diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-05-08 16:27:04 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-05-08 16:27:04 +0000 |
commit | a836a244a3d2bdd4da1ee2641e3e957850668cea (patch) | |
tree | cb87c75b3677fab7144f868435243f864048a1e6 /ml/Config.cc | |
parent | Adding upstream version 1.38.1. (diff) | |
download | netdata-a836a244a3d2bdd4da1ee2641e3e957850668cea.tar.xz netdata-a836a244a3d2bdd4da1ee2641e3e957850668cea.zip |
Adding upstream version 1.39.0.upstream/1.39.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | ml/Config.cc | 123 |
1 files changed, 67 insertions, 56 deletions
diff --git a/ml/Config.cc b/ml/Config.cc index ba3a61445..d451c602c 100644 --- a/ml/Config.cc +++ b/ml/Config.cc @@ -1,15 +1,12 @@ // SPDX-License-Identifier: GPL-3.0-or-later -#include "Config.h" #include "ml-private.h" -using namespace ml; - /* * Global configuration instance to be shared between training and * prediction threads. */ -Config ml::Cfg; +ml_config_t Cfg; template <typename T> static T clamp(const T& Value, const T& Min, const T& Max) { @@ -19,96 +16,110 @@ static T clamp(const T& Value, const T& Min, const T& Max) { /* * Initialize global configuration variable. */ -void Config::readMLConfig(void) { - const char *ConfigSectionML = CONFIG_SECTION_ML; +void ml_config_load(ml_config_t *cfg) { + const char *config_section_ml = CONFIG_SECTION_ML; - bool EnableAnomalyDetection = config_get_boolean(ConfigSectionML, "enabled", true); + bool enable_anomaly_detection = config_get_boolean(config_section_ml, "enabled", true); /* * Read values */ - unsigned MaxTrainSamples = config_get_number(ConfigSectionML, "maximum num samples to train", 4 * 3600); - unsigned MinTrainSamples = config_get_number(ConfigSectionML, "minimum num samples to train", 1 * 900); - unsigned TrainEvery = config_get_number(ConfigSectionML, "train every", 1 * 3600); - unsigned NumModelsToUse = config_get_number(ConfigSectionML, "number of models per dimension", 1); + unsigned max_train_samples = config_get_number(config_section_ml, "maximum num samples to train", 4 * 3600); + unsigned min_train_samples = config_get_number(config_section_ml, "minimum num samples to train", 1 * 900); + unsigned train_every = config_get_number(config_section_ml, "train every", 1 * 3600); + unsigned num_models_to_use = config_get_number(config_section_ml, "number of models per dimension", 1); + + unsigned diff_n = config_get_number(config_section_ml, "num samples to diff", 1); + unsigned smooth_n = config_get_number(config_section_ml, "num samples to smooth", 3); + unsigned lag_n = config_get_number(config_section_ml, "num samples to lag", 5); + + double random_sampling_ratio = config_get_float(config_section_ml, "random sampling ratio", 1.0 / 5.0 /* default lag_n */); + unsigned max_kmeans_iters = config_get_number(config_section_ml, "maximum number of k-means iterations", 1000); - unsigned DiffN = config_get_number(ConfigSectionML, "num samples to diff", 1); - unsigned SmoothN = config_get_number(ConfigSectionML, "num samples to smooth", 3); - unsigned LagN = config_get_number(ConfigSectionML, "num samples to lag", 5); + double dimension_anomaly_rate_threshold = config_get_float(config_section_ml, "dimension anomaly score threshold", 0.99); - double RandomSamplingRatio = config_get_float(ConfigSectionML, "random sampling ratio", 1.0 / LagN); - unsigned MaxKMeansIters = config_get_number(ConfigSectionML, "maximum number of k-means iterations", 1000); + double host_anomaly_rate_threshold = config_get_float(config_section_ml, "host anomaly rate threshold", 1.0); + std::string anomaly_detection_grouping_method = config_get(config_section_ml, "anomaly detection grouping method", "average"); + time_t anomaly_detection_query_duration = config_get_number(config_section_ml, "anomaly detection grouping duration", 5 * 60); - double DimensionAnomalyScoreThreshold = config_get_float(ConfigSectionML, "dimension anomaly score threshold", 0.99); + size_t num_training_threads = config_get_number(config_section_ml, "num training threads", 4); + size_t flush_models_batch_size = config_get_number(config_section_ml, "flush models batch size", 128); - double HostAnomalyRateThreshold = config_get_float(ConfigSectionML, "host anomaly rate threshold", 1.0); - std::string AnomalyDetectionGroupingMethod = config_get(ConfigSectionML, "anomaly detection grouping method", "average"); - time_t AnomalyDetectionQueryDuration = config_get_number(ConfigSectionML, "anomaly detection grouping duration", 5 * 60); + bool enable_statistics_charts = config_get_boolean(config_section_ml, "enable statistics charts", true); /* * Clamp */ - MaxTrainSamples = clamp<unsigned>(MaxTrainSamples, 1 * 3600, 24 * 3600); - MinTrainSamples = clamp<unsigned>(MinTrainSamples, 1 * 900, 6 * 