diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-02-06 16:11:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-02-06 16:11:30 +0000 |
commit | aa2fe8ccbfcb117efa207d10229eeeac5d0f97c7 (patch) | |
tree | 941cbdd387b41c1a81587c20a6df9f0e5e0ff7ab /ml/Chart.h | |
parent | Adding upstream version 1.37.1. (diff) | |
download | netdata-aa2fe8ccbfcb117efa207d10229eeeac5d0f97c7.tar.xz netdata-aa2fe8ccbfcb117efa207d10229eeeac5d0f97c7.zip |
Adding upstream version 1.38.0.upstream/1.38.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | ml/Chart.h | 128 |
1 files changed, 128 insertions, 0 deletions
diff --git a/ml/Chart.h b/ml/Chart.h new file mode 100644 index 000000000..dbd6a910f --- /dev/null +++ b/ml/Chart.h @@ -0,0 +1,128 @@ +// SPDX-License-Identifier: GPL-3.0-or-later + +#ifndef ML_CHART_H +#define ML_CHART_H + +#include "Config.h" +#include "Dimension.h" + +#include "ml-private.h" +#include "json/single_include/nlohmann/json.hpp" + +namespace ml +{ + +class Chart { +public: + Chart(RRDSET *RS) : + RS(RS), + MLS() + { } + + RRDSET *getRS() const { + return RS; + } + + bool isAvailableForML() { + return rrdset_is_available_for_exporting_and_alarms(RS); + } + + void addDimension(Dimension *D) { + std::lock_guard<Mutex> L(M); + Dimensions[D->getRD()] = D; + } + + void removeDimension(Dimension *D) { + std::lock_guard<Mutex> L(M); + Dimensions.erase(D->getRD()); + } + + void getModelsAsJson(nlohmann::json &Json) { + std::lock_guard<Mutex> L(M); + + for (auto &DP : Dimensions) { + Dimension *D = DP.second; + nlohmann::json JsonArray = nlohmann::json::array(); + for (const KMeans &KM : D->getModels()) { + nlohmann::json J; + KM.toJson(J); + JsonArray.push_back(J); + } + + Json[getMLDimensionID(D->getRD())] = JsonArray; + } + } + + void updateBegin() { + M.lock(); + MLS = {}; + } + + void updateDimension(Dimension *D, bool IsAnomalous) { + switch (D->getMLS()) { + case MachineLearningStatus::DisabledDueToUniqueUpdateEvery: + MLS.NumMachineLearningStatusDisabledUE++; + return; + case MachineLearningStatus::DisabledDueToExcludedChart: + MLS.NumMachineLearningStatusDisabledSP++; + return; + case MachineLearningStatus::Enabled: { + MLS.NumMachineLearningStatusEnabled++; + + switch (D->getMT()) { + case MetricType::Constant: + MLS.NumMetricTypeConstant++; + MLS.NumTrainingStatusTrained++; + MLS.NumNormalDimensions++; + return; + case MetricType::Variable: + MLS.NumMetricTypeVariable++; + break; + } + + switch (D->getTS()) { + case TrainingStatus::Untrained: + MLS.NumTrainingStatusUntrained++; + return; + case TrainingStatus::PendingWithoutModel: + MLS.NumTrainingStatusPendingWithoutModel++; + return; + case TrainingStatus::Trained: + MLS.NumTrainingStatusTrained++; + + MLS.NumAnomalousDimensions += IsAnomalous; + MLS.NumNormalDimensions += !IsAnomalous; + return; + case TrainingStatus::PendingWithModel: + MLS.NumTrainingStatusPendingWithModel++; + + MLS.NumAnomalousDimensions += IsAnomalous; + MLS.NumNormalDimensions += !IsAnomalous; + return; + } + + return; + } + } + } + + void updateEnd() { + M.unlock(); + } + + MachineLearningStats getMLS() { + std::lock_guard<Mutex> L(M); + return MLS; + } + +private: + RRDSET *RS; + MachineLearningStats MLS; + + Mutex M; + std::unordered_map<RRDDIM *, Dimension *> Dimensions; +}; + +} // namespace ml + +#endif /* ML_CHART_H */ |