summaryrefslogtreecommitdiffstats
path: root/ml/ADCharts.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2023-02-06 16:11:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2023-02-06 16:11:30 +0000
commitaa2fe8ccbfcb117efa207d10229eeeac5d0f97c7 (patch)
tree941cbdd387b41c1a81587c20a6df9f0e5e0ff7ab /ml/ADCharts.cc
parentAdding upstream version 1.37.1. (diff)
downloadnetdata-aa2fe8ccbfcb117efa207d10229eeeac5d0f97c7.tar.xz
netdata-aa2fe8ccbfcb117efa207d10229eeeac5d0f97c7.zip
Adding upstream version 1.38.0.upstream/1.38.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--ml/ADCharts.cc543
1 files changed, 414 insertions, 129 deletions
diff --git a/ml/ADCharts.cc b/ml/ADCharts.cc
index 00c593c0c..cbb13f5d1 100644
--- a/ml/ADCharts.cc
+++ b/ml/ADCharts.cc
@@ -3,55 +3,185 @@
#include "ADCharts.h"
#include "Config.h"
-void ml::updateDimensionsChart(RRDHOST *RH,
- collected_number NumTrainedDimensions,
- collected_number NumNormalDimensions,
- collected_number NumAnomalousDimensions) {
- static thread_local RRDSET *RS = nullptr;
- static thread_local RRDDIM *NumTotalDimensionsRD = nullptr;
- static thread_local RRDDIM *NumTrainedDimensionsRD = nullptr;
- static thread_local RRDDIM *NumNormalDimensionsRD = nullptr;
- static thread_local RRDDIM *NumAnomalousDimensionsRD = nullptr;
-
- if (!RS) {
- std::stringstream IdSS, NameSS;
+void ml::updateDimensionsChart(RRDHOST *RH, const MachineLearningStats &MLS) {
+ /*
+ * Machine learning status
+ */
+ {
+ static thread_local RRDSET *MachineLearningStatusRS = nullptr;
+
+ static thread_local RRDDIM *Enabled = nullptr;
+ static thread_local RRDDIM *DisabledUE = nullptr;
+ static thread_local RRDDIM *DisabledSP = nullptr;
+
+ if (!MachineLearningStatusRS) {
+ std::stringstream IdSS, NameSS;
+
+ IdSS << "machine_learning_status_on_" << localhost->machine_guid;
+ NameSS << "machine_learning_status_on_" << rrdhost_hostname(localhost);
+
+ MachineLearningStatusRS = rrdset_create(
+ RH,
+ "netdata", // type
+ IdSS.str().c_str(), // id
+ NameSS.str().c_str(), // name
+ NETDATA_ML_CHART_FAMILY, // family
+ "netdata.machine_learning_status", // ctx
+ "Machine learning status", // title
+ "dimensions", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_TRAINING, // module
+ NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS, // priority
+ RH->rrd_update_every, // update_every
+ RRDSET_TYPE_LINE // chart_type
+ );
+ rrdset_flag_set(MachineLearningStatusRS , RRDSET_FLAG_ANOMALY_DETECTION);
+
+ Enabled = rrddim_add(MachineLearningStatusRS, "enabled", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ DisabledUE = rrddim_add(MachineLearningStatusRS, "disabled-ue", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ DisabledSP = rrddim_add(MachineLearningStatusRS, "disabled-sp", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ }
+
+ rrddim_set_by_pointer(MachineLearningStatusRS, Enabled, MLS.NumMachineLearningStatusEnabled);
+ rrddim_set_by_pointer(MachineLearningStatusRS, DisabledUE, MLS.NumMachineLearningStatusDisabledUE);
+ rrddim_set_by_pointer(MachineLearningStatusRS, DisabledSP, MLS.NumMachineLearningStatusDisabledSP);
+
+ rrdset_done(MachineLearningStatusRS);
+ }
- IdSS << "dimensions_on_" << localhost->machine_guid;
- NameSS << "dimensions_on_" << localhost->hostname;
+ /*
+ * Metric type
+ */
+ {
+ static thread_local RRDSET *MetricTypesRS = nullptr;
+
+ static thread_local RRDDIM *Constant = nullptr;
+ static thread_local RRDDIM *Variable = nullptr;
+
+ if (!MetricTypesRS) {
+ std::stringstream IdSS, NameSS;
+
+ IdSS << "metric_types_on_" << localhost->machine_guid;
