summaryrefslogtreecommitdiffstats
path: root/ml/ml.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-07-24 09:54:23 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-07-24 09:54:44 +0000
commit836b47cb7e99a977c5a23b059ca1d0b5065d310e (patch)
tree1604da8f482d02effa033c94a84be42bc0c848c3 /ml/ml.cc
parentReleasing debian version 1.44.3-2. (diff)
downloadnetdata-836b47cb7e99a977c5a23b059ca1d0b5065d310e.tar.xz
netdata-836b47cb7e99a977c5a23b059ca1d0b5065d310e.zip
Merging upstream version 1.46.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/ml.cc')
-rw-r--r--ml/ml.cc1881
1 files changed, 0 insertions, 1881 deletions
diff --git a/ml/ml.cc b/ml/ml.cc
deleted file mode 100644
index 5f8f5033e..000000000
--- a/ml/ml.cc
+++ /dev/null
@@ -1,1881 +0,0 @@
-// SPDX-License-Identifier: GPL-3.0-or-later
-
-#include <dlib/clustering.h>
-
-#include "ml-private.h"
-
-#include <random>
-
-#include "ad_charts.h"
-#include "database/sqlite/sqlite3.h"
-
-#define ML_METADATA_VERSION 2
-
-#define WORKER_TRAIN_QUEUE_POP 0
-#define WORKER_TRAIN_ACQUIRE_DIMENSION 1
-#define WORKER_TRAIN_QUERY 2
-#define WORKER_TRAIN_KMEANS 3
-#define WORKER_TRAIN_UPDATE_MODELS 4
-#define WORKER_TRAIN_RELEASE_DIMENSION 5
-#define WORKER_TRAIN_UPDATE_HOST 6
-#define WORKER_TRAIN_FLUSH_MODELS 7
-
-static sqlite3 *db = NULL;
-static netdata_mutex_t db_mutex = NETDATA_MUTEX_INITIALIZER;
-
-/*
- * Functions to convert enums to strings
-*/
-
-__attribute__((unused)) static const char *
-ml_machine_learning_status_to_string(enum ml_machine_learning_status mls)
-{
- switch (mls) {
- case MACHINE_LEARNING_STATUS_ENABLED:
- return "enabled";
- case MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART:
- return "disabled-sp";
- default:
- return "unknown";
- }
-}
-
-__attribute__((unused)) static const char *
-ml_metric_type_to_string(enum ml_metric_type mt)
-{
- switch (mt) {
- case METRIC_TYPE_CONSTANT:
- return "constant";
- case METRIC_TYPE_VARIABLE:
- return "variable";
- default:
- return "unknown";
- }
-}
-
-__attribute__((unused)) static const char *
-ml_training_status_to_string(enum ml_training_status ts)
-{
- switch (ts) {
- case TRAINING_STATUS_PENDING_WITH_MODEL:
- return "pending-with-model";
- case TRAINING_STATUS_PENDING_WITHOUT_MODEL:
- return "pending-without-model";
- case TRAINING_STATUS_TRAINED:
- return "trained";
- case TRAINING_STATUS_UNTRAINED:
- return "untrained";
- case TRAINING_STATUS_SILENCED:
- return "silenced";
- default:
- return "unknown";
- }
-}
-
-__attribute__((unused)) static const char *
-ml_training_result_to_string(enum ml_training_result tr)
-{
- switch (tr) {
- case TRAINING_RESULT_OK:
- return "ok";
- case TRAINING_RESULT_INVALID_QUERY_TIME_RANGE:
- return "invalid-query";
- case TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES:
- return "missing-values";
- case TRAINING_RESULT_NULL_ACQUIRED_DIMENSION:
- return "null-acquired-dim";
- case TRAINING_RESULT_CHART_UNDER_REPLICATION:
- return "chart-under-replication";
- default:
- return "unknown";
- }
-}
-
-/*
- * Features
-*/
-
-// subtract elements that are `diff_n` positions apart
-static void
-ml_features_diff(ml_features_t *features)
-{
- if (features->diff_n == 0)
- return;
-
- for (size_t idx = 0; idx != (features->src_n - features->diff_n); idx++) {
- size_t high = (features->src_n - 1) - idx;
- size_t low = high - features->diff_n;
-
- features->dst[low] = features->src[high] - features->src[low];
- }
-
- size_t n = features->src_n - features->diff_n;
- memcpy(features->src, features->dst, n * sizeof(calculated_number_t));
-
- for (size_t idx = features->src_n - features->diff_n; idx != features->src_n; idx++)
- features->src[idx] = 0.0;
-}
-
-// a function that computes the window average of an array inplace
-static void
-ml_features_smooth(ml_features_t *features)
-{
- calculated_number_t sum = 0.0;
-
- size_t idx = 0;
- for (; idx != features->smooth_n - 1; idx++)
- sum += features->src[idx];
-
- for (; idx != (features->src_n - features->diff_n); idx++) {
- sum += features->src[idx];
- calculated_number_t prev_cn = features->src[idx - (features->smooth_n - 1)];
- features->src[idx - (features->smooth_n - 1)] = sum / features->smooth_n;
- sum -= prev_cn;
- }
-
- for (idx = 0; idx != features->smooth_n; idx++)
- features->src[(features->src_n - 1) - idx] = 0.0;
-}
-
-// create lag'd vectors out of the preprocessed buffer
-static void
-ml_features_lag(ml_features_t *features)
-{
- size_t n = features->src_n - features->diff_n - features->smooth_n + 1 - features->lag_n;
- features->preprocessed_features.resize(n);
-
- unsigned target_num_samples = Cfg.max_train_samples * Cfg.random_sampling_ratio;
- double sampling_ratio = std::min(static_cast<double>(target_num_samples) / n, 1.0);
-
- uint32_t max_mt = std::numeric_limits<uint32_t>::max();
- uint32_t cutoff = static_cast<double>(max_mt) * sampling_ratio;
-
- size_t sample_idx = 0;
-
- for (size_t idx = 0; idx != n; idx++) {
- DSample &DS = features->preprocessed_features[sample_idx++];
- DS.set_size(features->lag_n);
-
- if (Cfg.random_nums[idx] > cutoff) {
- sample_idx--;
- continue;
- }
-
- for (size_t feature_idx = 0; feature_idx != features->lag_n + 1; feature_idx++)
- DS(feature_idx) = features->src[idx + feature_idx];
- }
-
- features->preprocessed_features.resize(sample_idx);
-}
-
-static void
-ml_features_preprocess(ml_features_t *features)
-{
- ml_features_diff(features);
- ml_features_smooth(features);
- ml_features_lag(features);
-}
-
-/*
- * KMeans
-*/
-
-static void
-ml_kmeans_init(ml_kmeans_t *kmeans)
-{
- kmeans->cluster_centers.reserve(2);
- kmeans->min_dist = std::numeric_limits<calculated_number_t>::max();
- kmeans->max_dist = std::numeric_limits<calculated_number_t>::min();
-}
-
-static void
-ml_kmeans_train(ml_kmeans_t *kmeans, const ml_features_t *features, time_t after, time_t before)
-{
- kmeans->after = (uint32_t) after;
- kmeans->before = (uint32_t) before;
-
