summaryrefslogtreecommitdiffstats
path: root/ml/ad_charts.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2023-10-17 09:30:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2023-10-17 09:30:20 +0000
commit386ccdd61e8256c8b21ee27ee2fc12438fc5ca98 (patch)
treec9fbcacdb01f029f46133a5ba7ecd610c2bcb041 /ml/ad_charts.cc
parentAdding upstream version 1.42.4. (diff)
downloadnetdata-upstream/1.43.0.tar.xz
netdata-upstream/1.43.0.zip
Adding upstream version 1.43.0.upstream/1.43.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/ad_charts.cc')
-rw-r--r--ml/ad_charts.cc54
1 files changed, 52 insertions, 2 deletions
diff --git a/ml/ad_charts.cc b/ml/ad_charts.cc
index ca4dca139..4b70cb43f 100644
--- a/ml/ad_charts.cc
+++ b/ml/ad_charts.cc
@@ -222,7 +222,7 @@ void ml_update_dimensions_chart(ml_host_t *host, const ml_machine_learning_stats
void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number AnomalyRate) {
/*
- * Anomaly rate
+ * Host anomaly rate
*/
{
if (!host->anomaly_rate_rs) {
@@ -259,6 +259,56 @@ void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number
}
/*
+ * Type anomaly rate
+ */
+ {
+ if (!host->type_anomaly_rate_rs) {
+ char id_buf[1024];
+ char name_buf[1024];
+
+ snprintfz(id_buf, 1024, "type_anomaly_rate_on_%s", localhost->machine_guid);
+ snprintfz(name_buf, 1024, "type_anomaly_rate_on_%s", rrdhost_hostname(localhost));
+
+ host->type_anomaly_rate_rs = rrdset_create(
+ host->rh,
+ "anomaly_detection", // type
+ id_buf, // id
+ name_buf, // name
+ "anomaly_rate", // family
+ "anomaly_detection.type_anomaly_rate", // ctx
+ "Percentage of anomalous dimensions by type", // title
+ "percentage", // units
+ NETDATA_ML_PLUGIN, // plugin
+ NETDATA_ML_MODULE_DETECTION, // module
+ ML_CHART_PRIO_TYPE_ANOMALY_RATE, // priority
+ localhost->rrd_update_every, // update_every
+ RRDSET_TYPE_STACKED // chart_type
+ );
+
+ rrdset_flag_set(host->type_anomaly_rate_rs, RRDSET_FLAG_ANOMALY_DETECTION);
+ }
+
+ for (auto &entry : host->type_anomaly_rate) {
+ ml_type_anomaly_rate_t &type_anomaly_rate = entry.second;
+
+ if (!type_anomaly_rate.rd)
+ type_anomaly_rate.rd = rrddim_add(host->type_anomaly_rate_rs, string2str(entry.first), NULL, 1, 100, RRD_ALGORITHM_ABSOLUTE);
+
+ double ar = 0.0;
+ size_t n = type_anomaly_rate.anomalous_dimensions + type_anomaly_rate.normal_dimensions;
+ if (n)
+ ar = static_cast<double>(type_anomaly_rate.anomalous_dimensions) / n;
+
+ rrddim_set_by_pointer(host->type_anomaly_rate_rs, type_anomaly_rate.rd, ar * 10000.0);
+
+ type_anomaly_rate.anomalous_dimensions = 0;
+ type_anomaly_rate.normal_dimensions = 0;
+ }
+
+ rrdset_done(host->type_anomaly_rate_rs);
+ }
+
+ /*
* Detector Events
*/
{
@@ -277,7 +327,7 @@ void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number
"anomaly_detection", // family
"anomaly_detection.detector_events", // ctx
"Anomaly detection events", // title
- "percentage", // units
+ "status", // units
NETDATA_ML_PLUGIN, // plugin
NETDATA_ML_MODULE_DETECTION, // module
ML_CHART_PRIO_DETECTOR_EVENTS, // priority