diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2021-12-01 06:15:11 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2021-12-01 06:15:11 +0000 |
commit | 483926a283e118590da3f9ecfa75a8a4d62143ce (patch) | |
tree | cb77052778df9a128a8cd3ff5bf7645322a13bc5 /ml/Dimension.cc | |
parent | Releasing debian version 1.31.0-4. (diff) | |
download | netdata-483926a283e118590da3f9ecfa75a8a4d62143ce.tar.xz netdata-483926a283e118590da3f9ecfa75a8a4d62143ce.zip |
Merging upstream version 1.32.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/Dimension.cc')
-rw-r--r-- | ml/Dimension.cc | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/ml/Dimension.cc b/ml/Dimension.cc new file mode 100644 index 000000000..c27f30bb4 --- /dev/null +++ b/ml/Dimension.cc @@ -0,0 +1,169 @@ +// SPDX-License-Identifier: GPL-3.0-or-later + +#include "Config.h" +#include "Dimension.h" +#include "Query.h" + +using namespace ml; + +/* + * Copy of the unpack_storage_number which allows us to convert + * a storage_number to double. + */ +static CalculatedNumber unpack_storage_number_dbl(storage_number value) { + if(!value) + return 0; + + int sign = 0, exp = 0; + int factor = 10; + + // bit 32 = 0:positive, 1:negative + if(unlikely(value & (1 << 31))) + sign = 1; + + // bit 31 = 0:divide, 1:multiply + if(unlikely(value & (1 << 30))) + exp = 1; + + // bit 27 SN_EXISTS_100 + if(unlikely(value & (1 << 26))) + factor = 100; + + // bit 26 SN_EXISTS_RESET + // bit 25 SN_ANOMALY_BIT + + // bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total) + int mul = (value & ((1<<29)|(1<<28)|(1<<27))) >> 27; + + // bit 24 to bit 1 = the value, so remove all other bits + value ^= value & ((1<<31)|(1<<30)|(1<<29)|(1<<28)|(1<<27)|(1<<26)|(1<<25)|(1<<24)); + + CalculatedNumber CN = value; + + if(exp) { + for(; mul; mul--) + CN *= factor; + } + else { + for( ; mul ; mul--) + CN /= 10; + } + + if(sign) + CN = -CN; + + return CN; +} + +std::pair<CalculatedNumber *, size_t> +TrainableDimension::getCalculatedNumbers() { + size_t MinN = Cfg.MinTrainSamples; + size_t MaxN = Cfg.MaxTrainSamples; + + // Figure out what our time window should be. + time_t BeforeT = now_realtime_sec() - 1; + time_t AfterT = BeforeT - (MaxN * updateEvery()); + + BeforeT -= (BeforeT % updateEvery()); + AfterT -= (AfterT % updateEvery()); + + BeforeT = std::min(BeforeT, latestTime()); + AfterT = std::max(AfterT, oldestTime()); + + if (AfterT >= BeforeT) + return { nullptr, 0 }; + + CalculatedNumber *CNs = new CalculatedNumber[MaxN * (Cfg.LagN + 1)](); + + // Start the query. + unsigned Idx = 0; + unsigned CollectedValues = 0; + unsigned TotalValues = 0; + + CalculatedNumber LastValue = std::numeric_limits<CalculatedNumber>::quiet_NaN(); + Query Q = Query(getRD()); + + Q.init(AfterT, BeforeT); + while (!Q.isFinished()) { + if (Idx == MaxN) + break; + + auto P = Q.nextMetric(); + storage_number SN = P.second; + + if (does_storage_number_exist(SN)) { + CNs[Idx] = unpack_storage_number_dbl(SN); + LastValue = CNs[Idx]; + CollectedValues++; + } else + CNs[Idx] = LastValue; + + Idx++; + } + TotalValues = Idx; + + if (CollectedValues < MinN) { + delete[] CNs; + return { nullptr, 0 }; + } + + // Find first non-NaN value. + for (Idx = 0; std::isnan(CNs[Idx]); Idx++, TotalValues--) { } + + // Overwrite NaN values. + if (Idx != 0) + memmove(CNs, &CNs[Idx], sizeof(CalculatedNumber) * TotalValues); + + return { CNs, TotalValues }; +} + +MLResult TrainableDimension::trainModel() { + auto P = getCalculatedNumbers(); + CalculatedNumber *CNs = P.first; + unsigned N = P.second; + + if (!CNs) + return MLResult::MissingData; + + SamplesBuffer SB = SamplesBuffer(CNs, N, 1, Cfg.DiffN, Cfg.SmoothN, Cfg.LagN); + KM.train(SB, Cfg.MaxKMeansIters); + Trained = true; + + delete[] CNs; + return MLResult::Success; +} + +void PredictableDimension::addValue(CalculatedNumber Value, bool Exists) { + if (!Exists) { + CNs.clear(); + return; + } + + unsigned N = Cfg.DiffN + Cfg.SmoothN + Cfg.LagN; + if (CNs.size() < N) { + CNs.push_back(Value); + return; + } + + std::rotate(std::begin(CNs), std::begin(CNs) + 1, std::end(CNs)); + CNs[N - 1] = Value; +} + +std::pair<MLResult, bool> PredictableDimension::predict() { + unsigned N = Cfg.DiffN + Cfg.SmoothN + Cfg.LagN; + if (CNs.size() != N) + return { MLResult::MissingData, AnomalyBit }; + + CalculatedNumber *TmpCNs = new CalculatedNumber[N * (Cfg.LagN + 1)](); + std::memcpy(TmpCNs, CNs.data(), N * sizeof(CalculatedNumber)); + + SamplesBuffer SB = SamplesBuffer(TmpCNs, N, 1, Cfg.DiffN, Cfg.SmoothN, Cfg.LagN); + AnomalyScore = computeAnomalyScore(SB); + delete[] TmpCNs; + + if (AnomalyScore == std::numeric_limits<CalculatedNumber>::quiet_NaN()) + return { MLResult::NaN, AnomalyBit }; + + AnomalyBit = AnomalyScore >= (100 * Cfg.DimensionAnomalyScoreThreshold); + return { MLResult::Success, AnomalyBit }; +} |