- kmeans->min_dist = std::numeric_limits<calculated_number_t>::max();
- kmeans->max_dist = std::numeric_limits<calculated_number_t>::min();
-
- kmeans->cluster_centers.clear();
-
- dlib::pick_initial_centers(2, kmeans->cluster_centers, features->preprocessed_features);
- dlib::find_clusters_using_kmeans(features->preprocessed_features, kmeans->cluster_centers, Cfg.max_kmeans_iters);
-
- for (const auto &preprocessed_feature : features->preprocessed_features) {
- calculated_number_t mean_dist = 0.0;
-
- for (const auto &cluster_center : kmeans->cluster_centers) {
- mean_dist += dlib::length(cluster_center - preprocessed_feature);
- }
-
- mean_dist /= kmeans->cluster_centers.size();
-
- if (mean_dist < kmeans->min_dist)
- kmeans->min_dist = mean_dist;
-
- if (mean_dist > kmeans->max_dist)
- kmeans->max_dist = mean_dist;
- }
-}
-
-static calculated_number_t
-ml_kmeans_anomaly_score(const ml_kmeans_t *kmeans, const DSample &DS)
-{
- calculated_number_t mean_dist = 0.0;
- for (const auto &CC: kmeans->cluster_centers)
- mean_dist += dlib::length(CC - DS);
-
- mean_dist /= kmeans->cluster_centers.size();
-
- if (kmeans->max_dist == kmeans->min_dist)
- return 0.0;
-
- calculated_number_t anomaly_score = 100.0 * std::abs((mean_dist - kmeans->min_dist) / (kmeans->max_dist - kmeans->min_dist));
- return (anomaly_score > 100.0) ? 100.0 : anomaly_score;
-}
-
-/*
- * Queue
-*/
-
-static ml_queue_t *
-ml_queue_init()
-{
- ml_queue_t *q = new ml_queue_t();
-
- netdata_mutex_init(&q->mutex);
- pthread_cond_init(&q->cond_var, NULL);
- q->exit = false;
- return q;
-}
-
-static void
-ml_queue_destroy(ml_queue_t *q)
-{
- netdata_mutex_destroy(&q->mutex);
- pthread_cond_destroy(&q->cond_var);
- delete q;
-}
-
-static void
-ml_queue_push(ml_queue_t *q, const ml_training_request_t req)
-{
- netdata_mutex_lock(&q->mutex);
- q->internal.push(req);
- pthread_cond_signal(&q->cond_var);
- netdata_mutex_unlock(&q->mutex);
-}
-
-static ml_training_request_t
-ml_queue_pop(ml_queue_t *q)
-{
- netdata_mutex_lock(&q->mutex);
-
- ml_training_request_t req = {
- {'\0'}, // machine_guid
- NULL, // chart id
- NULL, // dimension id
- 0, // current time
- 0, // first entry
- 0 // last entry
- };
-
- while (q->internal.empty()) {
- pthread_cond_wait(&q->cond_var, &q->mutex);
-
- if (q->exit) {
- netdata_mutex_unlock(&q->mutex);
-
- // We return a dummy request because the queue has been signaled
- return req;
- }
- }
-
- req = q->internal.front();
- q->internal.pop();
-
- netdata_mutex_unlock(&q->mutex);
- return req;
-}
-
-static size_t
-ml_queue_size(ml_queue_t *q)
-{
- netdata_mutex_lock(&q->mutex);
- size_t size = q->internal.size();
- netdata_mutex_unlock(&q->mutex);
- return size;
-}
-
-static void
-ml_queue_signal(ml_queue_t *q)
-{
- netdata_mutex_lock(&q->mutex);
- q->exit = true;
- pthread_cond_signal(&q->cond_var);
- netdata_mutex_unlock(&q->mutex);
-}
-
-/*
- * Dimension
-*/
-
-static std::pair<calculated_number_t *, ml_training_response_t>
-ml_dimension_calculated_numbers(ml_training_thread_t *training_thread, ml_dimension_t *dim, const ml_training_request_t &training_request)
-{
- ml_training_response_t training_response = {};
-
- training_response.request_time = training_request.request_time;
- training_response.first_entry_on_request = training_request.first_entry_on_request;
- training_response.last_entry_on_request = training_request.last_entry_on_request;
-
- training_response.first_entry_on_response = rrddim_first_entry_s_of_tier(dim->rd, 0);
- training_response.last_entry_on_response = rrddim_last_entry_s_of_tier(dim->rd, 0);
-
- size_t min_n = Cfg.min_train_samples;
- size_t max_n = Cfg.max_train_samples;
-
- // Figure out what our time window should be.
- training_response.query_before_t = training_response.last_entry_on_response;
- training_response.query_after_t = std::max(
- training_response.query_before_t - static_cast<time_t>((max_n - 1) * dim->rd->rrdset->update_every),
- training_response.first_entry_on_response
- );
-
- if (training_response.query_after_t >= training_response.query_before_t) {
- training_response.result = TRAINING_RESULT_INVALID_QUERY_TIME_RANGE;
- return { NULL, training_response };
- }
-
- if (rrdset_is_replicating(dim->rd->rrdset)) {
- training_response.result = TRAINING_RESULT_CHART_UNDER_REPLICATION;
- return { NULL, training_response };
- }
-
- /*
- * Execute the query
- */
- struct storage_engine_query_handle handle;
-
- storage_engine_query_init(dim->rd->tiers[0].backend, dim->rd->tiers[0].db_metric_handle, &handle,
- training_response.query_after_t, training_response.query_before_t,
- STORAGE_PRIORITY_BEST_EFFORT);
-
- size_t idx = 0;
- memset(training_thread->training_cns, 0, sizeof(calculated_number_t) * max_n * (Cfg.lag_n + 1));
- calculated_number_t last_value = std::numeric_limits<calculated_number_t>::quiet_NaN();
-
- while (!storage_engine_query_is_finished(&handle)) {
- if (idx == max_n)
- break;
-
- STORAGE_POINT sp = storage_engine_query_next_metric(&handle);
-
- time_t timestamp = sp.end_time_s;
- calculated_number_t value = sp.sum / sp.count;
-
- if (netdata_double_isnumber(value)) {
- if (!training_response.db_after_t)
- training_response.db_after_t = timestamp;
- training_response.db_before_t = timestamp;
-
- training_thread->training_cns[idx] = value;
- last_value = training_thread->training_cns[idx];
- training_response.collected_values++;
- } else
- training_thread->training_cns[idx] = last_value;
-
- idx++;
- }
- storage_engine_query_finalize(&handle);
-
- global_statistics_ml_query_completed(/* points_read */ idx);
-
- training_response.total_values = idx;
- if (training_response.collected_values < min_n) {
- training_response.result = TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES;
- return { NULL, training_response };
- }
-
- // Find first non-NaN value.
- for (idx = 0; std::isnan(training_thread->training_cns[idx]); idx++, training_response.total_values--) { }
-
- // Overwrite NaN values.
