diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2019-10-13 08:37:32 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2019-10-13 08:38:18 +0000 |
commit | ca540a730c0b880922e86074f994a95b8d413bea (patch) | |
tree | 1364a1b82cfcc68f51aabf9b2545e6a06059d6bb /backends/prometheus | |
parent | Releasing debian version 1.17.1-1. (diff) | |
download | netdata-ca540a730c0b880922e86074f994a95b8d413bea.tar.xz netdata-ca540a730c0b880922e86074f994a95b8d413bea.zip |
Merging upstream version 1.18.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | backends/prometheus/README.md | 140 | ||||
-rw-r--r-- | backends/prometheus/remote_write/README.md | 16 |
2 files changed, 109 insertions, 47 deletions
diff --git a/backends/prometheus/README.md b/backends/prometheus/README.md index 0a4be27e3..e234efe94 100644 --- a/backends/prometheus/README.md +++ b/backends/prometheus/README.md @@ -1,15 +1,19 @@ # Using Netdata with Prometheus -> IMPORTANT: the format Netdata sends metrics to prometheus has changed since Netdata v1.7. The new prometheus backend for Netdata supports a lot more features and is aligned to the development of the rest of the Netdata backends. +> IMPORTANT: the format Netdata sends metrics to prometheus has changed since Netdata v1.7. The new prometheus backend +> for Netdata supports a lot more features and is aligned to the development of the rest of the Netdata backends. -Prometheus is a distributed monitoring system which offers a very simple setup along with a robust data model. Recently Netdata added support for Prometheus. I'm going to quickly show you how to install both Netdata and prometheus on the same server. We can then use grafana pointed at Prometheus to obtain long term metrics Netdata offers. I'm assuming we are starting at a fresh ubuntu shell (whether you'd like to follow along in a VM or a cloud instance is up to you). +Prometheus is a distributed monitoring system which offers a very simple setup along with a robust data model. Recently +Netdata added support for Prometheus. I'm going to quickly show you how to install both Netdata and prometheus on the +same server. We can then use grafana pointed at Prometheus to obtain long term metrics Netdata offers. I'm assuming we +are starting at a fresh ubuntu shell (whether you'd like to follow along in a VM or a cloud instance is up to you). ## Installing Netdata and prometheus ### Installing Netdata -There are number of ways to install Netdata according to [Installation](../../packaging/installer/#installation)\ -The suggested way of installing the latest Netdata and keep it upgrade automatically. Using one line installation: +There are number of ways to install Netdata according to [Installation](../../packaging/installer/). The suggested way +of installing the latest Netdata and keep it upgrade automatically. Using one line installation: ```sh bash <(curl -Ss https://my-netdata.io/kickstart.sh) @@ -17,7 +21,7 @@ bash <(curl -Ss https://my-netdata.io/kickstart.sh) At this point we should have Netdata listening on port 19999. Attempt to take your browser here: -``` +```sh http://your.netdata.ip:19999 ``` @@ -25,7 +29,10 @@ _(replace `your.netdata.ip` with the IP or hostname of the server running Netdat ### Installing Prometheus -In order to install prometheus we are going to introduce our own systemd startup script along with an example of prometheus.yaml configuration. Prometheus needs to be pointed to your server at a specific target url for it to scrape Netdata's api. Prometheus is always a pull model meaning Netdata is the passive client within this architecture. Prometheus always initiates the connection with Netdata. +In order to install prometheus we are going to introduce our own systemd startup script along with an example of +prometheus.yaml configuration. Prometheus needs to be pointed to your server at a specific target url for it to scrape +Netdata's api. Prometheus is always a pull model meaning Netdata is the passive client within this architecture. +Prometheus always initiates the connection with Netdata. #### Download Prometheus @@ -113,7 +120,10 @@ scrape_configs: #### Install nodes.yml -The following is completely optional, it will enable Prometheus to generate alerts from some NetData sources. Tweak the values to your own needs. We will use the following `nodes.yml` file below. Save it at `/opt/prometheus/nodes.yml`, and add a _- "nodes.yml"_ entry under the _rule_files:_ section in the example prometheus.yml file above. +The following is completely optional, it will enable Prometheus to generate alerts from some NetData sources. Tweak the +values to your own needs. We will use the following `nodes.yml` file below. Save it at `/opt/prometheus/nodes.yml`, and +add a _- "nodes.yml"_ entry under the _rule_files:_ section in the example prometheus.yml file above. + ```yaml groups: - name: nodes @@ -156,7 +166,7 @@ groups: Save this service file as `/etc/systemd/system/prometheus.service`: -``` +```sh [Unit] Description=Prometheus Server AssertPathExists=/opt/prometheus @@ -183,13 +193,15 @@ sudo systemctl enable prometheus Prometheus should now start and listen on port 9090. Attempt to head there with your browser. -If everything is working correctly when you fetch `http://your.prometheus.ip:9090` you will see a 'Status' tab. Click this and click on 'targets' We should see the Netdata host as a scraped target. +If everything is working correctly when you fetch `http://your.prometheus.ip:9090` you will see a 'Status' tab. Click +this and click on 'targets' We should see the Netdata host as a scraped target. -- - - +--- ## Netdata support for prometheus -> IMPORTANT: the format Netdata sends metrics to prometheus has changed since Netdata v1.6. The new format allows easier queries for metrics and supports both `as collected` and normalized metrics. +> IMPORTANT: the format Netdata sends metrics to prometheus has changed since Netdata v1.6. The new format allows easier +> queries for metrics and supports both `as collected` and normalized metrics. Before explaining the changes, we have to understand the key differences between Netdata and prometheus. @@ -203,7 +215,8 @@ Each chart in Netdata has several properties (common to all its metrics): - `chart_name` - a more human friendly name for `chart_id`, also unique. -- `context` - this is the template of the chart. All disk I/O charts have the same context, all mysql requests charts have the same context, etc. This is used for alarm templates to match all the charts they should be attached to. +- `context` - this is the template of the chart. All disk I/O charts have the same context, all mysql requests charts + have the same context, etc. This is used for alarm templates to match all the charts they should be attached to. - `family` groups a set of charts together. It is used as the submenu of the dashboard. @@ -211,32 +224,52 @@ Each chart in Netdata has several properties (common to all its metrics): #### dimensions -Then each Netdata chart contains metrics called `dimensions`. All the dimensions of a chart have the same units of measurement, and are contextually in the same category (ie. the metrics for disk bandwidth are `read` and `write` and they are both in the same chart). +Then each Netdata chart contains metrics called `dimensions`. All the dimensions of a chart have the same units of +measurement, and are contextually in the same category (ie. the metrics for disk bandwidth are `read` and `write` and +they are both in the same chart). ### Netdata data source Netdata can send metrics to prometheus from 3 data sources: -- `as collected` or `raw` - this data source sends the metrics to prometheus as they are collected. No conversion is done by Netdata. The latest value for each metric is just given to prometheus. This is the most preferred method by prometheus, but it is also the harder to work with. To work with this data source, you will need to understand how to get meaningful values out of them. +- `as collected` or `raw` - this data source sends the metrics to prometheus as they are collected. No conversion is + done by Netdata. The latest value for each metric is just given to prometheus. This is the most preferred method by + prometheus, but it is also the harder to work with. To work with this data source, you will need to understand how + to get meaningful values out of them. - The format of the metrics is: `CONTEXT{chart="CHART",family="FAMILY",dimension="DIMENSION"}`. + The format of the metrics is: `CONTEXT{chart="CHART",family="FAMILY",dimension="DIMENSION"}`. - If the metric is a counter (`incremental` in Netdata lingo), `_total` is appended the context. + If the metric is a counter (`incremental` in Netdata lingo), `_total` is appended the context. - Unlike prometheus, Netdata allows each dimension of a chart to have a different algorithm and conversion constants (`multiplier` and `divisor`). In this case, that the dimensions of a charts are heterogeneous, Netdata will use this format: `CONTEXT_DIMENSION{chart="CHART",family="FAMILY"}` + Unlike prometheus, Netdata allows each dimension of a chart to have a different algorithm and conversion constants + (`multiplier` and `divisor`). In this case, that the dimensions of a charts are heterogeneous, Netdata will use this + format: `CONTEXT_DIMENSION{chart="CHART",family="FAMILY"}` -- `average` - this data source uses the Netdata database to send the metrics to