diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-05-08 16:27:08 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-05-08 16:27:08 +0000 |
commit | 81581f9719bc56f01d5aa08952671d65fda9867a (patch) | |
tree | 0f5c6b6138bf169c23c9d24b1fc0a3521385cb18 /ml/Dimension.h | |
parent | Releasing debian version 1.38.1-1. (diff) | |
download | netdata-81581f9719bc56f01d5aa08952671d65fda9867a.tar.xz netdata-81581f9719bc56f01d5aa08952671d65fda9867a.zip |
Merging upstream version 1.39.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/Dimension.h')
-rw-r--r-- | ml/Dimension.h | 198 |
1 files changed, 0 insertions, 198 deletions
diff --git a/ml/Dimension.h b/ml/Dimension.h deleted file mode 100644 index 2b1adfff9..000000000 --- a/ml/Dimension.h +++ /dev/null @@ -1,198 +0,0 @@ -// SPDX-License-Identifier: GPL-3.0-or-later - -#ifndef ML_DIMENSION_H -#define ML_DIMENSION_H - -#include "Mutex.h" -#include "Stats.h" -#include "Query.h" -#include "Config.h" - -#include "ml-private.h" - -namespace ml { - -static inline std::string getMLDimensionID(RRDDIM *RD) { - RRDSET *RS = RD->rrdset; - - std::stringstream SS; - SS << rrdset_context(RS) << "|" << rrdset_id(RS) << "|" << rrddim_name(RD); - return SS.str(); -} - -enum class MachineLearningStatus { - // Enable training/prediction - Enabled, - - // Disable due to update every being different from the host's - DisabledDueToUniqueUpdateEvery, - - // Disable because configuration pattern matches the chart's id - DisabledDueToExcludedChart, -}; - -enum class TrainingStatus { - // We don't have a model for this dimension - Untrained, - - // Request for training sent, but we don't have any models yet - PendingWithoutModel, - - // Request to update existing models sent - PendingWithModel, - - // Have a valid, up-to-date model - Trained, -}; - -enum class MetricType { - // The dimension has constant values, no need to train - Constant, - - // The dimension's values fluctuate, we need to generate a model - Variable, -}; - -struct TrainingRequest { - // Chart/dimension we want to train - STRING *ChartId; - STRING *DimensionId; - - // Creation time of request - time_t RequestTime; - - // First/last entry of this dimension in DB - // at the point the request was made - time_t FirstEntryOnRequest; - time_t LastEntryOnRequest; -}; - -void dumpTrainingRequest(const TrainingRequest &TrainingReq, const char *Prefix); - -enum TrainingResult { - // We managed to create a KMeans model - Ok, - // Could not query DB with a correct time range - InvalidQueryTimeRange, - // Did not gather enough data from DB to run KMeans - NotEnoughCollectedValues, - // Acquired a null dimension - NullAcquiredDimension, - // Chart is under replication - ChartUnderReplication, -}; - -struct TrainingResponse { - // Time when the request for this response was made - time_t RequestTime; - - // First/last entry of the dimension in DB when generating the request - time_t FirstEntryOnRequest; - time_t LastEntryOnRequest; - - // First/last entry of the dimension in DB when generating the response - time_t FirstEntryOnResponse; - time_t LastEntryOnResponse; - - // After/Before timestamps of our DB query - time_t QueryAfterT; - time_t QueryBeforeT; - - // Actual after/before returned by the DB query ops - time_t DbAfterT; - time_t DbBeforeT; - - // Number of doubles returned by the DB query - size_t CollectedValues; - - // Number of values we return to the caller - size_t TotalValues; - - // Result of training response - TrainingResult Result; -}; - -void dumpTrainingResponse(const TrainingResponse &TrainingResp, const char *Prefix); - -class Dimension { -public: - Dimension(RRDDIM *RD) : - RD(RD), - MT(MetricType::Constant), - TS(TrainingStatus::Untrained), - TR(), - LastTrainingTime(0) - { - if (simple_pattern_matches(Cfg.SP_ChartsToSkip, rrdset_name(RD->rrdset))) - MLS = MachineLearningStatus::DisabledDueToExcludedChart; - else if (RD->update_every != RD->rrdset->rrdhost->rrd_update_every) - MLS = MachineLearningStatus::DisabledDueToUniqueUpdateEvery; - else - MLS = MachineLearningStatus::Enabled; - - Models.reserve(Cfg.NumModelsToUse); - } - - RRDDIM *getRD() const { - return RD; - } - - unsigned updateEvery() const { - return RD->update_every; - } - - MetricType getMT() const { - return MT; - } - - TrainingStatus getTS() const { - return TS; - } - - MachineLearningStatus getMLS() const { - return MLS; - } - - TrainingResult trainModel(const TrainingRequest &TR); - - void scheduleForTraining(time_t CurrT); - - bool predict(time_t CurrT, CalculatedNumber Value, bool Exists); - - std::vector<KMeans> getModels(); - - void dump() const; - -private: - TrainingRequest getTrainingRequest(time_t CurrT) const { - return TrainingRequest { - string_dup(RD->rrdset->id), - string_dup(RD->id), - CurrT, - rrddim_first_entry_s(RD), - rrddim_last_entry_s(RD) - }; - } - -private: - std::pair<CalculatedNumber *, TrainingResponse> getCalculatedNumbers(const TrainingRequest &TrainingReq); - -public: - RRDDIM *RD; - MetricType MT; - TrainingStatus TS; - TrainingResponse TR; - - time_t LastTrainingTime; - - MachineLearningStatus MLS; - - std::vector<CalculatedNumber> CNs; - DSample Feature; - std::vector<KMeans> Models; - Mutex M; -}; - -} // namespace ml - -#endif /* ML_DIMENSION_H */ |