+ NameSS << "metric_types_on_" << rrdhost_hostname(localhost);
+
+ MetricTypesRS = rrdset_create(
+ RH,
+ "netdata", // type
+ IdSS.str().c_str(), // id
+ NameSS.str().c_str(), // name
+ NETDATA_ML_CHART_FAMILY, // family
+ "netdata.metric_types", // ctx
+ "Dimensions by metric type", // title
+ "dimensions", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_TRAINING, // module
+ NETDATA_ML_CHART_PRIO_METRIC_TYPES, // priority
+ RH->rrd_update_every, // update_every
+ RRDSET_TYPE_LINE // chart_type
+ );
+ rrdset_flag_set(MetricTypesRS, RRDSET_FLAG_ANOMALY_DETECTION);
+
+ Constant = rrddim_add(MetricTypesRS, "constant", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ Variable = rrddim_add(MetricTypesRS, "variable", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ }
+
+ rrddim_set_by_pointer(MetricTypesRS, Constant, MLS.NumMetricTypeConstant);
+ rrddim_set_by_pointer(MetricTypesRS, Variable, MLS.NumMetricTypeVariable);
+
+ rrdset_done(MetricTypesRS);
+ }
- RS = rrdset_create(
- RH,
- "anomaly_detection", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- "dimensions", // family
- "anomaly_detection.dimensions", // ctx
- "Anomaly detection dimensions", // title
- "dimensions", // units
- "netdata", // plugin
- "ml", // module
- 39183, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_LINE // chart_type
- );
- rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
-
- NumTotalDimensionsRD = rrddim_add(RS, "total", NULL,
- 1, 1, RRD_ALGORITHM_ABSOLUTE);
- NumTrainedDimensionsRD = rrddim_add(RS, "trained", NULL,
- 1, 1, RRD_ALGORITHM_ABSOLUTE);
- NumNormalDimensionsRD = rrddim_add(RS, "normal", NULL,
- 1, 1, RRD_ALGORITHM_ABSOLUTE);
- NumAnomalousDimensionsRD = rrddim_add(RS, "anomalous", NULL,
- 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ /*
+ * Training status
+ */
+ {
+ static thread_local RRDSET *TrainingStatusRS = nullptr;
+
+ static thread_local RRDDIM *Untrained = nullptr;
+ static thread_local RRDDIM *PendingWithoutModel = nullptr;
+ static thread_local RRDDIM *Trained = nullptr;
+ static thread_local RRDDIM *PendingWithModel = nullptr;
+
+ if (!TrainingStatusRS) {
+ std::stringstream IdSS, NameSS;
+
+ IdSS << "training_status_on_" << localhost->machine_guid;
+ NameSS << "training_status_on_" << rrdhost_hostname(localhost);
+
+ TrainingStatusRS = rrdset_create(
+ RH,
+ "netdata", // type
+ IdSS.str().c_str(), // id
+ NameSS.str().c_str(), // name
+ NETDATA_ML_CHART_FAMILY, // family
+ "netdata.training_status", // ctx
+ "Training status of dimensions", // title
+ "dimensions", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_TRAINING, // module
+ NETDATA_ML_CHART_PRIO_TRAINING_STATUS, // priority
+ RH->rrd_update_every, // update_every
+ RRDSET_TYPE_LINE // chart_type
+ );
+
+ rrdset_flag_set(TrainingStatusRS, RRDSET_FLAG_ANOMALY_DETECTION);
+
+ Untrained = rrddim_add(TrainingStatusRS, "untrained", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ PendingWithoutModel = rrddim_add(TrainingStatusRS, "pending-without-model", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ Trained = rrddim_add(TrainingStatusRS, "trained", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ PendingWithModel = rrddim_add(TrainingStatusRS, "pending-with-model", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ }
+
+ rrddim_set_by_pointer(TrainingStatusRS, Untrained, MLS.NumTrainingStatusUntrained);
+ rrddim_set_by_pointer(TrainingStatusRS, PendingWithoutModel, MLS.NumTrainingStatusPendingWithoutModel);
+ rrddim_set_by_pointer(TrainingStatusRS, Trained, MLS.NumTrainingStatusTrained);
