diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-10-17 09:30:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-10-17 09:30:20 +0000 |
commit | 386ccdd61e8256c8b21ee27ee2fc12438fc5ca98 (patch) | |
tree | c9fbcacdb01f029f46133a5ba7ecd610c2bcb041 /ml/ad_charts.cc | |
parent | Adding upstream version 1.42.4. (diff) | |
download | netdata-upstream/1.43.0.tar.xz netdata-upstream/1.43.0.zip |
Adding upstream version 1.43.0.upstream/1.43.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/ad_charts.cc')
-rw-r--r-- | ml/ad_charts.cc | 54 |
1 files changed, 52 insertions, 2 deletions
diff --git a/ml/ad_charts.cc b/ml/ad_charts.cc index ca4dca139..4b70cb43f 100644 --- a/ml/ad_charts.cc +++ b/ml/ad_charts.cc @@ -222,7 +222,7 @@ void ml_update_dimensions_chart(ml_host_t *host, const ml_machine_learning_stats void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number AnomalyRate) { /* - * Anomaly rate + * Host anomaly rate */ { if (!host->anomaly_rate_rs) { @@ -259,6 +259,56 @@ void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number } /* + * Type anomaly rate + */ + { + if (!host->type_anomaly_rate_rs) { + char id_buf[1024]; + char name_buf[1024]; + + snprintfz(id_buf, 1024, "type_anomaly_rate_on_%s", localhost->machine_guid); + snprintfz(name_buf, 1024, "type_anomaly_rate_on_%s", rrdhost_hostname(localhost)); + + host->type_anomaly_rate_rs = rrdset_create( + host->rh, + "anomaly_detection", // type + id_buf, // id + name_buf, // name + "anomaly_rate", // family + "anomaly_detection.type_anomaly_rate", // ctx + "Percentage of anomalous dimensions by type", // title + "percentage", // units + NETDATA_ML_PLUGIN, // plugin + NETDATA_ML_MODULE_DETECTION, // module + ML_CHART_PRIO_TYPE_ANOMALY_RATE, // priority + localhost->rrd_update_every, // update_every + RRDSET_TYPE_STACKED // chart_type + ); + + rrdset_flag_set(host->type_anomaly_rate_rs, RRDSET_FLAG_ANOMALY_DETECTION); + } + + for (auto &entry : host->type_anomaly_rate) { + ml_type_anomaly_rate_t &type_anomaly_rate = entry.second; + + if (!type_anomaly_rate.rd) + type_anomaly_rate.rd = rrddim_add(host->type_anomaly_rate_rs, string2str(entry.first), NULL, 1, 100, RRD_ALGORITHM_ABSOLUTE); + + double ar = 0.0; + size_t n = type_anomaly_rate.anomalous_dimensions + type_anomaly_rate.normal_dimensions; + if (n) + ar = static_cast<double>(type_anomaly_rate.anomalous_dimensions) / n; + + rrddim_set_by_pointer(host->type_anomaly_rate_rs, type_anomaly_rate.rd, ar * 10000.0); + + type_anomaly_rate.anomalous_dimensions = 0; + type_anomaly_rate.normal_dimensions = 0; + } + + rrdset_done(host->type_anomaly_rate_rs); + } + + /* * Detector Events */ { @@ -277,7 +327,7 @@ void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number "anomaly_detection", // family "anomaly_detection.detector_events", // ctx "Anomaly detection events", // title - "percentage", // units + "status", // units NETDATA_ML_PLUGIN, // plugin NETDATA_ML_MODULE_DETECTION, // module ML_CHART_PRIO_DETECTOR_EVENTS, // priority |