prometheus as they are presented on the Netdata dashboard. So, all the metrics are sent as gauges, at the units they are presented in the Netdata dashboard charts. This is the easiest to work with. +- `average` - this data source uses the Netdata database to send the metrics to prometheus as they are presented on + the Netdata dashboard. So, all the metrics are sent as gauges, at the units they are presented in the Netdata + dashboard charts. This is the easiest to work with. - The format of the metrics is: `CONTEXT_UNITS_average{chart="CHART",family="FAMILY",dimension="DIMENSION"}`. + The format of the metrics is: `CONTEXT_UNITS_average{chart="CHART",family="FAMILY",dimension="DIMENSION"}`. - When this source is used, Netdata keeps track of the last access time for each prometheus server fetching the metrics. This last access time is used at the subsequent queries of the same prometheus server to identify the time-frame the `average` will be calculated. So, no matter how frequently prometheus scrapes Netdata, it will get all the database data. To identify each prometheus server, Netdata uses by default the IP of the client fetching the metrics. If there are multiple prometheus servers fetching data from the same Netdata, using the same IP, each prometheus server can append `server=NAME` to the URL. Netdata will use this `NAME` to uniquely identify the prometheus server. + When this source is used, Netdata keeps track of the last access time for each prometheus server fetching the + metrics. This last access time is used at the subsequent queries of the same prometheus server to identify the + time-frame the `average` will be calculated. + + So, no matter how frequently prometheus scrapes Netdata, it will get all the database data. + To identify each prometheus server, Netdata uses by default the IP of the client fetching the metrics. + + If there are multiple prometheus servers fetching data from the same Netdata, using the same IP, each prometheus + server can append `server=NAME` to the URL. Netdata will use this `NAME` to uniquely identify the prometheus server. - `sum` or `volume`, is like `average` but instead of averaging the values, it sums them. - The format of the metrics is: `CONTEXT_UNITS_sum{chart="CHART",family="FAMILY",dimension="DIMENSION"}`. - All the other operations are the same with `average`. + The format of the metrics is: `CONTEXT_UNITS_sum{chart="CHART",family="FAMILY",dimension="DIMENSION"}`. All the + other operations are the same with `average`. + + To change the data source to `sum` or `as-collected` you need to provide the `source` parameter in the request URL. + e.g.: `http://your.netdata.ip:19999/api/v1/allmetrics?format=prometheus&help=yes&source=as-collected` -Keep in mind that early versions of Netdata were sending the metrics as: `CHART_DIMENSION{}`. + Keep in mind that early versions of Netdata were sending the metrics as: `CHART_DIMENSION{}`. ### Querying Metrics @@ -248,7 +281,9 @@ _(replace `your.netdata.ip` with the ip or hostname of your Netdata server)_ Netdata will respond with all the metrics it sends to prometheus. -If you search that page for `"system.cpu"` you will find all the metrics Netdata is exporting to prometheus for this chart. `system.cpu` is the chart name on the Netdata dashboard (on the Netdata dashboard all charts have a text heading such as : `Total CPU utilization (system.cpu)`. What we are interested here in the chart name: `system.cpu`). +If you search that page for `"system.cpu"` you will find all the metrics Netdata is exporting to prometheus for this +chart. `system.cpu` is the chart name on the Netdata dashboard (on the Netdata dashboard all charts have a text heading +such as : `Total CPU utilization (system.cpu)`. What we are interested here in the chart name: `system.cpu`). Searching for `"system.cpu"` reveals: @@ -278,7 +313,9 @@ netdata_system_cpu_percentage_average{chart="system.cpu",family="cpu",dimension= _(Netdata response for `system.cpu` with source=`average`)_ -In `average` or `sum` data sources, all values are normalized and are reported to prometheus as gauges. Now, use the 'expression' text form in prometheus. Begin to type the metrics we are looking for: `netdata_system_cpu`. You should see that the text form begins to auto-fill as prometheus knows about this metric. +In `average` or `sum` data sources, all values are normalized and are reported to prometheus as gauges. Now, use the +'expression' text form in prometheus. Begin to type the metrics we are looking for: `netdata_system_cpu`. You should see +that the text form begins to auto-fill as prometheus knows about this metric. If the data source was `as collected`, the response would be: @@ -312,7 +349,9 @@ For more information check prometheus documentation. ### Streaming data from upstream hosts -The `format=prometheus` parameter only exports the host's Netdata metrics. If you are using the master/slave functionality of Netdata this ignores any upstream hosts - so you should consider using the below in your **prometheus.yml**: +The `format=prometheus` parameter only exports the host's Netdata metrics. If you are using the master/slave +functionality of Netdata this ignores any upstream hosts - so you should consider using the below in your +**prometheus.yml**: ```yaml metrics_path: '/api/v1/allmetrics' @@ -321,31 +360,38 @@ The `format=prometheus` parameter only exports the host's Netdata metrics. If y honor_labels: true ``` -This will report all upstream host data, and `honor_labels` will make Prometheus take note of the instance names provided. +This will report all upstream host data, and `honor_labels` will make Prometheus take note of the instance names +provided. ### Timestamps -To pass the metrics through prometheus pushgateway, Netdata supports the option `×tamps=no` to send the metrics without timestamps. +To pass the metrics through prometheus pushgateway, Netdata supports the option `×tamps=no` to send the metrics +without timestamps. ## Netdata host variables -Netdata collects various system configuration metrics, like the max number of TCP sockets supported, the max number of files allowed system-wide, various IPC sizes, etc. These metrics are not exposed to prometheus by default. +Netdata collects various system configuration metrics, like the max number of TCP sockets supported, the max number of +files allowed system-wide, various IPC sizes, etc. These metrics are not exposed to prometheus by default. To expose them, append `variables=yes` to the Netdata URL. ### TYPE and HELP -To save bandwidth, and because prometheus does not use them anyway, `# TYPE` and `# HELP` lines are suppressed. If wanted they can be re-enabled via `types=yes` and `help=yes`, e.g. `/api/v1/allmetrics?format=prometheus&types=yes&help=yes` +To save bandwidth, and because prometheus does not use them anyway, `# TYPE` and `# HELP` lines are suppressed. If +wanted they can be re-enabled via `types=yes` and `help=yes`, e.g. +`/api/v1/allmetrics?format=prometheus&types=yes&help=yes` ### Names and IDs -Netdata supports names and IDs for charts and dimensions. Usually IDs are unique identifiers as read by the system and names are human friendly labels (also unique). +Netdata supports names and IDs for charts and dimensions. Usually IDs are unique identifiers as read by the system and +names are human friendly labels (also unique). -Most charts and metrics have the same ID and name, but in several cases they are different: disks with device-mapper, interrupts, QoS classes, statsd synthetic charts, etc. +Most charts and metrics have the same ID and name, but in several cases they are different: disks with device-mapper, +interrupts, QoS classes, statsd synthetic charts, etc. The default is controlled in `netdata.conf`: -``` +```conf [backend] send names instead of ids = yes | no ``` @@ -359,18 +405,21 @@ You can overwrite it from prometheus, by appending to the URL: Netdata can filter the metrics it sends to prometheus with this setting: -``` +```conf [backend] send charts matching = * ``` -This settings accepts a space separated list of patterns to match the **charts** to be sent to prometheus. Each pattern can use `*` as wildcard, any number of times (e.g `*a*b*c*` is valid). Patterns starting with `!` give a negative match (e.g `!*.bad users.* groups.*` will send all the users and groups except `bad` user and `bad` group). The order is important: the first match (positive or negative) left to right, is used. +This settings accepts a space separated list of patterns to match the **charts** to be sent to prometheus. Each pattern +can use `*` as wildcard, any number of times (e.g `*a*b*c*` is valid). Patterns starting with `!` give a negative match +(e.g `!*.bad users.* groups.