- if (idx != 0)
- memmove(training_thread->training_cns, &training_thread->training_cns[idx], sizeof(calculated_number_t) * training_response.total_values);
-
- training_response.result = TRAINING_RESULT_OK;
- return { training_thread->training_cns, training_response };
-}
-
-const char *db_models_create_table =
- "CREATE TABLE IF NOT EXISTS models("
- " dim_id BLOB, after INT, before INT,"
- " min_dist REAL, max_dist REAL,"
- " c00 REAL, c01 REAL, c02 REAL, c03 REAL, c04 REAL, c05 REAL,"
- " c10 REAL, c11 REAL, c12 REAL, c13 REAL, c14 REAL, c15 REAL,"
- " PRIMARY KEY(dim_id, after)"
- ");";
-
-const char *db_models_add_model =
- "INSERT OR REPLACE INTO models("
- " dim_id, after, before,"
- " min_dist, max_dist,"
- " c00, c01, c02, c03, c04, c05,"
- " c10, c11, c12, c13, c14, c15)"
- "VALUES("
- " @dim_id, @after, @before,"
- " @min_dist, @max_dist,"
- " @c00, @c01, @c02, @c03, @c04, @c05,"
- " @c10, @c11, @c12, @c13, @c14, @c15);";
-
-const char *db_models_load =
- "SELECT * FROM models "
- "WHERE dim_id = @dim_id AND after >= @after ORDER BY before ASC;";
-
-const char *db_models_delete =
- "DELETE FROM models "
- "WHERE dim_id = @dim_id AND before < @before;";
-
-const char *db_models_prune =
- "DELETE FROM models "
- "WHERE after < @after LIMIT @n;";
-
-static int
-ml_dimension_add_model(const uuid_t *metric_uuid, const ml_kmeans_t *km)
-{
- static __thread sqlite3_stmt *res = NULL;
- int param = 0;
- int rc = 0;
-
- if (unlikely(!db)) {
- error_report("Database has not been initialized");
- return 1;
- }
-
- if (unlikely(!res)) {
- rc = prepare_statement(db, db_models_add_model, &res);
- if (unlikely(rc != SQLITE_OK)) {
- error_report("Failed to prepare statement to store model, rc = %d", rc);
- return 1;
- }
- }
-
- rc = sqlite3_bind_blob(res, ++param, metric_uuid, sizeof(*metric_uuid), SQLITE_STATIC);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- rc = sqlite3_bind_int(res, ++param, (int) km->after);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- rc = sqlite3_bind_int(res, ++param, (int) km->before);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- rc = sqlite3_bind_double(res, ++param, km->min_dist);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- rc = sqlite3_bind_double(res, ++param, km->max_dist);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- if (km->cluster_centers.size() != 2)
- fatal("Expected 2 cluster centers, got %zu", km->cluster_centers.size());
-
- for (const DSample &ds : km->cluster_centers) {
- if (ds.size() != 6)
- fatal("Expected dsample with 6 dimensions, got %ld", ds.size());
-
- for (long idx = 0; idx != ds.size(); idx++) {
- calculated_number_t cn = ds(idx);
- int rc = sqlite3_bind_double(res, ++param, cn);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
- }
- }
-
- rc = execute_insert(res);
- if (unlikely(rc != SQLITE_DONE)) {
- error_report("Failed to store model, rc = %d", rc);
- return rc;
- }
-
- rc = sqlite3_reset(res);
- if (unlikely(rc != SQLITE_OK)) {
- error_report("Failed to reset statement when storing model, rc = %d", rc);
- return rc;
- }
-
- return 0;
-
-bind_fail:
- error_report("Failed to bind parameter %d to store model, rc = %d", param, rc);
- rc = sqlite3_reset(res);
- if (unlikely(rc != SQLITE_OK))
- error_report("Failed to reset statement to store model, rc = %d", rc);
- return rc;
-}
-
-static int
-ml_dimension_delete_models(const uuid_t *metric_uuid, time_t before)
-{
- static __thread sqlite3_stmt *res = NULL;
- int rc = 0;
- int param = 0;
-
- if (unlikely(!db)) {
- error_report("Database has not been initialized");
- return 1;
- }
-
- if (unlikely(!res)) {
- rc = prepare_statement(db, db_models_delete, &res);
- if (unlikely(rc != SQLITE_OK)) {
- error_report("Failed to prepare statement to delete models, rc = %d", rc);
- return rc;
- }
- }
-
- rc = sqlite3_bind_blob(res, ++param, metric_uuid, sizeof(*metric_uuid), SQLITE_STATIC);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- rc = sqlite3_bind_int(res, ++param, (int) before);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- rc = execute_insert(res);
- if (unlikely(rc != SQLITE_DONE)) {
- error_report("Failed to delete models, rc = %d", rc);
- return rc;
- }
-
- rc = sqlite3_reset(res);
- if (unlikely(rc != SQLITE_OK)) {
- error_report("Failed to reset statement when deleting models, rc = %d", rc);
- return rc;
- }
-
- return 0;
-
-bind_fail:
- error_report("Failed to bind parameter %d to delete models, rc = %d", param, rc);
- rc = sqlite3_reset(res);
- if (unlikely(rc != SQLITE_OK))
- error_report("Failed to reset statement to delete models, rc = %d", rc);
- return rc;
-}
-
-static int
-ml_prune_old_models(size_t num_models_to_prune)
-{
- static __thread sqlite3_stmt *res = NULL;
- int rc = 0;
- int param = 0;
-
- if (unlikely(!db)) {
- error_report("Database has not been initialized");
- return 1;
- }
-
- if (unlikely(!res)) {
- rc = prepare_statement(db, db_models_prune, &res);
- if (unlikely(rc != SQLITE_OK)) {
- error_report("Failed to prepare statement to prune models, rc = %d", rc);
- return rc;
- }
- }
-
- int after = (int) (now_realtime_sec() - Cfg.delete_models_older_than);
-
- rc = sqlite3_bind_int(res, ++param, after);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- rc = sqlite3_bind_int(res, ++param, num_models_to_prune);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- rc = execute_insert(res);
- if (unlikely(rc != SQLITE_DONE)) {
- error_report("Failed to prune old models, rc = %d", rc);
- return rc;
- }
-
- rc = sqlite3_reset(res);
- if (unlikely(rc != SQLITE_OK)) {
- error_report("Failed to reset statement when pruning old models, rc = %d", rc);
- return rc;
- }
-
- return 0;
-
-bind_fail:
- error_report("Failed to bind parameter %d to prune old models, rc = %d", param, rc);
- rc = sqlite3_reset(res);
- if (unlikely(rc != SQLITE_OK))
- error_report("Failed to reset statement to prune old models, rc = %d", rc);
- return rc;
-}
-
-int ml_dimension_load_models(RRDDIM *rd, sqlite3_stmt **active_stmt) {
- ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
- if (!dim)
- return 0;
-
- spinlock_lock(&dim->slock);
- bool is_empty = dim->km_contexts.empty();
- spinlock_unlock(&dim->slock);
-
- if (!is_empty)
- return 0;
-
- std::vector<ml_kmeans_t> V;
-
- sqlite3_stmt *res = active_stmt ? *active_stmt : NULL;
- int rc = 0;
- int param = 0;
-
- if (unlikely(!db)) {
- error_report("Database has not been initialized");
- return 1;
- }
-
- if (unlikely(!res)) {
- rc = sqlite3_prepare_v2(db, db_models_load, -1, &res, NULL);
- if (unlikely(rc != SQLITE_OK)) {
- error_report("Failed to prepare statement to load models, rc = %d", rc);
- return 1;
- }
- if (active_stmt)
- *active_stmt = res;
- }
-
