diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-05-08 16:27:08 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-05-08 16:27:08 +0000 |
commit | 81581f9719bc56f01d5aa08952671d65fda9867a (patch) | |
tree | 0f5c6b6138bf169c23c9d24b1fc0a3521385cb18 /ml/ml-private.h | |
parent | Releasing debian version 1.38.1-1. (diff) | |
download | netdata-81581f9719bc56f01d5aa08952671d65fda9867a.tar.xz netdata-81581f9719bc56f01d5aa08952671d65fda9867a.zip |
Merging upstream version 1.39.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/ml-private.h')
-rw-r--r-- | ml/ml-private.h | 336 |
1 files changed, 329 insertions, 7 deletions
diff --git a/ml/ml-private.h b/ml/ml-private.h index e479f2351..327cc59a2 100644 --- a/ml/ml-private.h +++ b/ml/ml-private.h @@ -1,13 +1,335 @@ // SPDX-License-Identifier: GPL-3.0-or-later -#ifndef ML_PRIVATE_H -#define ML_PRIVATE_H +#ifndef NETDATA_ML_PRIVATE_H +#define NETDATA_ML_PRIVATE_H -#include "KMeans.h" +#include "dlib/matrix.h" #include "ml/ml.h" -#include <map> -#include <mutex> -#include <sstream> +#include <vector> +#include <queue> -#endif /* ML_PRIVATE_H */ +typedef double calculated_number_t; +typedef dlib::matrix<calculated_number_t, 6, 1> DSample; + +/* + * Features + */ + +typedef struct { + size_t diff_n; + size_t smooth_n; + size_t lag_n; + + calculated_number_t *dst; + size_t dst_n; + + calculated_number_t *src; + size_t src_n; + + std::vector<DSample> &preprocessed_features; +} ml_features_t; + +/* + * KMeans + */ + +typedef struct { + std::vector<DSample> cluster_centers; + + calculated_number_t min_dist; + calculated_number_t max_dist; + + uint32_t after; + uint32_t before; +} ml_kmeans_t; + +typedef struct machine_learning_stats_t { + size_t num_machine_learning_status_enabled; + size_t num_machine_learning_status_disabled_sp; + + size_t num_metric_type_constant; + size_t num_metric_type_variable; + + size_t num_training_status_untrained; + size_t num_training_status_pending_without_model; + size_t num_training_status_trained; + size_t num_training_status_pending_with_model; + + size_t num_anomalous_dimensions; + size_t num_normal_dimensions; +} ml_machine_learning_stats_t; + +typedef struct training_stats_t { + size_t queue_size; + size_t num_popped_items; + + usec_t allotted_ut; + usec_t consumed_ut; + usec_t remaining_ut; + + size_t training_result_ok; + size_t training_result_invalid_query_time_range; + size_t training_result_not_enough_collected_values; + size_t training_result_null_acquired_dimension; + size_t training_result_chart_under_replication; +} ml_training_stats_t; + +enum ml_metric_type { + // The dimension has constant values, no need to train + METRIC_TYPE_CONSTANT, + + // The dimension's values fluctuate, we need to generate a model + METRIC_TYPE_VARIABLE, +}; + +enum ml_machine_learning_status { + // Enable training/prediction + MACHINE_LEARNING_STATUS_ENABLED, + + // Disable because configuration pattern matches the chart's id + MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART, +}; + +enum ml_training_status { + // We don't have a model for this dimension + TRAINING_STATUS_UNTRAINED, + + // Request for training sent, but we don't have any models yet + TRAINING_STATUS_PENDING_WITHOUT_MODEL, + + // Request to update existing models sent + TRAINING_STATUS_PENDING_WITH_MODEL, + + // Have a valid, up-to-date model + TRAINING_STATUS_TRAINED, +}; + +enum ml_training_result { + // We managed to create a KMeans model + TRAINING_RESULT_OK, + + // Could not query DB with a correct time range + TRAINING_RESULT_INVALID_QUERY_TIME_RANGE, + + // Did not gather enough data from DB to run KMeans + TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES, + + // Acquired a null dimension + TRAINING_RESULT_NULL_ACQUIRED_DIMENSION, + + // Chart is under replication + TRAINING_RESULT_CHART_UNDER_REPLICATION, +}; + +typedef struct { + // Chart/dimension we want to train + char machine_guid[GUID_LEN + 1]; + STRING *chart_id; + STRING *dimension_id; + + // Creation time of request + time_t request_time; + + // First/last entry of this dimension in DB + // at the point the request was made + time_t first_entry_on_request; + time_t last_entry_on_request; +} ml_training_request_t; + +typedef struct { + // Time when the request for this response was made + time_t request_time; + + // First/last entry of the dimension in DB when generating the request + time_t first_entry_on_request; + time_t