summaryrefslogtreecommitdiffstats
path: root/ml/KMeans.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2022-11-30 18:47:00 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2022-11-30 18:47:00 +0000
commit03bf87dcb06f7021bfb2df2fa8691593c6148aff (patch)
treee16b06711a2ed77cafb4b7754be0220c3d14a9d7 /ml/KMeans.cc
parentAdding upstream version 1.36.1. (diff)
downloadnetdata-03bf87dcb06f7021bfb2df2fa8691593c6148aff.tar.xz
netdata-03bf87dcb06f7021bfb2df2fa8691593c6148aff.zip
Adding upstream version 1.37.0.upstream/1.37.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/KMeans.cc')
-rw-r--r--ml/KMeans.cc43
1 files changed, 43 insertions, 0 deletions
diff --git a/ml/KMeans.cc b/ml/KMeans.cc
new file mode 100644
index 000000000..edc2ef49e
--- /dev/null
+++ b/ml/KMeans.cc
@@ -0,0 +1,43 @@
+// SPDX-License-Identifier: GPL-3.0-or-later
+
+#include "KMeans.h"
+#include <dlib/clustering.h>
+
+void KMeans::train(const std::vector<DSample> &Samples, size_t MaxIterations) {
+ MinDist = std::numeric_limits<CalculatedNumber>::max();
+ MaxDist = std::numeric_limits<CalculatedNumber>::min();
+
+ ClusterCenters.clear();
+
+ dlib::pick_initial_centers(NumClusters, ClusterCenters, Samples);
+ dlib::find_clusters_using_kmeans(Samples, ClusterCenters, MaxIterations);
+
+ for (const auto &S : Samples) {
+ CalculatedNumber MeanDist = 0.0;
+
+ for (const auto &KMCenter : ClusterCenters)
+ MeanDist += dlib::length(KMCenter - S);
+
+ MeanDist /= NumClusters;
+
+ if (MeanDist < MinDist)
+ MinDist = MeanDist;
+
+ if (MeanDist > MaxDist)
+ MaxDist = MeanDist;
+ }
+}
+
+CalculatedNumber KMeans::anomalyScore(const DSample &Sample) const {
+ CalculatedNumber MeanDist = 0.0;
+ for (const auto &CC: ClusterCenters)
+ MeanDist += dlib::length(CC - Sample);
+
+ MeanDist /= NumClusters;
+
+ if (MaxDist == MinDist)
+ return 0.0;
+
+ CalculatedNumber AnomalyScore = 100.0 * std::abs((MeanDist - MinDist) / (MaxDist - MinDist));
+ return (AnomalyScore > 100.0) ? 100.0 : AnomalyScore;
+}