3600); - TrainEvery = clamp<unsigned>(TrainEvery, 1 * 3600, 6 * 3600); - NumModelsToUse = clamp<unsigned>(NumModelsToUse, 1, 7 * 24); + max_train_samples = clamp<unsigned>(max_train_samples, 1 * 3600, 24 * 3600); + min_train_samples = clamp<unsigned>(min_train_samples, 1 * 900, 6 * 3600); + train_every = clamp<unsigned>(train_every, 1 * 3600, 6 * 3600); + num_models_to_use = clamp<unsigned>(num_models_to_use, 1, 7 * 24); - DiffN = clamp(DiffN, 0u, 1u); - SmoothN = clamp(SmoothN, 0u, 5u); - LagN = clamp(LagN, 1u, 5u); + diff_n = clamp(diff_n, 0u, 1u); + smooth_n = clamp(smooth_n, 0u, 5u); + lag_n = clamp(lag_n, 1u, 5u); - RandomSamplingRatio = clamp(RandomSamplingRatio, 0.2, 1.0); - MaxKMeansIters = clamp(MaxKMeansIters, 500u, 1000u); + random_sampling_ratio = clamp(random_sampling_ratio, 0.2, 1.0); + max_kmeans_iters = clamp(max_kmeans_iters, 500u, 1000u); - DimensionAnomalyScoreThreshold = clamp(DimensionAnomalyScoreThreshold, 0.01, 5.00); + dimension_anomaly_rate_threshold = clamp(dimension_anomaly_rate_threshold, 0.01, 5.00); - HostAnomalyRateThreshold = clamp(HostAnomalyRateThreshold, 0.1, 10.0); - AnomalyDetectionQueryDuration = clamp<time_t>(AnomalyDetectionQueryDuration, 60, 15 * 60); + host_anomaly_rate_threshold = clamp(host_anomaly_rate_threshold, 0.1, 10.0); + anomaly_detection_query_duration = clamp<time_t>(anomaly_detection_query_duration, 60, 15 * 60); + + num_training_threads = clamp<size_t>(num_training_threads, 1, 128); + flush_models_batch_size = clamp<size_t>(flush_models_batch_size, 8, 512); /* * Validate */ - if (MinTrainSamples >= MaxTrainSamples) { - error("invalid min/max train samples found (%u >= %u)", MinTrainSamples, MaxTrainSamples); + if (min_train_samples >= max_train_samples) { + error("invalid min/max train samples found (%u >= %u)", min_train_samples, max_train_samples); - MinTrainSamples = 1 * 3600; - MaxTrainSamples = 4 * 3600; + min_train_samples = 1 * 3600; + max_train_samples = 4 * 3600; } /* * Assign to config instance */ - Cfg.EnableAnomalyDetection = EnableAnomalyDetection; + cfg->enable_anomaly_detection = enable_anomaly_detection; - Cfg.MaxTrainSamples = MaxTrainSamples; - Cfg.MinTrainSamples = MinTrainSamples; - Cfg.TrainEvery = TrainEvery; - Cfg.NumModelsToUse = NumModelsToUse; + cfg->max_train_samples = max_train_samples; + cfg->min_train_samples = min_train_samples; + cfg->train_every = train_every; - Cfg.DiffN = DiffN; - Cfg.SmoothN = SmoothN; - Cfg.LagN = LagN; + cfg->num_models_to_use = num_models_to_use; - Cfg.RandomSamplingRatio = RandomSamplingRatio; - Cfg.MaxKMeansIters = MaxKMeansIters; + cfg->diff_n = diff_n; + cfg->smooth_n = smooth_n; + cfg->lag_n = lag_n; - Cfg.DimensionAnomalyScoreThreshold = DimensionAnomalyScoreThreshold; + cfg->random_sampling_ratio = random_sampling_ratio; + cfg->max_kmeans_iters = max_kmeans_iters; - Cfg.HostAnomalyRateThreshold = HostAnomalyRateThreshold; - Cfg.AnomalyDetectionGroupingMethod = web_client_api_request_v1_data_group(AnomalyDetectionGroupingMethod.c_str(), RRDR_GROUPING_AVERAGE); - Cfg.AnomalyDetectionQueryDuration = AnomalyDetectionQueryDuration; + cfg->host_anomaly_rate_threshold = host_anomaly_rate_threshold; + cfg->anomaly_detection_grouping_method = + time_grouping_parse(anomaly_detection_grouping_method.c_str(), RRDR_GROUPING_AVERAGE); + cfg->anomaly_detection_query_duration = anomaly_detection_query_duration; + cfg->dimension_anomaly_score_threshold = dimension_anomaly_rate_threshold; - Cfg.HostsToSkip = config_get(ConfigSectionML, "hosts to skip from training", "!*"); - Cfg.SP_HostsToSkip = simple_pattern_create(Cfg.HostsToSkip.c_str(), NULL, SIMPLE_PATTERN_EXACT); + cfg->hosts_to_skip = config_get(config_section_ml, "hosts to skip from training", "!*"); + cfg->sp_host_to_skip = simple_pattern_create(cfg->hosts_to_skip.c_str(), NULL, SIMPLE_PATTERN_EXACT, true); // Always exclude anomaly_detection charts from training. - Cfg.ChartsToSkip = "anomaly_detection.* "; - Cfg.ChartsToSkip += config_get(ConfigSectionML, "charts to skip from training", "netdata.*"); - Cfg.SP_ChartsToSkip = simple_pattern_create(Cfg.ChartsToSkip.c_str(), NULL, SIMPLE_PATTERN_EXACT); + cfg->charts_to_skip = "anomaly_detection.* "; + cfg->charts_to_skip += config_get(config_section_ml, "charts to skip from training", "netdata.*"); + cfg->sp_charts_to_skip = simple_pattern_create(cfg->charts_to_skip.c_str(), NULL, SIMPLE_PATTERN_EXACT, true); + + cfg->stream_anomaly_detection_charts = config_get_boolean(config_section_ml, "stream anomaly detection charts", true); + + cfg->num_training_threads = num_training_threads; + cfg->flush_models_batch_size = flush_models_batch_size; - Cfg.StreamADCharts = config_get_boolean(ConfigSectionML, "stream anomaly detection charts", true); + cfg->enable_statistics_charts = enable_statistics_charts; } |