+ rrddim_set_by_pointer(TrainingStatusRS, PendingWithModel, MLS.NumTrainingStatusPendingWithModel);
+
+ rrdset_done(TrainingStatusRS);
}
- rrddim_set_by_pointer(RS, NumTotalDimensionsRD, NumNormalDimensions + NumAnomalousDimensions);
- rrddim_set_by_pointer(RS, NumTrainedDimensionsRD, NumTrainedDimensions);
- rrddim_set_by_pointer(RS, NumNormalDimensionsRD, NumNormalDimensions);
- rrddim_set_by_pointer(RS, NumAnomalousDimensionsRD, NumAnomalousDimensions);
+ /*
+ * Prediction status
+ */
+ {
+ static thread_local RRDSET *PredictionRS = nullptr;
+
+ static thread_local RRDDIM *Anomalous = nullptr;
+ static thread_local RRDDIM *Normal = nullptr;
+
+ if (!PredictionRS) {
+ std::stringstream IdSS, NameSS;
+
+ IdSS << "dimensions_on_" << localhost->machine_guid;
+ NameSS << "dimensions_on_" << rrdhost_hostname(localhost);
+
+ PredictionRS = rrdset_create(
+ RH,
+ "anomaly_detection", // type
+ IdSS.str().c_str(), // id
+ NameSS.str().c_str(), // name
+ "dimensions", // family
+ "anomaly_detection.dimensions", // ctx
+ "Anomaly detection dimensions", // title
+ "dimensions", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_TRAINING, // module
+ ML_CHART_PRIO_DIMENSIONS, // priority
+ RH->rrd_update_every, // update_every
+ RRDSET_TYPE_LINE // chart_type
+ );
+ rrdset_flag_set(PredictionRS, RRDSET_FLAG_ANOMALY_DETECTION);
+
+ Anomalous = rrddim_add(PredictionRS, "anomalous", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ Normal = rrddim_add(PredictionRS, "normal", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ }
+
+ rrddim_set_by_pointer(PredictionRS, Anomalous, MLS.NumAnomalousDimensions);
+ rrddim_set_by_pointer(PredictionRS, Normal, MLS.NumNormalDimensions);
+
+ rrdset_done(PredictionRS);
+ }
- rrdset_done(RS);
}
void ml::updateHostAndDetectionRateCharts(RRDHOST *RH, collected_number AnomalyRate) {
@@ -62,20 +192,20 @@ void ml::updateHostAndDetectionRateCharts(RRDHOST *RH, collected_number AnomalyR
std::stringstream IdSS, NameSS;
IdSS << "anomaly_rate_on_" << localhost->machine_guid;
- NameSS << "anomaly_rate_on_" << localhost->hostname;
+ NameSS << "anomaly_rate_on_" << rrdhost_hostname(localhost);
HostRateRS = rrdset_create(
- RH,
- "anomaly_detection", // type
+ RH,
+ "anomaly_detection", // type
IdSS.str().c_str(), // id
NameSS.str().c_str(), // name
"anomaly_rate", // family
"anomaly_detection.anomaly_rate", // ctx
"Percentage of anomalous dimensions", // title
"percentage", // units
- "netdata", // plugin
- "ml", // module
- 39184, // priority
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_DETECTION, // module
+ ML_CHART_PRIO_ANOMALY_RATE, // priority
RH->rrd_update_every, // update_every
RRDSET_TYPE_LINE // chart_type
);
@@ -96,20 +226,20 @@ void ml::updateHostAndDetectionRateCharts(RRDHOST *RH, collected_number AnomalyR
std::stringstream IdSS, NameSS;
IdSS << "anomaly_detection_on_" << localhost->machine_guid;
- NameSS << "anomaly_detection_on_" << localhost->hostname;
+ NameSS << "anomaly_detection_on_" << rrdhost_hostname(localhost);
AnomalyDetectionRS = rrdset_create(
- RH,
- "anomaly_detection", // type
+ RH,
+ "anomaly_detection", // type
IdSS.str().c_str(), // id
NameSS.str().c_str(), // name
"anomaly_detection", // family
"anomaly_detection.detector_events", // ctx
"Anomaly detection events", // title
"percentage", // units
- "netdata", // plugin
- "ml", // module
- 39185, // priority
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_DETECTION, // module
+ ML_CHART_PRIO_DETECTOR_EVENTS, // priority
RH->rrd_update_every, // update_every
RRDSET_TYPE_LINE // chart_type
);
@@ -141,93 +271,248 @@ void ml::updateHostAndDetectionRateCharts(RRDHOST *RH, collected_number AnomalyR
