summaryrefslogtreecommitdiffstats
path: root/ml/dlib/python_examples/face_alignment.py
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-03-09 13:19:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-03-09 13:19:22 +0000
commitc21c3b0befeb46a51b6bf3758ffa30813bea0ff0 (patch)
tree9754ff1ca740f6346cf8483ec915d4054bc5da2d /ml/dlib/python_examples/face_alignment.py
parentAdding upstream version 1.43.2. (diff)
downloadnetdata-upstream/1.44.3.tar.xz
netdata-upstream/1.44.3.zip
Adding upstream version 1.44.3.upstream/1.44.3
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/dlib/python_examples/face_alignment.py')
-rwxr-xr-xml/dlib/python_examples/face_alignment.py91
1 files changed, 91 insertions, 0 deletions
diff --git a/ml/dlib/python_examples/face_alignment.py b/ml/dlib/python_examples/face_alignment.py
new file mode 100755
index 00000000..53df7a3e
--- /dev/null
+++ b/ml/dlib/python_examples/face_alignment.py
@@ -0,0 +1,91 @@
+#!/usr/bin/python
+# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
+#
+# This example shows how to use dlib's face recognition tool for image alignment.
+#
+# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
+# You can install dlib using the command:
+# pip install dlib
+#
+# Alternatively, if you want to compile dlib yourself then go into the dlib
+# root folder and run:
+# python setup.py install
+# or
+# python setup.py install --yes USE_AVX_INSTRUCTIONS
+# if you have a CPU that supports AVX instructions, since this makes some
+# things run faster. This code will also use CUDA if you have CUDA and cuDNN
+# installed.
+#
+# Compiling dlib should work on any operating system so long as you have
+# CMake installed. On Ubuntu, this can be done easily by running the
+# command:
+# sudo apt-get install cmake
+#
+# Also note that this example requires OpenCV and Numpy which can be installed
+# via the command:
+# pip install opencv-python numpy
+# Or downloaded from http://opencv.org/releases.html
+
+import sys
+
+import dlib
+import cv2
+import numpy as np
+
+if len(sys.argv) != 3:
+ print(
+ "Call this program like this:\n"
+ " ./face_alignment.py shape_predictor_5_face_landmarks.dat ../examples/faces/bald_guys.jpg\n"
+ "You can download a trained facial shape predictor from:\n"
+ " http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2\n")
+ exit()
+
+predictor_path = sys.argv[1]
+face_file_path = sys.argv[2]
+
+# Load all the models we need: a detector to find the faces, a shape predictor
+# to find face landmarks so we can precisely localize the face
+detector = dlib.get_frontal_face_detector()
+sp = dlib.shape_predictor(predictor_path)
+
+# Load the image using OpenCV
+bgr_img = cv2.imread(face_file_path)
+if bgr_img is None:
+ print("Sorry, we could not load '{}' as an image".format(face_file_path))
+ exit()
+
+# Convert to RGB since dlib uses RGB images
+img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
+
+# Ask the detector to find the bounding boxes of each face. The 1 in the
+# second argument indicates that we should upsample the image 1 time. This
+# will make everything bigger and allow us to detect more faces.
+dets = detector(img, 1)
+
+num_faces = len(dets)
+if num_faces == 0:
+ print("Sorry, there were no faces found in '{}'".format(face_file_path))
+ exit()
+
+# Find the 5 face landmarks we need to do the alignment.
+faces = dlib.full_object_detections()
+for detection in dets:
+ faces.append(sp(img, detection))
+
+# Get the aligned face images
+# Optionally:
+# images = dlib.get_face_chips(img, faces, size=160, padding=0.25)
+images = dlib.get_face_chips(img, faces, size=320)
+for image in images:
+ cv_bgr_img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
+ cv2.imshow('image',cv_bgr_img)
+ cv2.waitKey(0)
+
+# It is also possible to get a single chip
+image = dlib.get_face_chip(img, faces[0])
+cv_bgr_img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
+cv2.imshow('image',cv_bgr_img)
+cv2.waitKey(0)
+
+cv2.destroyAllWindows()
+