- rc = sqlite3_bind_blob(res, ++param, &dim->rd->metric_uuid, sizeof(dim->rd->metric_uuid), SQLITE_STATIC);
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- rc = sqlite3_bind_int64(res, ++param, now_realtime_sec() - (Cfg.num_models_to_use * Cfg.max_train_samples));
- if (unlikely(rc != SQLITE_OK))
- goto bind_fail;
-
- spinlock_lock(&dim->slock);
-
- dim->km_contexts.reserve(Cfg.num_models_to_use);
- while ((rc = sqlite3_step_monitored(res)) == SQLITE_ROW) {
- ml_kmeans_t km;
-
- km.after = sqlite3_column_int(res, 2);
- km.before = sqlite3_column_int(res, 3);
-
- km.min_dist = sqlite3_column_int(res, 4);
- km.max_dist = sqlite3_column_int(res, 5);
-
- km.cluster_centers.resize(2);
-
- km.cluster_centers[0].set_size(Cfg.lag_n + 1);
- km.cluster_centers[0](0) = sqlite3_column_double(res, 6);
- km.cluster_centers[0](1) = sqlite3_column_double(res, 7);
- km.cluster_centers[0](2) = sqlite3_column_double(res, 8);
- km.cluster_centers[0](3) = sqlite3_column_double(res, 9);
- km.cluster_centers[0](4) = sqlite3_column_double(res, 10);
- km.cluster_centers[0](5) = sqlite3_column_double(res, 11);
-
- km.cluster_centers[1].set_size(Cfg.lag_n + 1);
- km.cluster_centers[1](0) = sqlite3_column_double(res, 12);
- km.cluster_centers[1](1) = sqlite3_column_double(res, 13);
- km.cluster_centers[1](2) = sqlite3_column_double(res, 14);
- km.cluster_centers[1](3) = sqlite3_column_double(res, 15);
- km.cluster_centers[1](4) = sqlite3_column_double(res, 16);
- km.cluster_centers[1](5) = sqlite3_column_double(res, 17);
-
- dim->km_contexts.push_back(km);
- }
-
- if (!dim->km_contexts.empty()) {
- dim->ts = TRAINING_STATUS_TRAINED;
- }
-
- spinlock_unlock(&dim->slock);
-
- if (unlikely(rc != SQLITE_DONE))
- error_report("Failed to load models, rc = %d", rc);
-
- if (active_stmt)
- rc = sqlite3_reset(res);
- else
- rc = sqlite3_finalize(res);
- if (unlikely(rc != SQLITE_OK))
- error_report("Failed to %s statement when loading models, rc = %d", active_stmt ? "reset" : "finalize", rc);
-
- return 0;
-
-bind_fail:
- error_report("Failed to bind parameter %d to load models, rc = %d", param, rc);
- rc = sqlite3_reset(res);
- if (unlikely(rc != SQLITE_OK))
- error_report("Failed to reset statement to load models, rc = %d", rc);
- return 1;
-}
-
-static enum ml_training_result
-ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *dim, const ml_training_request_t &training_request)
-{
- worker_is_busy(WORKER_TRAIN_QUERY);
- auto P = ml_dimension_calculated_numbers(training_thread, dim, training_request);
- ml_training_response_t training_response = P.second;
-
- if (training_response.result != TRAINING_RESULT_OK) {
- spinlock_lock(&dim->slock);
-
- dim->mt = METRIC_TYPE_CONSTANT;
-
- switch (dim->ts) {
- case TRAINING_STATUS_PENDING_WITH_MODEL:
- dim->ts = TRAINING_STATUS_TRAINED;
- break;
- case TRAINING_STATUS_PENDING_WITHOUT_MODEL:
- dim->ts = TRAINING_STATUS_UNTRAINED;
- break;
- default:
- break;
- }
-
- dim->suppression_anomaly_counter = 0;
- dim->suppression_window_counter = 0;
- dim->tr = training_response;
-
- dim->last_training_time = training_response.last_entry_on_response;
- enum ml_training_result result = training_response.result;
-
- spinlock_unlock(&dim->slock);
-
- return result;
- }
-
- // compute kmeans
- worker_is_busy(WORKER_TRAIN_KMEANS);
- {
- memcpy(training_thread->scratch_training_cns, training_thread->training_cns,
- training_response.total_values * sizeof(calculated_number_t));
-
- ml_features_t features = {
- Cfg.diff_n, Cfg.smooth_n, Cfg.lag_n,
- training_thread->scratch_training_cns, training_response.total_values,
- training_thread->training_cns, training_response.total_values,
- training_thread->training_samples
- };
- ml_features_preprocess(&features);
-
- ml_kmeans_init(&dim->kmeans);
- ml_kmeans_train(&dim->kmeans, &features, training_response.query_after_t, training_response.query_before_t);
- }
-
- // update models
- worker_is_busy(WORKER_TRAIN_UPDATE_MODELS);
- {
- spinlock_lock(&dim->slock);
-
- if (dim->km_contexts.size() < Cfg.num_models_to_use) {
- dim->km_contexts.push_back(std::move(dim->kmeans));
- } else {
- bool can_drop_middle_km = false;
-
- if (Cfg.num_models_to_use > 2) {
- const ml_kmeans_t *old_km = &dim->km_contexts[dim->km_contexts.size() - 1];
- const ml_kmeans_t *middle_km = &dim->km_contexts[dim->km_contexts.size() - 2];
- const ml_kmeans_t *new_km = &dim->kmeans;
-
- can_drop_middle_km = (middle_km->after < old_km->before) &&
- (middle_km->before > new_km->after);
- }
-
- if (can_drop_middle_km) {
- dim->km_contexts.back() = dim->kmeans;
- } else {
- std::rotate(std::begin(dim->km_contexts), std::begin(dim->km_contexts) + 1, std::end(dim->km_contexts));
- dim->km_contexts[dim->km_contexts.size() - 1] = std::move(dim->kmeans);
- }
- }
-
- dim->mt = METRIC_TYPE_CONSTANT;
- dim->ts = TRAINING_STATUS_TRAINED;
-
- dim->suppression_anomaly_counter = 0;
- dim->suppression_window_counter = 0;
-
- dim->tr = training_response;
- dim->last_training_time = rrddim_last_entry_s(dim->rd);
-
- // Add the newly generated model to the list of pending models to flush
- ml_model_info_t model_info;
- uuid_copy(model_info.metric_uuid, dim->rd->metric_uuid);
- model_info.kmeans = dim->km_contexts.back();
- training_thread->pending_model_info.push_back(model_info);
-
- spinlock_unlock(&dim->slock);
- }
-
- return training_response.result;
-}
-
-static void
-ml_dimension_schedule_for_training(ml_dimension_t *dim, time_t curr_time)
-{
- switch (dim->mt) {
- case METRIC_TYPE_CONSTANT:
- return;
- default:
- break;
- }
-
- bool schedule_for_training = false;
-
- switch (dim->ts) {
- case TRAINING_STATUS_PENDING_WITH_MODEL:
- case TRAINING_STATUS_PENDING_WITHOUT_MODEL:
- schedule_for_training = false;
- break;
- case TRAINING_STATUS_UNTRAINED:
- schedule_for_training = true;
- dim->ts = TRAINING_STATUS_PENDING_WITHOUT_MODEL;
- break;
- case TRAINING_STATUS_SILENCED:
- case TRAINING_STATUS_TRAINED:
- if ((dim->last_training_time + (Cfg.train_every * dim->rd->rrdset->update_every)) < curr_time) {
- schedule_for_training = true;
- dim->ts = TRAINING_STATUS_PENDING_WITH_MODEL;
- }
- break;
- }
-
- if (schedule_for_training) {
- ml_training_request_t req;
-
- memcpy(req.machine_guid, dim->rd->rrdset->rrdhost->machine_guid, GUID_LEN + 1);
- req.chart_id = string_dup(dim->rd->rrdset->id);
- req.dimension_id = string_dup(dim->rd->id);
- req.request_time = curr_time;
- req.first_entry_on_request = rrddim_first_entry_s(dim->rd);
- req.last_entry_on_request = rrddim_last_entry_s(dim->rd);
-
- ml_host_t *host = (ml_host_t *) dim->rd->rrdset->rrdhost->ml_host;
- ml_queue_push(host->training_queue, req);
- }
-}
-
-static bool
-ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t value, bool exists)
-{
- // Nothing to do if ML is disabled for this dimension
