diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2021-12-01 06:15:11 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2021-12-01 06:15:11 +0000 |
commit | 483926a283e118590da3f9ecfa75a8a4d62143ce (patch) | |
tree | cb77052778df9a128a8cd3ff5bf7645322a13bc5 /ml/Config.cc | |
parent | Releasing debian version 1.31.0-4. (diff) | |
download | netdata-483926a283e118590da3f9ecfa75a8a4d62143ce.tar.xz netdata-483926a283e118590da3f9ecfa75a8a4d62143ce.zip |
Merging upstream version 1.32.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/Config.cc')
-rw-r--r-- | ml/Config.cc | 128 |
1 files changed, 128 insertions, 0 deletions
diff --git a/ml/Config.cc b/ml/Config.cc new file mode 100644 index 000000000..f48f9b39f --- /dev/null +++ b/ml/Config.cc @@ -0,0 +1,128 @@ +// SPDX-License-Identifier: GPL-3.0-or-later + +#include "Config.h" +#include "ml-private.h" + +using namespace ml; + +/* + * Global configuration instance to be shared between training and + * prediction threads. + */ +Config ml::Cfg; + +template <typename T> +static T clamp(const T& Value, const T& Min, const T& Max) { + return std::max(Min, std::min(Value, Max)); +} + +/* + * Initialize global configuration variable. + */ +void Config::readMLConfig(void) { + const char *ConfigSectionML = CONFIG_SECTION_ML; + + bool EnableAnomalyDetection = config_get_boolean(ConfigSectionML, "enabled", false); + + /* + * Read values + */ + + unsigned MaxTrainSamples = config_get_number(ConfigSectionML, "maximum num samples to train", 4 * 3600); + unsigned MinTrainSamples = config_get_number(ConfigSectionML, "minimum num samples to train", 1 * 3600); + unsigned TrainEvery = config_get_number(ConfigSectionML, "train every", 1 * 3600); + + unsigned DiffN = config_get_number(ConfigSectionML, "num samples to diff", 1); + unsigned SmoothN = config_get_number(ConfigSectionML, "num samples to smooth", 3); + unsigned LagN = config_get_number(ConfigSectionML, "num samples to lag", 5); + + unsigned MaxKMeansIters = config_get_number(ConfigSectionML, "maximum number of k-means iterations", 1000); + + double DimensionAnomalyScoreThreshold = config_get_float(ConfigSectionML, "dimension anomaly score threshold", 0.99); + double HostAnomalyRateThreshold = config_get_float(ConfigSectionML, "host anomaly rate threshold", 0.01); + + double ADMinWindowSize = config_get_float(ConfigSectionML, "minimum window size", 30); + double ADMaxWindowSize = config_get_float(ConfigSectionML, "maximum window size", 600); + double ADIdleWindowSize = config_get_float(ConfigSectionML, "idle window size", 30); + double ADWindowRateThreshold = config_get_float(ConfigSectionML, "window minimum anomaly rate", 0.25); + double ADDimensionRateThreshold = config_get_float(ConfigSectionML, "anomaly event min dimension rate threshold", 0.05); + + std::string HostsToSkip = config_get(ConfigSectionML, "hosts to skip from training", "!*"); + std::string ChartsToSkip = config_get(ConfigSectionML, "charts to skip from training", + "!system.* !cpu.* !mem.* !disk.* !disk_* " + "!ip.* !ipv4.* !ipv6.* !net.* !net_* !netfilter.* " + "!services.* !apps.* !groups.* !user.* !ebpf.* !netdata.* *"); + + std::stringstream SS; + SS << netdata_configured_cache_dir << "/anomaly-detection.db"; + Cfg.AnomalyDBPath = SS.str(); + + /* + * Clamp + */ + + MaxTrainSamples = clamp(MaxTrainSamples, 1 * 3600u, 6 * 3600u); + MinTrainSamples = clamp(MinTrainSamples, 1 * 3600u, 6 * 3600u); + TrainEvery = clamp(TrainEvery, 1 * 3600u, 6 * 3600u); + + DiffN = clamp(DiffN, 0u, 1u); + SmoothN = clamp(SmoothN, 0u, 5u); + LagN = clamp(LagN, 0u, 5u); + + MaxKMeansIters = clamp(MaxKMeansIters, 500u, 1000u); + + DimensionAnomalyScoreThreshold = clamp(DimensionAnomalyScoreThreshold, 0.01, 5.00); + HostAnomalyRateThreshold = clamp(HostAnomalyRateThreshold, 0.01, 1.0); + + ADMinWindowSize = clamp(ADMinWindowSize, 30.0, 300.0); + ADMaxWindowSize = clamp(ADMaxWindowSize, 60.0, 900.0); + ADIdleWindowSize = clamp(ADIdleWindowSize, 30.0, 900.0); + ADWindowRateThreshold = clamp(ADWindowRateThreshold, 0.01, 0.99); + ADDimensionRateThreshold = clamp(ADDimensionRateThreshold, 0.01, 0.99); + + /* + * Validate + */ + + if (MinTrainSamples >= MaxTrainSamples) { + error("invalid min/max train samples found (%u >= %u)", MinTrainSamples, MaxTrainSamples); + + MinTrainSamples = 1 * 3600; + MaxTrainSamples = 4 * 3600; + } + + if (ADMinWindowSize >= ADMaxWindowSize) { + error("invalid min/max anomaly window size found (%lf >= %lf)", ADMinWindowSize, ADMaxWindowSize); + + ADMinWindowSize = 30.0; + ADMaxWindowSize = 600.0; + } + + /* + * Assign to config instance + */ + + Cfg.EnableAnomalyDetection = EnableAnomalyDetection; + + Cfg.MaxTrainSamples = MaxTrainSamples; + Cfg.MinTrainSamples = MinTrainSamples; + Cfg.TrainEvery = TrainEvery; + + Cfg.DiffN = DiffN; + Cfg.SmoothN = SmoothN; + Cfg.LagN = LagN; + + Cfg.MaxKMeansIters = MaxKMeansIters; + + Cfg.DimensionAnomalyScoreThreshold = DimensionAnomalyScoreThreshold; + Cfg.HostAnomalyRateThreshold = HostAnomalyRateThreshold; + + Cfg.ADMinWindowSize = ADMinWindowSize; + Cfg.ADMaxWindowSize = ADMaxWindowSize; + Cfg.ADIdleWindowSize = ADIdleWindowSize; + Cfg.ADWindowRateThreshold = ADWindowRateThreshold; + Cfg.ADDimensionRateThreshold = ADDimensionRateThreshold; + + Cfg.SP_HostsToSkip = simple_pattern_create(HostsToSkip.c_str(), NULL, SIMPLE_PATTERN_EXACT); + Cfg.SP_ChartsToSkip = simple_pattern_create(ChartsToSkip.c_str(), NULL, SIMPLE_PATTERN_EXACT); +} |