*` will send all the users and groups except `bad` user and `bad` group). The order is +important: the first match (positive or negative) left to right, is used. ### Changing the prefix of Netdata metrics Netdata sends all metrics prefixed with `netdata_`. You can change this in `netdata.conf`, like this: -``` +```conf [backend] prefix = netdata ``` @@ -379,16 +428,23 @@ It can also be changed from the URL, by appending `&prefix=netdata`. ### Metric Units -The default source `average` adds the unit of measurement to the name of each metric (e.g. `_KiB_persec`). -To hide the units and get the same metric names as with the other sources, append to the URL `&hideunits=yes`. +The default source `average` adds the unit of measurement to the name of each metric (e.g. `_KiB_persec`). To hide the +units and get the same metric names as with the other sources, append to the URL `&hideunits=yes`. -The units were standardized in v1.12, with the effect of changing the metric names. -To get the metric names as they were before v1.12, append to the URL `&oldunits=yes` +The units were standardized in v1.12, with the effect of changing the metric names. To get the metric names as they were +before v1.12, append to the URL `&oldunits=yes` ### Accuracy of `average` and `sum` data sources -When the data source is set to `average` or `sum`, Netdata remembers the last access of each client accessing prometheus metrics and uses this last access time to respond with the `average` or `sum` of all the entries in the database since that. This means that prometheus servers are not losing data when they access Netdata with data source = `average` or `sum`. +When the data source is set to `average` or `sum`, Netdata remembers the last access of each client accessing prometheus +metrics and uses this last access time to respond with the `average` or `sum` of all the entries in the database since +that. This means that prometheus servers are not losing data when they access Netdata with data source = `average` or +`sum`. -To uniquely identify each prometheus server, Netdata uses the IP of the client accessing the metrics. If however the IP is not good enough for identifying a single prometheus server (e.g. when prometheus servers are accessing Netdata through a web proxy, or when multiple prometheus servers are NATed to a single IP), each prometheus may append `&server=NAME` to the URL. This `NAME` is used by Netdata to uniquely identify each prometheus server and keep track of its last access time. +To uniquely identify each prometheus server, Netdata uses the IP of the client accessing the metrics. If however the IP +is not good enough for identifying a single prometheus server (e.g. when prometheus servers are accessing Netdata +through a web proxy, or when multiple prometheus servers are NATed to a single IP), each prometheus may append +`&server=NAME` to the URL. This `NAME` is used by Netdata to uniquely identify each prometheus server and keep track of +its last access time. [![analytics](https://www.google-analytics.com/collect?v=1&aip=1&t=pageview&_s=1&ds=github&dr=https%3A%2F%2Fgithub.com%2Fnetdata%2Fnetdata&dl=https%3A%2F%2Fmy-netdata.io%2Fgithub%2Fbackends%2Fprometheus%2FREADME&_u=MAC~&cid=5792dfd7-8dc4-476b-af31-da2fdb9f93d2&tid=UA-64295674-3)](<>) diff --git a/backends/prometheus/remote_write/README.md b/backends/prometheus/remote_write/README.md index 8af6f4d1d..009ded608 100644 --- a/backends/prometheus/remote_write/README.md +++ b/backends/prometheus/remote_write/README.md @@ -2,26 +2,32 @@ ## Prerequisites -To use the prometheus remote write API with [storage providers](https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage) [protobuf](https://developers.google.com/protocol-buffers/) and [snappy](https://github.com/google/snappy) libraries should be installed first. Next, Netdata should be re-installed from the source. The installer will detect that the required libraries and utilities are now available. +To use the prometheus remote write API with [storage +providers](https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage) +[protobuf](https://developers.google.com/protocol-buffers/) and [snappy](https://github.com/google/snappy) libraries +should be installed first. Next, Netdata should be re-installed from the source. The installer will detect that the +required libraries and utilities are now available. ## Configuration An additional option in the backend configuration section is available for the remote write backend: -``` +```conf [backend] remote write URL path = /receive ``` -The default value is `/receive`. `remote write URL path` is used to set an endpoint path for the remote write protocol. For example, if your endpoint is `http://example.domain:example_port/storage/read` you should set +The default value is `/receive`. `remote write URL path` is used to set an endpoint path for the remote write protocol. +For example, if your endpoint is `http://example.domain:example_port/storage/read` you should set -``` +```conf [backend] destination = example.domain:example_port remote write URL path = /storage/read ``` -`buffered` and `lost` dimensions in the Netdata Backend Data Size operation monitoring chart estimate uncompressed buffer size on failures. +`buffered` and `lost` dimensions in the Netdata Backend Data Size operation monitoring chart estimate uncompressed +buffer size on failures. ## Notes |