- if (dim->mls != MACHINE_LEARNING_STATUS_ENABLED)
- return false;
-
- // Don't treat values that don't exist as anomalous
- if (!exists) {
- dim->cns.clear();
- return false;
- }
-
- // Save the value and return if we don't have enough values for a sample
- unsigned n = Cfg.diff_n + Cfg.smooth_n + Cfg.lag_n;
- if (dim->cns.size() < n) {
- dim->cns.push_back(value);
- return false;
- }
-
- // Push the value and check if it's different from the last one
- bool same_value = true;
- std::rotate(std::begin(dim->cns), std::begin(dim->cns) + 1, std::end(dim->cns));
- if (dim->cns[n - 1] != value)
- same_value = false;
- dim->cns[n - 1] = value;
-
- // Create the sample
- assert((n * (Cfg.lag_n + 1) <= 128) &&
- "Static buffers too small to perform prediction. "
- "This should not be possible with the default clamping of feature extraction options");
- calculated_number_t src_cns[128];
- calculated_number_t dst_cns[128];
-
- memset(src_cns, 0, n * (Cfg.lag_n + 1) * sizeof(calculated_number_t));
- memcpy(src_cns, dim->cns.data(), n * sizeof(calculated_number_t));
- memcpy(dst_cns, dim->cns.data(), n * sizeof(calculated_number_t));
-
- ml_features_t features = {
- Cfg.diff_n, Cfg.smooth_n, Cfg.lag_n,
- dst_cns, n, src_cns, n,
- dim->feature
- };
- ml_features_preprocess(&features);
-
- /*
- * Lock to predict and possibly schedule the dimension for training
- */
- if (spinlock_trylock(&dim->slock) == 0)
- return false;
-
- // Mark the metric time as variable if we received different values
- if (!same_value)
- dim->mt = METRIC_TYPE_VARIABLE;
-
- // Decide if the dimension needs to be scheduled for training
- ml_dimension_schedule_for_training(dim, curr_time);
-
- // Nothing to do if we don't have a model
- switch (dim->ts) {
- case TRAINING_STATUS_UNTRAINED:
- case TRAINING_STATUS_PENDING_WITHOUT_MODEL: {
- case TRAINING_STATUS_SILENCED:
- spinlock_unlock(&dim->slock);
- return false;
- }
- default:
- break;
- }
-
- dim->suppression_window_counter++;
-
- /*
- * Use the KMeans models to check if the value is anomalous
- */
-
- size_t sum = 0;
- size_t models_consulted = 0;
-
- for (const auto &km_ctx : dim->km_contexts) {
- models_consulted++;
-
- calculated_number_t anomaly_score = ml_kmeans_anomaly_score(&km_ctx, features.preprocessed_features[0]);
- if (anomaly_score == std::numeric_limits<calculated_number_t>::quiet_NaN())
- continue;
-
- if (anomaly_score < (100 * Cfg.dimension_anomaly_score_threshold)) {
- global_statistics_ml_models_consulted(models_consulted);
- spinlock_unlock(&dim->slock);
- return false;
- }
-
- sum += 1;
- }
-
- dim->suppression_anomaly_counter += sum ? 1 : 0;
-
- if ((dim->suppression_anomaly_counter >= Cfg.suppression_threshold) &&
- (dim->suppression_window_counter >= Cfg.suppression_window)) {
- dim->ts = TRAINING_STATUS_SILENCED;
- }
-
- spinlock_unlock(&dim->slock);
-
- global_statistics_ml_models_consulted(models_consulted);
- return sum;
-}
-
-/*
- * Chart
-*/
-
-static bool
-ml_chart_is_available_for_ml(ml_chart_t *chart)
-{
- return rrdset_is_available_for_exporting_and_alarms(chart->rs);
-}
-
-void
-ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous)
-{
- switch (dim->mls) {
- case MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART:
- chart->mls.num_machine_learning_status_disabled_sp++;
- return;
- case MACHINE_LEARNING_STATUS_ENABLED: {
- chart->mls.num_machine_learning_status_enabled++;
-
- switch (dim->mt) {
- case METRIC_TYPE_CONSTANT:
- chart->mls.num_metric_type_constant++;
- chart->mls.num_training_status_trained++;
- chart->mls.num_normal_dimensions++;
- return;
- case METRIC_TYPE_VARIABLE:
- chart->mls.num_metric_type_variable++;
- break;
- }
-
- switch (dim->ts) {
- case TRAINING_STATUS_UNTRAINED:
- chart->mls.num_training_status_untrained++;
- return;
- case TRAINING_STATUS_PENDING_WITHOUT_MODEL:
- chart->mls.num_training_status_pending_without_model++;
- return;
- case TRAINING_STATUS_TRAINED:
- chart->mls.num_training_status_trained++;
-
- chart->mls.num_anomalous_dimensions += is_anomalous;
- chart->mls.num_normal_dimensions += !is_anomalous;
- return;
- case TRAINING_STATUS_PENDING_WITH_MODEL:
- chart->mls.num_training_status_pending_with_model++;
-
- chart->mls.num_anomalous_dimensions += is_anomalous;
- chart->mls.num_normal_dimensions += !is_anomalous;
- return;
- case TRAINING_STATUS_SILENCED:
- chart->mls.num_training_status_silenced++;
- chart->mls.num_training_status_trained++;
-
- chart->mls.num_anomalous_dimensions += is_anomalous;
- chart->mls.num_normal_dimensions += !is_anomalous;
- return;
- }
-
- return;
- }
- }
-}
-
-/*
- * Host detection & training functions
-*/
-
-#define WORKER_JOB_DETECTION_COLLECT_STATS 0
-#define WORKER_JOB_DETECTION_DIM_CHART 1
-#define WORKER_JOB_DETECTION_HOST_CHART 2
-#define WORKER_JOB_DETECTION_STATS 3
-
-static void
-ml_host_detect_once(ml_host_t *host)
-{
- worker_is_busy(WORKER_JOB_DETECTION_COLLECT_STATS);
-
- host->mls = {};
- ml_machine_learning_stats_t mls_copy = {};
-
- if (host->ml_running) {
- netdata_mutex_lock(&host->mutex);
-
- /*
- * prediction/detection stats
- */
- void *rsp = NULL;
- rrdset_foreach_read(rsp, host->rh) {
- RRDSET *rs = static_cast<RRDSET *>(rsp);
-
- ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
- if (!chart)
- continue;
-
- if (!ml_chart_is_available_for_ml(chart))
- continue;
-
- ml_machine_learning_stats_t chart_mls = chart->mls;
-
- host->mls.num_machine_learning_status_enabled += chart_mls.num_machine_learning_status_enabled;
- host->mls.num_machine_learning_status_disabled_sp += chart_mls.num_machine_learning_status_disabled_sp;
-
- host->mls.num_metric_type_constant += chart_mls.num_metric_type_constant;
- host->mls.num_metric_type_variable += chart_mls.num_metric_type_variable;
-
- host->mls.num_training_status_untrained += chart_mls.num_training_status_untrained;
- host->mls.num_training_status_pending_without_model += chart_mls.num_training_status_pending_without_model;
- host->mls.num_training_status_trained += chart_mls.num_training_status_trained;
- host->mls.num_training_status_pending_with_model += chart_mls.num_training_status_pending_with_model;
- host->mls.num_training_status_silenced += chart_mls.num_training_status_silenced;
-
- host->mls.num_anomalous_dimensions += chart_mls.num_anomalous_dimensions;
- host->mls.num_normal_dimensions += chart_mls.num_normal_dimensions;
-
- STRING *key = rs->parts.type;
- auto &um = host->type_anomaly_rate;
- auto it = um.find(key);
- if (it == um.end()) {
- um[key] = ml_type_anomaly_rate_t {
- .rd = NULL,
- .normal_dimensions = 0,
- .anomalous_dimensions = 0
- };
- it = um.find(key);
- }
-
- it->second.anomalous_dimensions += chart_mls.num_anomalous_dimensions;