NULL /* group options */,
0, /* timeout */
0, /* tier */
- QUERY_SOURCE_ML
+ QUERY_SOURCE_ML,
+ STORAGE_PRIORITY_BEST_EFFORT
);
- if(R) {
- assert(R->d == 1 && R->n == 1 && R->rows == 1);
- static thread_local bool PrevAboveThreshold = false;
- bool AboveThreshold = R->v[0] >= Cfg.HostAnomalyRateThreshold;
- bool NewAnomalyEvent = AboveThreshold && !PrevAboveThreshold;
- PrevAboveThreshold = AboveThreshold;
+ if(R) {
+ if(R->d == 1 && R->n == 1 && R->rows == 1) {
+ static thread_local bool PrevAboveThreshold = false;
+ bool AboveThreshold = R->v[0] >= Cfg.HostAnomalyRateThreshold;
+ bool NewAnomalyEvent = AboveThreshold && !PrevAboveThreshold;
+ PrevAboveThreshold = AboveThreshold;
- rrddim_set_by_pointer(AnomalyDetectionRS, AboveThresholdRD, AboveThreshold);
- rrddim_set_by_pointer(AnomalyDetectionRS, NewAnomalyEventRD, NewAnomalyEvent);
- rrdset_done(AnomalyDetectionRS);
+ rrddim_set_by_pointer(AnomalyDetectionRS, AboveThresholdRD, AboveThreshold);
+ rrddim_set_by_pointer(AnomalyDetectionRS, NewAnomalyEventRD, NewAnomalyEvent);
+ rrdset_done(AnomalyDetectionRS);
+ }
rrdr_free(OWA, R);
}
+
onewayalloc_destroy(OWA);
}
-void ml::updateDetectionChart(RRDHOST *RH) {
- static thread_local RRDSET *RS = nullptr;
- static thread_local RRDDIM *UserRD, *SystemRD = nullptr;
-
- if (!RS) {
- std::stringstream IdSS, NameSS;
-
- IdSS << "prediction_stats_" << RH->machine_guid;
- NameSS << "prediction_stats_for_" << RH->hostname;
-
- RS = rrdset_create_localhost(
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- "ml", // family
- "netdata.prediction_stats", // ctx
- "Prediction thread CPU usage", // title
- "milliseconds/s", // units
- "netdata", // plugin
- "ml", // module
- 136000, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_STACKED // chart_type
- );
-
- UserRD = rrddim_add(RS, "user", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
- SystemRD = rrddim_add(RS, "system", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
+void ml::updateResourceUsageCharts(RRDHOST *RH, const struct rusage &PredictionRU, const struct rusage &TrainingRU) {
+ /*
+ * prediction rusage
+ */
+ {
+ static thread_local RRDSET *RS = nullptr;
+
+ static thread_local RRDDIM *User = nullptr;
+ static thread_local RRDDIM *System = nullptr;
+
+ if (!RS) {
+ std::stringstream IdSS, NameSS;
+
+ IdSS << "prediction_usage_for_" << RH->machine_guid;
+ NameSS << "prediction_usage_for_" << rrdhost_hostname(RH);
+
+ RS = rrdset_create_localhost(
+ "netdata", // type
+ IdSS.str().c_str(), // id
+ NameSS.str().c_str(), // name
+ NETDATA_ML_CHART_FAMILY, // family
+ "netdata.prediction_usage", // ctx
+ "Prediction resource usage", // title
+ "milliseconds/s", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_PREDICTION, // module
+ NETDATA_ML_CHART_PRIO_PREDICTION_USAGE, // priority
+ RH->rrd_update_every, // update_every
+ RRDSET_TYPE_STACKED // chart_type
+ );
+ rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
+
+ User = rrddim_add(RS, "user", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
+ System = rrddim_add(RS, "system", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
+ }
+
+ rrddim_set_by_pointer(RS, User, PredictionRU.ru_utime.tv_sec * 1000000ULL + PredictionRU.ru_utime.tv_usec);
+ rrddim_set_by_pointer(RS, System, PredictionRU.ru_stime.tv_sec * 1000000ULL + PredictionRU.ru_stime.tv_usec);
+
+ rrdset_done(RS);
}
- struct rusage TRU;
- getrusage(RUSAGE_THREAD, &TRU);
-
- rrddim_set_by_pointer(RS, UserRD, TRU.ru_utime.tv_sec * 1000000ULL + TRU.ru_utime.tv_usec);
