See Grow.c: abort_reshape() for further explanation */ sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL); sysfs_set_num(sra, NULL, "suspend_hi", 0); sysfs_set_num(sra, NULL, "suspend_lo", 0); return ret_val; } /******************************************************************************* * Function: calculate_bitmap_min_chunksize * Description: Calculates the minimal valid bitmap chunk size * Parameters: * max_bits : indicate how many bits can be used for the bitmap * data_area_size : the size of the data area covered by the bitmap * * Returns: * The bitmap chunk size ******************************************************************************/ static unsigned long long calculate_bitmap_min_chunksize(unsigned long long max_bits, unsigned long long data_area_size) { unsigned long long min_chunk = 4096; /* sub-page chunks don't work yet.. */ unsigned long long bits = data_area_size / min_chunk + 1; while (bits > max_bits) { min_chunk *= 2; bits = (bits + 1) / 2; } return min_chunk; } /******************************************************************************* * Function: calculate_bitmap_chunksize * Description: Calculates the bitmap chunk size for the given device * Parameters: * st : supertype information * dev : device for the bitmap * * Returns: * The bitmap chunk size ******************************************************************************/ static unsigned long long calculate_bitmap_chunksize(struct supertype *st, struct imsm_dev *dev) { struct intel_super *super = st->sb; unsigned long long min_chunksize; unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE; size_t dev_size = imsm_dev_size(dev); min_chunksize = calculate_bitmap_min_chunksize( IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size); if (result < min_chunksize) result = min_chunksize; return result; } /******************************************************************************* * Function: init_bitmap_header * Description: Initialize the bitmap header structure * Parameters: * st : supertype information * bms : bitmap header struct to initialize * dev : device for the bitmap * * Returns: * 0 : success * -1 : fail ******************************************************************************/ static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms, struct imsm_dev *dev) { int vol_uuid[4]; if (!bms || !dev) return -1; bms->magic = __cpu_to_le32(BITMAP_MAGIC); bms->version = __cpu_to_le32(BITMAP_MAJOR_HI); bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP); bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE); bms->write_behind = __cpu_to_le32(0); uuid_from_super_imsm(st, vol_uuid); memcpy(bms->uuid, vol_uuid, 16); bms->chunksize = calculate_bitmap_chunksize(st, dev); return 0; } /******************************************************************************* * Function: validate_internal_bitmap_for_drive * Description: Verify if the bitmap header for a given drive. * Parameters: * st : supertype information * offset : The offset from the beginning of the drive where to look for * the bitmap header. * d : the drive info * * Returns: * 0 : success * -1 : fail ******************************************************************************/ static int validate_internal_bitmap_for_drive(struct supertype *st, unsigned long long offset, struct dl *d) { struct intel_super *super = st->sb; int ret = -1; int vol_uuid[4]; bitmap_super_t *bms; int fd; if (!d) return -1; void *read_buf; if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE)) return -1; fd = d->fd; if (!is_fd_valid(fd)) { fd = open(d->devname, O_RDONLY, 0); if (!is_fd_valid(fd)) { dprintf("cannot open the device %s\n", d->devname); goto abort; } } if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0) goto abort; if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) != IMSM_BITMAP_HEADER_SIZE) goto abort; uuid_from_super_imsm(st, vol_uuid); bms = read_buf; if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) || (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) || (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) { dprintf("wrong bitmap header detected\n"); goto abort; } ret = 0; abort: if (!is_fd_valid(d->fd)) close_fd(&fd); if (read_buf) free(read_buf); return ret; } /******************************************************************************* * Function: validate_internal_bitmap_imsm * Description: Verify if the bitmap header is in place and with proper data. * Parameters: * st : supertype information * * Returns: * 0 : success or device w/o RWH_BITMAP * -1 : fail ******************************************************************************/ static int validate_internal_bitmap_imsm(struct supertype *st) { struct intel_super *super = st->sb; struct imsm_dev *dev = get_imsm_dev(super, super->current_vol); unsigned long long offset; struct dl *d; if (dev->rwh_policy != RWH_BITMAP) return 0; offset = get_bitmap_header_sector(super, super->current_vol); for (d = super->disks; d; d = d->next) { if (d->index < 0 || is_failed(&d->disk)) continue; if (validate_internal_bitmap_for_drive(st, offset, d)) { pr_err("imsm: bitmap validation failed\n"); return -1; } } return 0; } /******************************************************************************* * Function: add_internal_bitmap_imsm * Description: Mark the volume to use the bitmap and updates the chunk size value. * Parameters: * st : supertype information * chunkp : bitmap chunk size * delay : not used for imsm * write_behind : not used for imsm * size : not used for imsm * may_change : not used for imsm * amajor : not used for imsm * * Returns: * 0 : success * -1 : fail ******************************************************************************/ static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp, int delay, int write_behind, unsigned long long size, int may_change, int amajor) { struct intel_super *super = st->sb; int vol_idx = super->current_vol; struct imsm_dev *dev; if (!super->devlist || vol_idx == -1 || !chunkp) return -1; dev = get_imsm_dev(super, vol_idx); dev->rwh_policy = RWH_BITMAP; *chunkp = calculate_bitmap_chunksize(st, dev); return 0; } /******************************************************************************* * Function: locate_bitmap_imsm * Description: Seek 'fd' to start of write-intent-bitmap. * Parameters: * st : supertype information * fd : file descriptor for the device * node_num : not used for imsm * * Returns: * 0 : success * -1 : fail ******************************************************************************/ static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num) { struct intel_super *super = st->sb; unsigned long long offset; int vol_idx = super->current_vol; if (!super->devlist || vol_idx == -1) return -1; offset = get_bitmap_header_sector(super, super->current_vol); dprintf("bitmap header offset is %llu\n", offset); lseek64(fd, offset << 9, 0); return 0; } /******************************************************************************* * Function: write_init_bitmap_imsm * Description: Write a bitmap header and prepares the area for the bitmap. * Parameters: * st : supertype information * fd : file descriptor for the device * update : not used for imsm * * Returns: * 0 : success * -1 : fail ******************************************************************************/ static int write_init_bitmap_imsm(struct supertype *st, int fd, enum bitmap_update update) { struct intel_super *super = st->sb; int vol_idx = super->current_vol; int ret = 0; unsigned long long offset; bitmap_super_t bms = { 0 }; size_t written = 0; size_t to_write; ssize_t rv_num; void *buf; if (!super->devlist || !super->sector_size || vol_idx == -1) return -1; struct imsm_dev *dev = get_imsm_dev(super, vol_idx); /* first clear the space for bitmap header */ unsigned long long bitmap_area_start = get_bitmap_header_sector(super, vol_idx); dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start, IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size); if (zero_disk_range(fd, bitmap_area_start, IMSM_BITMAP_HEADER_SIZE / super->sector_size)) { pr_err("imsm: cannot zeroing the space for the bitmap\n"); return -1; } /* The bitmap area should be filled with "1"s to perform initial * synchronization. */ if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE)) return -1; memset(buf, 0xFF, MAX_SECTOR_SIZE); offset = get_bitmap_sector(super, vol_idx); lseek64(fd, offset << 9, 0); while (written < IMSM_BITMAP_AREA_SIZE) { to_write = IMSM_BITMAP_AREA_SIZE - written; if (to_write > MAX_SECTOR_SIZE) to_write = MAX_SECTOR_SIZE; rv_num = write(fd, buf, MAX_SECTOR_SIZE); if (rv_num != MAX_SECTOR_SIZE) { ret = -1; dprintf("cannot initialize bitmap area\n"); goto abort; } written += rv_num; } /* write a bitmap header */ init_bitmap_header(st, &bms, dev); memset(buf, 0, MAX_SECTOR_SIZE); memcpy(buf, &bms, sizeof(bitmap_super_t)); if (locate_bitmap_imsm(st, fd, 0)) { ret = -1; dprintf("cannot locate the bitmap\n"); goto abort; } if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) { ret = -1; dprintf("cannot write the bitmap header\n"); goto abort; } fsync(fd); abort: free(buf); return ret; } /******************************************************************************* * Function: is_vol_to_setup_bitmap * Description: Checks if a bitmap should be activated on the dev. * Parameters: * info : info about the volume to setup the bitmap * dev : the device to check against bitmap creation * * Returns: * 0 : bitmap should be set up on the device * -1 : otherwise ******************************************************************************/ static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev) { if (!dev || !info) return -1; if ((strcmp((char *)dev->volume, info->name) == 0) && (dev->rwh_policy == RWH_BITMAP)) return -1; return 0; } /******************************************************************************* * Function: set_bitmap_sysfs * Description: Set the sysfs atributes of a given volume to activate the bitmap. * Parameters: * info : info about the volume where the bitmap should be setup * chunksize : bitmap chunk size * location : location of the bitmap * * Returns: * 0 : success * -1 : fail ******************************************************************************/ static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize, char *location) { /* The bitmap/metadata is set to external to allow changing of value for * bitmap/location. When external is used, the kernel will treat an offset * related to the device's first lba (in opposition to the "internal" case * when this value is related to the beginning of the superblock). */ if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) { dprintf("failed to set bitmap/metadata\n"); return -1; } /* It can only be changed when no bitmap is active. * Should be bigger than 512 and must be power of 2. * It is expecting the value in bytes. */ if (sysfs_set_num(info, NULL, "bitmap/chunksize", __cpu_to_le32(chunksize))) { dprintf("failed to set bitmap/chunksize\n"); return -1; } /* It is expecting the value in sectors. */ if (sysfs_set_num(info, NULL, "bitmap/space", __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) { dprintf("failed to set bitmap/space\n"); return -1; } /* Determines the delay between the bitmap updates. * It is expecting the value in seconds. */ if (sysfs_set_num(info, NULL, "bitmap/time_base", __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) { dprintf("failed to set bitmap/time_base\n"); return -1; } /* It is expecting the value in sectors with a sign at the beginning. */ if (sysfs_set_str(info, NULL, "bitmap/location", location)) { dprintf("failed to set bitmap/location\n"); return -1; } return 0; } /******************************************************************************* * Function: set_bitmap_imsm * Description: Setup the bitmap for the given volume * Parameters: * st : supertype information * info : info about the volume where the bitmap should be setup * * Returns: * 0 : success * -1 : fail ******************************************************************************/ static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info) { struct intel_super *super = st->sb; int prev_current_vol = super->current_vol; struct imsm_dev *dev; int ret = -1; char location[16] = ""; unsigned long long chunksize; struct intel_dev *dev_it; for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) { super->current_vol = dev_it->index; dev = get_imsm_dev(super, super->current_vol); if (is_vol_to_setup_bitmap(info, dev)) { if (validate_internal_bitmap_imsm(st)) { dprintf("bitmap header validation failed\n"); goto abort; } chunksize = calculate_bitmap_chunksize(st, dev); dprintf("chunk size is %llu\n", chunksize); snprintf(location, sizeof(location), "+%llu", get_bitmap_sector(super, super->current_vol)); dprintf("bitmap offset is %s\n", location); if (set_bitmap_sysfs(info, chunksize, location)) { dprintf("cannot setup the bitmap\n"); goto abort; } } } ret = 0; abort: super->current_vol = prev_current_vol; return ret; } struct superswitch super_imsm = { .examine_super = examine_super_imsm, .brief_examine_super = brief_examine_super_imsm, .brief_examine_subarrays = brief_examine_subarrays_imsm, .export_examine_super = export_examine_super_imsm, .detail_super = detail_super_imsm, .brief_detail_super = brief_detail_super_imsm, .write_init_super = write_init_super_imsm, .validate_geometry = validate_geometry_imsm, .add_to_super = add_to_super_imsm, .remove_from_super = remove_from_super_imsm, .detail_platform = detail_platform_imsm, .export_detail_platform = export_detail_platform_imsm, .kill_subarray = kill_subarray_imsm, .update_subarray = update_subarray_imsm, .load_container = load_container_imsm, .default_geometry = default_geometry_imsm, .test_and_add_drive_policies = test_and_add_drive_policies_imsm, .reshape_super = imsm_reshape_super, .manage_reshape = imsm_manage_reshape, .recover_backup = recover_backup_imsm, .examine_badblocks = examine_badblocks_imsm, .match_home = match_home_imsm, .uuid_from_super= uuid_from_super_imsm, .getinfo_super = getinfo_super_imsm, .getinfo_super_disks = getinfo_super_disks_imsm, .update_super = update_super_imsm, .avail_size = avail_size_imsm, .get_spare_criteria = get_spare_criteria_imsm, .compare_super = compare_super_imsm, .load_super = load_super_imsm, .init_super = init_super_imsm, .store_super = store_super_imsm, .free_super = free_super_imsm, .match_metadata_desc = match_metadata_desc_imsm, .container_content = container_content_imsm, .validate_container = validate_container_imsm, .add_internal_bitmap = add_internal_bitmap_imsm, .locate_bitmap = locate_bitmap_imsm, .write_bitmap = write_init_bitmap_imsm, .set_bitmap = set_bitmap_imsm, .write_init_ppl = write_init_ppl_imsm, .validate_ppl = validate_ppl_imsm, .external = 1, .swapuuid = 0, .name = "imsm", /* for mdmon */ .open_new = imsm_open_new, .set_array_state= imsm_set_array_state, .set_disk = imsm_set_disk, .sync_metadata = imsm_sync_metadata, .activate_spare = imsm_activate_spare, .process_update = imsm_process_update, .prepare_update = imsm_prepare_update, .record_bad_block = imsm_record_badblock, .clear_bad_block = imsm_clear_badblock, .get_bad_blocks = imsm_get_badblocks, };