- it->second.normal_dimensions += chart_mls.num_normal_dimensions;
- }
- rrdset_foreach_done(rsp);
-
- host->host_anomaly_rate = 0.0;
- size_t NumActiveDimensions = host->mls.num_anomalous_dimensions + host->mls.num_normal_dimensions;
- if (NumActiveDimensions)
- host->host_anomaly_rate = static_cast<double>(host->mls.num_anomalous_dimensions) / NumActiveDimensions;
-
- mls_copy = host->mls;
-
- netdata_mutex_unlock(&host->mutex);
- } else {
- host->host_anomaly_rate = 0.0;
-
- auto &um = host->type_anomaly_rate;
- for (auto &entry: um) {
- entry.second = ml_type_anomaly_rate_t {
- .rd = NULL,
- .normal_dimensions = 0,
- .anomalous_dimensions = 0
- };
- }
- }
-
- worker_is_busy(WORKER_JOB_DETECTION_DIM_CHART);
- ml_update_dimensions_chart(host, mls_copy);
-
- worker_is_busy(WORKER_JOB_DETECTION_HOST_CHART);
- ml_update_host_and_detection_rate_charts(host, host->host_anomaly_rate * 10000.0);
-}
-
-typedef struct {
- RRDHOST_ACQUIRED *acq_rh;
- RRDSET_ACQUIRED *acq_rs;
- RRDDIM_ACQUIRED *acq_rd;
- ml_dimension_t *dim;
-} ml_acquired_dimension_t;
-
-static ml_acquired_dimension_t
-ml_acquired_dimension_get(char *machine_guid, STRING *chart_id, STRING *dimension_id)
-{
- RRDHOST_ACQUIRED *acq_rh = NULL;
- RRDSET_ACQUIRED *acq_rs = NULL;
- RRDDIM_ACQUIRED *acq_rd = NULL;
- ml_dimension_t *dim = NULL;
-
- rrd_rdlock();
-
- acq_rh = rrdhost_find_and_acquire(machine_guid);
- if (acq_rh) {
- RRDHOST *rh = rrdhost_acquired_to_rrdhost(acq_rh);
- if (rh && !rrdhost_flag_check(rh, RRDHOST_FLAG_ORPHAN | RRDHOST_FLAG_ARCHIVED)) {
- acq_rs = rrdset_find_and_acquire(rh, string2str(chart_id));
- if (acq_rs) {
- RRDSET *rs = rrdset_acquired_to_rrdset(acq_rs);
- if (rs && !rrdset_flag_check(rs, RRDSET_FLAG_OBSOLETE)) {
- acq_rd = rrddim_find_and_acquire(rs, string2str(dimension_id));
- if (acq_rd) {
- RRDDIM *rd = rrddim_acquired_to_rrddim(acq_rd);
- if (rd)
- dim = (ml_dimension_t *) rd->ml_dimension;
- }
- }
- }
- }
- }
-
- rrd_unlock();
-
- ml_acquired_dimension_t acq_dim = {
- acq_rh, acq_rs, acq_rd, dim
- };
-
- return acq_dim;
-}
-
-static void
-ml_acquired_dimension_release(ml_acquired_dimension_t acq_dim)
-{
- if (acq_dim.acq_rd)
- rrddim_acquired_release(acq_dim.acq_rd);
-
- if (acq_dim.acq_rs)
- rrdset_acquired_release(acq_dim.acq_rs);
-
- if (acq_dim.acq_rh)
- rrdhost_acquired_release(acq_dim.acq_rh);
-}
-
-static enum ml_training_result
-ml_acquired_dimension_train(ml_training_thread_t *training_thread, ml_acquired_dimension_t acq_dim, const ml_training_request_t &tr)
-{
- if (!acq_dim.dim)
- return TRAINING_RESULT_NULL_ACQUIRED_DIMENSION;
-
- return ml_dimension_train_model(training_thread, acq_dim.dim, tr);
-}
-
-static void *
-ml_detect_main(void *arg)
-{
- UNUSED(arg);
-
- worker_register("MLDETECT");
- worker_register_job_name(WORKER_JOB_DETECTION_COLLECT_STATS, "collect stats");
- worker_register_job_name(WORKER_JOB_DETECTION_DIM_CHART, "dim chart");
- worker_register_job_name(WORKER_JOB_DETECTION_HOST_CHART, "host chart");
- worker_register_job_name(WORKER_JOB_DETECTION_STATS, "training stats");
-
- heartbeat_t hb;
- heartbeat_init(&hb);
-
- while (!Cfg.detection_stop) {
- worker_is_idle();
- heartbeat_next(&hb, USEC_PER_SEC);
-
- RRDHOST *rh;
- rrd_rdlock();
- rrdhost_foreach_read(rh) {
- if (!rh->ml_host)
- continue;
-
- ml_host_detect_once((ml_host_t *) rh->ml_host);
- }
- rrd_unlock();
-
- if (Cfg.enable_statistics_charts) {
- // collect and update training thread stats
- for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
- ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
-
- netdata_mutex_lock(&training_thread->nd_mutex);
- ml_training_stats_t training_stats = training_thread->training_stats;
- training_thread->training_stats = {};
- netdata_mutex_unlock(&training_thread->nd_mutex);
-
- // calc the avg values
- if (training_stats.num_popped_items) {
- training_stats.queue_size /= training_stats.num_popped_items;
- training_stats.allotted_ut /= training_stats.num_popped_items;
- training_stats.consumed_ut /= training_stats.num_popped_items;
- training_stats.remaining_ut /= training_stats.num_popped_items;
- } else {
- training_stats.queue_size = ml_queue_size(training_thread->training_queue);
- training_stats.consumed_ut = 0;
- training_stats.remaining_ut = training_stats.allotted_ut;
-
- training_stats.training_result_ok = 0;
- training_stats.training_result_invalid_query_time_range = 0;
- training_stats.training_result_not_enough_collected_values = 0;
- training_stats.training_result_null_acquired_dimension = 0;
- training_stats.training_result_chart_under_replication = 0;
- }
-
- ml_update_training_statistics_chart(training_thread, training_stats);
- }
- }
- }
-
- return NULL;
-}
-
-/*
- * Public API
-*/
-
-bool ml_capable()
-{
- return true;
-}
-
-bool ml_enabled(RRDHOST *rh)
-{
- if (!rh)
- return false;
-
- if (!Cfg.enable_anomaly_detection)
- return false;
-
- if (simple_pattern_matches(Cfg.sp_host_to_skip, rrdhost_hostname(rh)))
- return false;
-
- return true;
-}
-
-bool ml_streaming_enabled()
-{
- return Cfg.stream_anomaly_detection_charts;
-}
-
-void ml_host_new(RRDHOST *rh)
-{
- if (!ml_enabled(rh))
- return;
-
- ml_host_t *host = new ml_host_t();
-
- host->rh = rh;
- host->mls = ml_machine_learning_stats_t();
- host->host_anomaly_rate = 0.0;
- host->anomaly_rate_rs = NULL;
-
- static std::atomic<size_t> times_called(0);
- host->training_queue = Cfg.training_threads[times_called++ % Cfg.num_training_threads].training_queue;
-
- netdata_mutex_init(&host->mutex);
-
- host->ml_running = true;
- rh->ml_host = (rrd_ml_host_t *) host;
-}
-
-void ml_host_delete(RRDHOST *rh)
-{
- ml_host_t *host = (ml_host_t *) rh->ml_host;
- if (!host)
- return;
-
- netdata_mutex_destroy(&host->mutex);
-
- delete host;
- rh->ml_host = NULL;
-}
-
-void ml_host_start(RRDHOST *rh) {
- ml_host_t *host = (ml_host_t *) rh->ml_host;
- if (!host)
- return;
-
- host->ml_running = true;
-}
-
-void ml_host_stop(RRDHOST *rh) {
- ml_host_t *host = (ml_host_t *) rh->ml_host;
- if (!host || !host->ml_running)
- return;
-
- netdata_mutex_lock(&host->mutex);
-
- // reset host stats
- host->mls = ml_machine_learning_stats_t();
-
- // reset charts/dims
- void *rsp = NULL;
- rrdset_foreach_read(rsp, host->rh) {
- RRDSET *rs = static_cast<RRDSET *>(rsp);
-
- ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
- if (!chart)
- continue;
-
- // reset chart
- chart->mls = ml_machine_learning_stats_t();
-
- void *rdp = NULL;
- rrddim_foreach_read(rdp, rs) {
- RRDDIM *rd = static_cast<RRDDIM *>(rdp);
-
- ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
- if (!dim)
- continue;
-
- spinlock_lock(&dim->slock);
-
- // reset dim
- // TODO: should we drop in-mem models, or mark them as stale? Is it
- // okay to resume training straight away?