- rrddim_set_by_pointer(RS, SystemRD, TRU.ru_stime.tv_sec * 1000000ULL + TRU.ru_stime.tv_usec);
- rrdset_done(RS);
+ /*
+ * training rusage
+ */
+ {
+ static thread_local RRDSET *RS = nullptr;
+
+ static thread_local RRDDIM *User = nullptr;
+ static thread_local RRDDIM *System = nullptr;
+
+ if (!RS) {
+ std::stringstream IdSS, NameSS;
+
+ IdSS << "training_usage_for_" << RH->machine_guid;
+ NameSS << "training_usage_for_" << rrdhost_hostname(RH);
+
+ RS = rrdset_create_localhost(
+ "netdata", // type
+ IdSS.str().c_str(), // id
+ NameSS.str().c_str(), // name
+ NETDATA_ML_CHART_FAMILY, // family
+ "netdata.training_usage", // ctx
+ "Training resource usage", // title
+ "milliseconds/s", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_TRAINING, // module
+ NETDATA_ML_CHART_PRIO_TRAINING_USAGE, // priority
+ RH->rrd_update_every, // update_every
+ RRDSET_TYPE_STACKED // chart_type
+ );
+ rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
+
+ User = rrddim_add(RS, "user", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
+ System = rrddim_add(RS, "system", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
+ }
+
+ rrddim_set_by_pointer(RS, User, TrainingRU.ru_utime.tv_sec * 1000000ULL + TrainingRU.ru_utime.tv_usec);
+ rrddim_set_by_pointer(RS, System, TrainingRU.ru_stime.tv_sec * 1000000ULL + TrainingRU.ru_stime.tv_usec);
+
+ rrdset_done(RS);
+ }
}
-void ml::updateTrainingChart(RRDHOST *RH, struct rusage *TRU) {
- static thread_local RRDSET *RS = nullptr;
- static thread_local RRDDIM *UserRD = nullptr;
- static thread_local RRDDIM *SystemRD = nullptr;
-
- if (!RS) {
- std::stringstream IdSS, NameSS;
-
- IdSS << "training_stats_" << RH->machine_guid;
- NameSS << "training_stats_for_" << RH->hostname;
-
- RS = rrdset_create_localhost(
- "netdata", // type
- IdSS.str().c_str(), // id
- NameSS.str().c_str(), // name
- "ml", // family
- "netdata.training_stats", // ctx
- "Training thread CPU usage", // title
- "milliseconds/s", // units
- "netdata", // plugin
- "ml", // module
- 136001, // priority
- RH->rrd_update_every, // update_every
- RRDSET_TYPE_STACKED // chart_type
- );
+void ml::updateTrainingStatisticsChart(RRDHOST *RH, const TrainingStats &TS) {
+ /*
+ * queue stats
+ */
+ {
+ static thread_local RRDSET *RS = nullptr;
+
+ static thread_local RRDDIM *QueueSize = nullptr;
+ static thread_local RRDDIM *PoppedItems = nullptr;
+
+ if (!RS) {
+ std::stringstream IdSS, NameSS;
+
+ IdSS << "queue_stats_on_" << localhost->machine_guid;
+ NameSS << "queue_stats_on_" << rrdhost_hostname(localhost);
+
+ RS = rrdset_create(
+ RH,
+ "netdata", // type
+ IdSS.str().c_str(), // id
+ NameSS.str().c_str(), // name
+ NETDATA_ML_CHART_FAMILY, // family
+ "netdata.queue_stats", // ctx
+ "Training queue stats", // title
+ "items", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_TRAINING, // module
+ NETDATA_ML_CHART_PRIO_QUEUE_STATS, // priority
+ RH->rrd_update_every, // update_every
+ RRDSET_TYPE_LINE// chart_type
+ );
+ rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
+
+ QueueSize = rrddim_add(RS, "queue_size", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ PoppedItems = rrddim_add(RS, "popped_items", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ }
+
+ rrddim_set_by_pointer(RS, QueueSize, TS.QueueSize);
+ rrddim_set_by_pointer(RS, PoppedItems, TS.NumPoppedItems);
+
+ rrdset_done(RS);
+ }
- UserRD = rrddim_add(RS, "user", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
- SystemRD = rrddim_add(RS, "system", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
+ /*
+ * training stats
+ */
+ {
+ static thread_local RRDSET *RS = nullptr;
