summaryrefslogtreecommitdiffstats
path: root/ml/Dimension.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2021-12-01 06:15:04 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2021-12-01 06:15:04 +0000
commite970e0b37b8bd7f246feb3f70c4136418225e434 (patch)
tree0b67c0ca45f56f2f9d9c5c2e725279ecdf52d2eb /ml/Dimension.h
parentAdding upstream version 1.31.0. (diff)
downloadnetdata-e970e0b37b8bd7f246feb3f70c4136418225e434.tar.xz
netdata-e970e0b37b8bd7f246feb3f70c4136418225e434.zip
Adding upstream version 1.32.0.upstream/1.32.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/Dimension.h')
-rw-r--r--ml/Dimension.h124
1 files changed, 124 insertions, 0 deletions
diff --git a/ml/Dimension.h b/ml/Dimension.h
new file mode 100644
index 00000000..fdf923cc
--- /dev/null
+++ b/ml/Dimension.h
@@ -0,0 +1,124 @@
+// SPDX-License-Identifier: GPL-3.0-or-later
+
+#ifndef ML_DIMENSION_H
+#define ML_DIMENSION_H
+
+#include "BitBufferCounter.h"
+#include "Config.h"
+
+#include "ml-private.h"
+
+namespace ml {
+
+class RrdDimension {
+public:
+ RrdDimension(RRDDIM *RD) : RD(RD), Ops(&RD->state->query_ops) {
+ std::stringstream SS;
+ SS << RD->rrdset->id << "|" << RD->name;
+ ID = SS.str();
+ }
+
+ RRDDIM *getRD() const { return RD; }
+
+ time_t latestTime() { return Ops->latest_time(RD); }
+
+ time_t oldestTime() { return Ops->oldest_time(RD); }
+
+ unsigned updateEvery() const { return RD->update_every; }
+
+ const std::string getID() const { return ID; }
+
+ virtual ~RrdDimension() {}
+
+private:
+ RRDDIM *RD;
+ struct rrddim_volatile::rrddim_query_ops *Ops;
+
+ std::string ID;
+};
+
+enum class MLResult {
+ Success = 0,
+ MissingData,
+ NaN,
+};
+
+class TrainableDimension : public RrdDimension {
+public:
+ TrainableDimension(RRDDIM *RD) :
+ RrdDimension(RD), TrainEvery(Cfg.TrainEvery * updateEvery()) {}
+
+ MLResult trainModel();
+
+ CalculatedNumber computeAnomalyScore(SamplesBuffer &SB) {
+ return Trained ? KM.anomalyScore(SB) : 0.0;
+ }
+
+ bool shouldTrain(const TimePoint &TP) const {
+ return (LastTrainedAt + TrainEvery) < TP;
+ }
+
+ bool isTrained() const { return Trained; }
+
+ double updateTrainingDuration(double Duration) {
+ return TrainingDuration.exchange(Duration);
+ }
+
+private:
+ std::pair<CalculatedNumber *, size_t> getCalculatedNumbers();
+
+public:
+ TimePoint LastTrainedAt{Seconds{0}};
+
+private:
+ Seconds TrainEvery;
+ KMeans KM;
+
+ std::atomic<bool> Trained{false};
+ std::atomic<double> TrainingDuration{0.0};
+};
+
+class PredictableDimension : public TrainableDimension {
+public:
+ PredictableDimension(RRDDIM *RD) : TrainableDimension(RD) {}
+
+ std::pair<MLResult, bool> predict();
+
+ void addValue(CalculatedNumber Value, bool Exists);
+
+ bool isAnomalous() { return AnomalyBit; }
+
+private:
+ CalculatedNumber AnomalyScore{0.0};
+ std::atomic<bool> AnomalyBit{false};
+
+ std::vector<CalculatedNumber> CNs;
+};
+
+class DetectableDimension : public PredictableDimension {
+public:
+ DetectableDimension(RRDDIM *RD) : PredictableDimension(RD) {}
+
+ std::pair<bool, double> detect(size_t WindowLength, bool Reset) {
+ bool AnomalyBit = isAnomalous();
+
+ if (Reset)
+ NumSetBits = BBC.numSetBits();
+
+ NumSetBits += AnomalyBit;
+ BBC.insert(AnomalyBit);
+
+ double AnomalyRate = static_cast<double>(NumSetBits) / WindowLength;
+ return { AnomalyBit, AnomalyRate };
+ }
+
+private:
+ BitBufferCounter BBC{static_cast<size_t>(Cfg.ADMinWindowSize)};
+ size_t NumSetBits{0};
+};
+
+using Dimension = DetectableDimension;
+
+} // namespace ml
+
+#endif /* ML_DIMENSION_H */