-
- dim->mt = METRIC_TYPE_CONSTANT;
- dim->ts = TRAINING_STATUS_UNTRAINED;
- dim->last_training_time = 0;
- dim->suppression_anomaly_counter = 0;
- dim->suppression_window_counter = 0;
- dim->cns.clear();
-
- ml_kmeans_init(&dim->kmeans);
-
- spinlock_unlock(&dim->slock);
- }
- rrddim_foreach_done(rdp);
- }
- rrdset_foreach_done(rsp);
-
- netdata_mutex_unlock(&host->mutex);
-
- host->ml_running = false;
-}
-
-void ml_host_get_info(RRDHOST *rh, BUFFER *wb)
-{
- ml_host_t *host = (ml_host_t *) rh->ml_host;
- if (!host) {
- buffer_json_member_add_boolean(wb, "enabled", false);
- return;
- }
-
- buffer_json_member_add_uint64(wb, "version", 1);
-
- buffer_json_member_add_boolean(wb, "enabled", Cfg.enable_anomaly_detection);
-
- buffer_json_member_add_uint64(wb, "min-train-samples", Cfg.min_train_samples);
- buffer_json_member_add_uint64(wb, "max-train-samples", Cfg.max_train_samples);
- buffer_json_member_add_uint64(wb, "train-every", Cfg.train_every);
-
- buffer_json_member_add_uint64(wb, "diff-n", Cfg.diff_n);
- buffer_json_member_add_uint64(wb, "smooth-n", Cfg.smooth_n);
- buffer_json_member_add_uint64(wb, "lag-n", Cfg.lag_n);
-
- buffer_json_member_add_double(wb, "random-sampling-ratio", Cfg.random_sampling_ratio);
- buffer_json_member_add_uint64(wb, "max-kmeans-iters", Cfg.random_sampling_ratio);
-
- buffer_json_member_add_double(wb, "dimension-anomaly-score-threshold", Cfg.dimension_anomaly_score_threshold);
-
- buffer_json_member_add_string(wb, "anomaly-detection-grouping-method",
- time_grouping_method2string(Cfg.anomaly_detection_grouping_method));
-
- buffer_json_member_add_int64(wb, "anomaly-detection-query-duration", Cfg.anomaly_detection_query_duration);
-
- buffer_json_member_add_string(wb, "hosts-to-skip", Cfg.hosts_to_skip.c_str());
- buffer_json_member_add_string(wb, "charts-to-skip", Cfg.charts_to_skip.c_str());
-}
-
-void ml_host_get_detection_info(RRDHOST *rh, BUFFER *wb)
-{
- ml_host_t *host = (ml_host_t *) rh->ml_host;
- if (!host)
- return;
-
- netdata_mutex_lock(&host->mutex);
-
- buffer_json_member_add_uint64(wb, "version", 2);
- buffer_json_member_add_uint64(wb, "ml-running", host->ml_running);
- buffer_json_member_add_uint64(wb, "anomalous-dimensions", host->mls.num_anomalous_dimensions);
- buffer_json_member_add_uint64(wb, "normal-dimensions", host->mls.num_normal_dimensions);
- buffer_json_member_add_uint64(wb, "total-dimensions", host->mls.num_anomalous_dimensions +
- host->mls.num_normal_dimensions);
- buffer_json_member_add_uint64(wb, "trained-dimensions", host->mls.num_training_status_trained +
- host->mls.num_training_status_pending_with_model);
- netdata_mutex_unlock(&host->mutex);
-}
-
-bool ml_host_get_host_status(RRDHOST *rh, struct ml_metrics_statistics *mlm) {
- ml_host_t *host = (ml_host_t *) rh->ml_host;
- if (!host) {
- memset(mlm, 0, sizeof(*mlm));
- return false;
- }
-
- netdata_mutex_lock(&host->mutex);
-
- mlm->anomalous = host->mls.num_anomalous_dimensions;
- mlm->normal = host->mls.num_normal_dimensions;
- mlm->trained = host->mls.num_training_status_trained + host->mls.num_training_status_pending_with_model;
- mlm->pending = host->mls.num_training_status_untrained + host->mls.num_training_status_pending_without_model;
- mlm->silenced = host->mls.num_training_status_silenced;
-
- netdata_mutex_unlock(&host->mutex);
-
- return true;
-}
-
-bool ml_host_running(RRDHOST *rh) {
- ml_host_t *host = (ml_host_t *) rh->ml_host;
- if(!host)
- return false;
-
- return true;
-}
-
-void ml_host_get_models(RRDHOST *rh, BUFFER *wb)
-{
- UNUSED(rh);
- UNUSED(wb);
-
- // TODO: To be implemented
- netdata_log_error("Fetching KMeans models is not supported yet");
-}
-
-void ml_chart_new(RRDSET *rs)
-{
- ml_host_t *host = (ml_host_t *) rs->rrdhost->ml_host;
- if (!host)
- return;
-
- ml_chart_t *chart = new ml_chart_t();
-
- chart->rs = rs;
- chart->mls = ml_machine_learning_stats_t();
-
- rs->ml_chart = (rrd_ml_chart_t *) chart;
-}
-
-void ml_chart_delete(RRDSET *rs)
-{
- ml_host_t *host = (ml_host_t *) rs->rrdhost->ml_host;
- if (!host)
- return;
-
- ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
-
- delete chart;
- rs->ml_chart = NULL;
-}
-
-bool ml_chart_update_begin(RRDSET *rs)
-{
- ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
- if (!chart)
- return false;
-
- chart->mls = {};
- return true;
-}
-
-void ml_chart_update_end(RRDSET *rs)
-{
- ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
- if (!chart)
- return;
-}
-
-void ml_dimension_new(RRDDIM *rd)
-{
- ml_chart_t *chart = (ml_chart_t *) rd->rrdset->ml_chart;
- if (!chart)
- return;
-
- ml_dimension_t *dim = new ml_dimension_t();
-
- dim->rd = rd;
-
- dim->mt = METRIC_TYPE_CONSTANT;
- dim->ts = TRAINING_STATUS_UNTRAINED;
- dim->last_training_time = 0;
- dim->suppression_anomaly_counter = 0;
- dim->suppression_window_counter = 0;
-
- ml_kmeans_init(&dim->kmeans);
-
- if (simple_pattern_matches(Cfg.sp_charts_to_skip, rrdset_name(rd->rrdset)))
- dim->mls = MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART;
- else
- dim->mls = MACHINE_LEARNING_STATUS_ENABLED;
-
- spinlock_init(&dim->slock);
-
- dim->km_contexts.reserve(Cfg.num_models_to_use);
-
- rd->ml_dimension = (rrd_ml_dimension_t *) dim;
-
- metaqueue_ml_load_models(rd);
-}
-
-void ml_dimension_delete(RRDDIM *rd)
-{
- ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
- if (!dim)
- return;
-
- delete dim;
- rd->ml_dimension = NULL;
-}
-
-bool ml_dimension_is_anomalous(RRDDIM *rd, time_t curr_time, double value, bool exists)
-{
- ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
- if (!dim)
- return false;
-
- ml_host_t *host = (ml_host_t *) rd->rrdset->rrdhost->ml_host;
- if (!host->ml_running)
- return false;
-
- ml_chart_t *chart = (ml_chart_t *) rd->rrdset->ml_chart;
-
- bool is_anomalous = ml_dimension_predict(dim, curr_time, value, exists);
- ml_chart_update_dimension(chart, dim, is_anomalous);
-
- return is_anomalous;
-}
-
-static void ml_flush_pending_models(ml_training_thread_t *training_thread) {
- int op_no = 1;
-
- // begin transaction
- int rc = db_execute(db, "BEGIN TRANSACTION;");
-
- // add/delete models
- if (!rc) {
- op_no++;
-
- for (const auto &pending_model: training_thread->pending_model_info) {
- if (!rc)
- rc = ml_dimension_add_model(&pending_model.metric_uuid, &pending_model.kmeans);
-
- if (!rc)
- rc = ml_dimension_delete_models(&pending_model.metric_uuid, pending_model.kmeans.before - (Cfg.num_models_to_use * Cfg.train_every));
- }
- }
-
- // prune old models
- if (!rc) {
- if ((training_thread->num_db_transactions % 64) == 0) {
- rc = ml_prune_old_models(training_thread->num_models_to_prune);
- if (!rc)
- training_thread->num_models_to_prune = 0;
- }
- }
-
- // commit transaction
- if (!rc) {
- op_no++;
- rc = db_execute(db, "COMMIT TRANSACTION;");
- }
-
- // rollback transaction on failure
- if (rc) {
- netdata_log_error("Trying to rollback ML transaction because it failed with rc=%d, op_no=%d", rc, op_no);
- op_no++;
- rc = db_execute(db, "ROLLBACK;");
- if (rc)
- netdata_log_error("ML transaction rollback failed with rc=%d", rc);
- }
-
- if (!rc) {
- training_thread->num_db_transactions++;
- training_thread->num_models_to_prune += training_thread->pending_model_info.size();
- }
-
- vacuum_database(db, "ML", 0, 0);
-
- training_thread->pending_model_info.clear();
-}
-
-static void *ml_train_main(void *arg) {
- ml_training_thread_t *training_thread = (ml_training_thread_t *) arg;
-
- char worker_name[1024];
- snprintfz(worker_name, 1024, "training_thread_%zu", training_thread->id);
- worker_register("MLTRAIN");
-
- worker_register_job_name(WORKER_TRAIN_QUEUE_POP, "pop queue");
- worker_register_job_name(WORKER_TRAIN_ACQUIRE_DIMENSION, "acquire");
- worker_register_job_name(WORKER_TRAIN_QUERY, "query");
- worker_register_job_name(WORKER_TRAIN_KMEANS, "kmeans");
- worker_register_job_name(WORKER_TRAIN_UPDATE_MODELS, "update models");
- worker_register_job_name(WORKER_TRAIN_RELEASE_DIMENSION, "release");
- worker_register_job_name(WORKER_TRAIN_UPDATE_HOST, "update host");
- worker_register_job_name(WORKER_TRAIN_FLUSH_MODELS, "flush models");
-
- while (!Cfg.training_stop) {
- worker_is_busy(WORKER_TRAIN_QUEUE_POP);
-
- ml_training_request_t training_req = ml_queue_pop(training_thread->training_queue);
-
- // we know this thread has been cancelled, when the queue starts
- // returning "null" requests without blocking on queue's pop().