last_entry_on_request; + + // First/last entry of the dimension in DB when generating the response + time_t first_entry_on_response; + time_t last_entry_on_response; + + // After/Before timestamps of our DB query + time_t query_after_t; + time_t query_before_t; + + // Actual after/before returned by the DB query ops + time_t db_after_t; + time_t db_before_t; + + // Number of doubles returned by the DB query + size_t collected_values; + + // Number of values we return to the caller + size_t total_values; + + // Result of training response + enum ml_training_result result; +} ml_training_response_t; + +/* + * Queue +*/ + +typedef struct { + std::queue<ml_training_request_t> internal; + netdata_mutex_t mutex; + pthread_cond_t cond_var; + std::atomic<bool> exit; +} ml_queue_t; + +typedef struct { + RRDDIM *rd; + + enum ml_metric_type mt; + enum ml_training_status ts; + enum ml_machine_learning_status mls; + + ml_training_response_t tr; + time_t last_training_time; + + std::vector<calculated_number_t> cns; + + std::vector<ml_kmeans_t> km_contexts; + netdata_mutex_t mutex; + ml_kmeans_t kmeans; + std::vector<DSample> feature; +} ml_dimension_t; + +typedef struct { + RRDSET *rs; + ml_machine_learning_stats_t mls; + + netdata_mutex_t mutex; +} ml_chart_t; + +void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous); + +typedef struct { + RRDHOST *rh; + + ml_machine_learning_stats_t mls; + + calculated_number_t host_anomaly_rate; + + netdata_mutex_t mutex; + + ml_queue_t *training_queue; + + /* + * bookkeeping for anomaly detection charts + */ + + RRDSET *machine_learning_status_rs; + RRDDIM *machine_learning_status_enabled_rd; + RRDDIM *machine_learning_status_disabled_sp_rd; + + RRDSET *metric_type_rs; + RRDDIM *metric_type_constant_rd; + RRDDIM *metric_type_variable_rd; + + RRDSET *training_status_rs; + RRDDIM *training_status_untrained_rd; + RRDDIM *training_status_pending_without_model_rd; + RRDDIM *training_status_trained_rd; + RRDDIM *training_status_pending_with_model_rd; + + RRDSET *dimensions_rs; + RRDDIM *dimensions_anomalous_rd; + RRDDIM *dimensions_normal_rd; + + RRDSET *anomaly_rate_rs; + RRDDIM *anomaly_rate_rd; + + RRDSET *detector_events_rs; + RRDDIM *detector_events_above_threshold_rd; + RRDDIM *detector_events_new_anomaly_event_rd; +} ml_host_t; + +typedef struct { + uuid_t metric_uuid; + ml_kmeans_t kmeans; +} ml_model_info_t; + +typedef struct { + size_t id; + netdata_thread_t nd_thread; + netdata_mutex_t nd_mutex; + + ml_queue_t *training_queue; + ml_training_stats_t training_stats; + + calculated_number_t *training_cns; + calculated_number_t *scratch_training_cns; + std::vector<DSample> training_samples; + + std::vector<ml_model_info_t> pending_model_info; + + RRDSET *queue_stats_rs; + RRDDIM *queue_stats_queue_size_rd; + RRDDIM *queue_stats_popped_items_rd; + + RRDSET *training_time_stats_rs; + RRDDIM *training_time_stats_allotted_rd; + RRDDIM *training_time_stats_consumed_rd; + RRDDIM *training_time_stats_remaining_rd; + + RRDSET *training_results_rs; + RRDDIM *training_results_ok_rd; + RRDDIM *training_results_invalid_query_time_range_rd; + RRDDIM *training_results_not_enough_collected_values_rd; + RRDDIM *training_results_null_acquired_dimension_rd; + RRDDIM *training_results_chart_under_replication_rd; +} ml_training_thread_t; + +typedef struct { + bool enable_anomaly_detection; + + unsigned max_train_samples; + unsigned min_train_samples; + unsigned train_every; + + unsigned num_models_to_use; + + unsigned db_engine_anomaly_rate_every; + + unsigned diff_n; + unsigned smooth_n; + unsigned lag_n; + + double random_sampling_ratio; + unsigned max_kmeans_iters; + + double dimension_anomaly_score_threshold; + + double host_anomaly_rate_threshold; + RRDR_TIME_GROUPING anomaly_detection_grouping_method; + time_t anomaly_detection_query_duration; + + bool stream_anomaly_detection_charts; + + std::string hosts_to_skip; + SIMPLE_PATTERN *sp_host_to_skip; + + std::string charts_to_skip; + SIMPLE_PATTERN *sp_charts_to_skip; + + std::vector<uint32_t> random_nums; + + netdata_thread_t detection_thread; + std::atomic<bool> detection_stop; + + size_t num_training_threads; + size_t flush_models_batch_size; + + std::vector<ml_training_thread_t> training_threads; + std::atomic<bool> training_stop; + + bool enable_statistics_charts; +} ml_config_t; + +void ml_config_load(ml_config_t *cfg); + +extern ml_config_t Cfg; + +#endif /* NETDATA_ML_PRIVATE_H */ |