+
+ static thread_local RRDDIM *Allotted = nullptr;
+ static thread_local RRDDIM *Consumed = nullptr;
+ static thread_local RRDDIM *Remaining = nullptr;
+
+ if (!RS) {
+ std::stringstream IdSS, NameSS;
+
+ IdSS << "training_time_stats_on_" << localhost->machine_guid;
+ NameSS << "training_time_stats_on_" << rrdhost_hostname(localhost);
+
+ RS = rrdset_create(
+ RH,
+ "netdata", // type
+ IdSS.str().c_str(), // id
+ NameSS.str().c_str(), // name
+ NETDATA_ML_CHART_FAMILY, // family
+ "netdata.training_time_stats", // ctx
+ "Training time stats", // title
+ "milliseconds", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_TRAINING, // module
+ NETDATA_ML_CHART_PRIO_TRAINING_TIME_STATS, // priority
+ RH->rrd_update_every, // update_every
+ RRDSET_TYPE_LINE// chart_type
+ );
+ rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
+
+ Allotted = rrddim_add(RS, "allotted", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
+ Consumed = rrddim_add(RS, "consumed", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
+ Remaining = rrddim_add(RS, "remaining", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
+ }
+
+ rrddim_set_by_pointer(RS, Allotted, TS.AllottedUT);
+ rrddim_set_by_pointer(RS, Consumed, TS.ConsumedUT);
+ rrddim_set_by_pointer(RS, Remaining, TS.RemainingUT);
+
+ rrdset_done(RS);
}
- rrddim_set_by_pointer(RS, UserRD, TRU->ru_utime.tv_sec * 1000000ULL + TRU->ru_utime.tv_usec);
- rrddim_set_by_pointer(RS, SystemRD, TRU->ru_stime.tv_sec * 1000000ULL + TRU->ru_stime.tv_usec);
- rrdset_done(RS);
+ /*
+ * training result stats
+ */
+ {
+ static thread_local RRDSET *RS = nullptr;
+
+ static thread_local RRDDIM *Ok = nullptr;
+ static thread_local RRDDIM *InvalidQueryTimeRange = nullptr;
+ static thread_local RRDDIM *NotEnoughCollectedValues = nullptr;
+ static thread_local RRDDIM *NullAcquiredDimension = nullptr;
+ static thread_local RRDDIM *ChartUnderReplication = nullptr;
+
+ if (!RS) {
+ std::stringstream IdSS, NameSS;
+
+ IdSS << "training_results_on_" << localhost->machine_guid;
+ NameSS << "training_results_on_" << rrdhost_hostname(localhost);
+
+ RS = rrdset_create(
+ RH,
+ "netdata", // type
+ IdSS.str().c_str(), // id
+ NameSS.str().c_str(), // name
+ NETDATA_ML_CHART_FAMILY, // family
+ "netdata.training_results", // ctx
+ "Training results", // title
+ "events", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_TRAINING, // module
+ NETDATA_ML_CHART_PRIO_TRAINING_RESULTS, // priority
+ RH->rrd_update_every, // update_every
+ RRDSET_TYPE_LINE// chart_type
+ );
+ rrdset_flag_set(RS, RRDSET_FLAG_ANOMALY_DETECTION);
+
+ Ok = rrddim_add(RS, "ok", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ InvalidQueryTimeRange = rrddim_add(RS, "invalid-queries", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ NotEnoughCollectedValues = rrddim_add(RS, "not-enough-values", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ NullAcquiredDimension = rrddim_add(RS, "null-acquired-dimensions", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ ChartUnderReplication = rrddim_add(RS, "chart-under-replication", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
+ }
+
+ rrddim_set_by_pointer(RS, Ok, TS.TrainingResultOk);
+ rrddim_set_by_pointer(RS, InvalidQueryTimeRange, TS.TrainingResultInvalidQueryTimeRange);
+ rrddim_set_by_pointer(RS, NotEnoughCollectedValues, TS.TrainingResultNotEnoughCollectedValues);
+ rrddim_set_by_pointer(RS, NullAcquiredDimension, TS.TrainingResultNullAcquiredDimension);
+ rrddim_set_by_pointer(RS, ChartUnderReplication, TS.TrainingResultChartUnderReplication);
+
+ rrdset_done(RS);
+ }
}