- if (training_req.chart_id == NULL)
- break;
-
- size_t queue_size = ml_queue_size(training_thread->training_queue) + 1;
-
- usec_t allotted_ut = (Cfg.train_every * USEC_PER_SEC) / queue_size;
- if (allotted_ut > USEC_PER_SEC)
- allotted_ut = USEC_PER_SEC;
-
- usec_t start_ut = now_monotonic_usec();
-
- enum ml_training_result training_res;
- {
- worker_is_busy(WORKER_TRAIN_ACQUIRE_DIMENSION);
- ml_acquired_dimension_t acq_dim = ml_acquired_dimension_get(
- training_req.machine_guid,
- training_req.chart_id,
- training_req.dimension_id);
-
- training_res = ml_acquired_dimension_train(training_thread, acq_dim, training_req);
-
- string_freez(training_req.chart_id);
- string_freez(training_req.dimension_id);
-
- worker_is_busy(WORKER_TRAIN_RELEASE_DIMENSION);
- ml_acquired_dimension_release(acq_dim);
- }
-
- usec_t consumed_ut = now_monotonic_usec() - start_ut;
-
- usec_t remaining_ut = 0;
- if (consumed_ut < allotted_ut)
- remaining_ut = allotted_ut - consumed_ut;
-
- if (Cfg.enable_statistics_charts) {
- worker_is_busy(WORKER_TRAIN_UPDATE_HOST);
-
- netdata_mutex_lock(&training_thread->nd_mutex);
-
- training_thread->training_stats.queue_size += queue_size;
- training_thread->training_stats.num_popped_items += 1;
-
- training_thread->training_stats.allotted_ut += allotted_ut;
- training_thread->training_stats.consumed_ut += consumed_ut;
- training_thread->training_stats.remaining_ut += remaining_ut;
-
- switch (training_res) {
- case TRAINING_RESULT_OK:
- training_thread->training_stats.training_result_ok += 1;
- break;
- case TRAINING_RESULT_INVALID_QUERY_TIME_RANGE:
- training_thread->training_stats.training_result_invalid_query_time_range += 1;
- break;
- case TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES:
- training_thread->training_stats.training_result_not_enough_collected_values += 1;
- break;
- case TRAINING_RESULT_NULL_ACQUIRED_DIMENSION:
- training_thread->training_stats.training_result_null_acquired_dimension += 1;
- break;
- case TRAINING_RESULT_CHART_UNDER_REPLICATION:
- training_thread->training_stats.training_result_chart_under_replication += 1;
- break;
- }
-
- netdata_mutex_unlock(&training_thread->nd_mutex);
- }
-
- if (training_thread->pending_model_info.size() >= Cfg.flush_models_batch_size) {
- worker_is_busy(WORKER_TRAIN_FLUSH_MODELS);
- netdata_mutex_lock(&db_mutex);
- ml_flush_pending_models(training_thread);
- netdata_mutex_unlock(&db_mutex);
- continue;
- }
-
- worker_is_idle();
- std::this_thread::sleep_for(std::chrono::microseconds{remaining_ut});
- }
-
- return NULL;
-}
-
-void ml_init()
-{
- // Read config values
- ml_config_load(&Cfg);
-
- if (!Cfg.enable_anomaly_detection)
- return;
-
- // Generate random numbers to efficiently sample the features we need
- // for KMeans clustering.
- std::random_device RD;
- std::mt19937 Gen(RD());
-
- Cfg.random_nums.reserve(Cfg.max_train_samples);
- for (size_t Idx = 0; Idx != Cfg.max_train_samples; Idx++)
- Cfg.random_nums.push_back(Gen());
-
- // init training thread-specific data
- Cfg.training_threads.resize(Cfg.num_training_threads);
- for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
- ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
-
- size_t max_elements_needed_for_training = (size_t) Cfg.max_train_samples * (size_t) (Cfg.lag_n + 1);
- training_thread->training_cns = new calculated_number_t[max_elements_needed_for_training]();
- training_thread->scratch_training_cns = new calculated_number_t[max_elements_needed_for_training]();
-
- training_thread->id = idx;
- training_thread->training_queue = ml_queue_init();
- training_thread->pending_model_info.reserve(Cfg.flush_models_batch_size);
- netdata_mutex_init(&training_thread->nd_mutex);
- }
-
- // open sqlite db
- char path[FILENAME_MAX];
- snprintfz(path, FILENAME_MAX - 1, "%s/%s", netdata_configured_cache_dir, "ml.db");
- int rc = sqlite3_open(path, &db);
- if (rc != SQLITE_OK) {
- error_report("Failed to initialize database at %s, due to \"%s\"", path, sqlite3_errstr(rc));
- sqlite3_close(db);
- db = NULL;
- }
-
- // create table
- if (db) {
- int target_version = perform_ml_database_migration(db, ML_METADATA_VERSION);
- if (configure_sqlite_database(db, target_version)) {
- error_report("Failed to setup ML database");
- sqlite3_close(db);
- db = NULL;
- }
- else {
- char *err = NULL;
- int rc = sqlite3_exec(db, db_models_create_table, NULL, NULL, &err);
- if (rc != SQLITE_OK) {
- error_report("Failed to create models table (%s, %s)", sqlite3_errstr(rc), err ? err : "");
- sqlite3_close(db);
- sqlite3_free(err);
- db = NULL;
- }
- }
- }
-}
-
-void ml_fini() {
- if (!Cfg.enable_anomaly_detection)
- return;
-
- int rc = sqlite3_close_v2(db);
- if (unlikely(rc != SQLITE_OK))
- error_report("Error %d while closing the SQLite database, %s", rc, sqlite3_errstr(rc));
-}
-
-void ml_start_threads() {
- if (!Cfg.enable_anomaly_detection)
- return;
-
- // start detection & training threads
- Cfg.detection_stop = false;
- Cfg.training_stop = false;
-
- char tag[NETDATA_THREAD_TAG_MAX + 1];
-
- snprintfz(tag, NETDATA_THREAD_TAG_MAX, "%s", "PREDICT");
- netdata_thread_create(&Cfg.detection_thread, tag, NETDATA_THREAD_OPTION_JOINABLE, ml_detect_main, NULL);
-
- for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
- ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
- snprintfz(tag, NETDATA_THREAD_TAG_MAX, "TRAIN[%zu]", training_thread->id);
- netdata_thread_create(&training_thread->nd_thread, tag, NETDATA_THREAD_OPTION_JOINABLE, ml_train_main, training_thread);
- }
-}
-
-void ml_stop_threads()
-{
- if (!Cfg.enable_anomaly_detection)
- return;
-
- Cfg.detection_stop = true;
- Cfg.training_stop = true;
-
- if (!Cfg.detection_thread)
- return;
-
- netdata_thread_cancel(Cfg.detection_thread);
- netdata_thread_join(Cfg.detection_thread, NULL);
-
- // signal the training queue of each thread
- for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
- ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
-
- ml_queue_signal(training_thread->training_queue);
- }
-
- // cancel training threads
- for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
- ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
-
- netdata_thread_cancel(training_thread->nd_thread);
- }
-
- // join training threads
- for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
- ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
-
- netdata_thread_join(training_thread->nd_thread, NULL);
- }
-
- // clear training thread data
- for (size_t idx = 0; idx != Cfg.num_training_threads; idx++) {
- ml_training_thread_t *training_thread = &Cfg.training_threads[idx];
-
- delete[] training_thread->training_cns;
- delete[] training_thread->scratch_training_cns;
- ml_queue_destroy(training_thread->training_queue);
- netdata_mutex_destroy(&training_thread->nd_mutex);
- }
-}