diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-07-20 04:49:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2023-07-20 04:49:55 +0000 |
commit | ab1bb5b7f1c3c3a7b240ab7fc8661459ecd7decb (patch) | |
tree | 7a900833aad3ccc685712c6c2a7d87576d54f427 /ml/ml.cc | |
parent | Adding upstream version 1.40.1. (diff) | |
download | netdata-ab1bb5b7f1c3c3a7b240ab7fc8661459ecd7decb.tar.xz netdata-ab1bb5b7f1c3c3a7b240ab7fc8661459ecd7decb.zip |
Adding upstream version 1.41.0.upstream/1.41.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/ml.cc')
-rw-r--r-- | ml/ml.cc | 157 |
1 files changed, 124 insertions, 33 deletions
@@ -337,7 +337,7 @@ ml_dimension_calculated_numbers(ml_training_thread_t *training_thread, ml_dimens // Figure out what our time window should be. training_response.query_before_t = training_response.last_entry_on_response; training_response.query_after_t = std::max( - training_response.query_before_t - static_cast<time_t>((max_n - 1) * dim->rd->update_every), + training_response.query_before_t - static_cast<time_t>((max_n - 1) * dim->rd->rrdset->update_every), training_response.first_entry_on_response ); @@ -568,9 +568,9 @@ int ml_dimension_load_models(RRDDIM *rd) { if (!dim) return 0; - netdata_mutex_lock(&dim->mutex); + spinlock_lock(&dim->slock); bool is_empty = dim->km_contexts.empty(); - netdata_mutex_unlock(&dim->mutex); + spinlock_unlock(&dim->slock); if (!is_empty) return 0; @@ -602,7 +602,7 @@ int ml_dimension_load_models(RRDDIM *rd) { if (unlikely(rc != SQLITE_OK)) goto bind_fail; - netdata_mutex_lock(&dim->mutex); + spinlock_lock(&dim->slock); dim->km_contexts.reserve(Cfg.num_models_to_use); while ((rc = sqlite3_step_monitored(res)) == SQLITE_ROW) { @@ -639,7 +639,7 @@ int ml_dimension_load_models(RRDDIM *rd) { dim->ts = TRAINING_STATUS_TRAINED; } - netdata_mutex_unlock(&dim->mutex); + spinlock_unlock(&dim->slock); if (unlikely(rc != SQLITE_DONE)) error_report("Failed to load models, rc = %d", rc); @@ -666,7 +666,7 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t * ml_training_response_t training_response = P.second; if (training_response.result != TRAINING_RESULT_OK) { - netdata_mutex_lock(&dim->mutex); + spinlock_lock(&dim->slock); dim->mt = METRIC_TYPE_CONSTANT; @@ -687,7 +687,8 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t * dim->last_training_time = training_response.last_entry_on_response; enum ml_training_result result = training_response.result; - netdata_mutex_unlock(&dim->mutex); + + spinlock_unlock(&dim->slock); return result; } @@ -713,7 +714,7 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t * // update models worker_is_busy(WORKER_TRAIN_UPDATE_MODELS); { - netdata_mutex_lock(&dim->mutex); + spinlock_lock(&dim->slock); if (dim->km_contexts.size() < Cfg.num_models_to_use) { dim->km_contexts.push_back(std::move(dim->kmeans)); @@ -752,7 +753,7 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t * model_info.kmeans = dim->km_contexts.back(); training_thread->pending_model_info.push_back(model_info); - netdata_mutex_unlock(&dim->mutex); + spinlock_unlock(&dim->slock); } return training_response.result; @@ -781,7 +782,7 @@ ml_dimension_schedule_for_training(ml_dimension_t *dim, time_t curr_time) break; case TRAINING_STATUS_SILENCED: case TRAINING_STATUS_TRAINED: - if ((dim->last_training_time + (Cfg.train_every * dim->rd->update_every)) < curr_time) { + if ((dim->last_training_time + (Cfg.train_every * dim->rd->rrdset->update_every)) < curr_time) { schedule_for_training = true; dim->ts = TRAINING_STATUS_PENDING_WITH_MODEL; } @@ -851,7 +852,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t /* * Lock to predict and possibly schedule the dimension for training */ - if (netdata_mutex_trylock(&dim->mutex) != 0) + if (spinlock_trylock(&dim->slock) == 0) return false; // Mark the metric time as variable if we received different values @@ -866,7 +867,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t case TRAINING_STATUS_UNTRAINED: case TRAINING_STATUS_PENDING_WITHOUT_MODEL: { case TRAINING_STATUS_SILENCED: - netdata_mutex_unlock(&dim->mutex); + spinlock_unlock(&dim->slock); return false; } default: @@ -891,7 +892,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t if (anomaly_score < (100 * Cfg.dimension_anomaly_score_threshold)) { global_statistics_ml_models_consulted(models_consulted); - netdata_mutex_unlock(&dim->mutex); + spinlock_unlock(&dim->slock); return false; } @@ -905,7 +906,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t dim->ts = TRAINING_STATUS_SILENCED; } - netdata_mutex_unlock(&dim->mutex); + spinlock_unlock(&dim->slock); global_statistics_ml_models_consulted(models_consulted); return sum; @@ -992,7 +993,7 @@ ml_host_detect_once(ml_host_t *host) host->mls = {}; ml_machine_learning_stats_t mls_copy = {}; - { + if (host->ml_running) { netdata_mutex_lock(&host->mutex); /* @@ -1036,6 +1037,8 @@ ml_host_detect_once(ml_host_t *host) mls_copy = host->mls; netdata_mutex_unlock(&host->mutex); + } else { + host->host_anomaly_rate = 0.0; } worker_is_busy(WORKER_JOB_DETECTION_DIM_CHART); @@ -1213,15 +1216,14 @@ void ml_host_new(RRDHOST *rh) host->rh = rh; host->mls = ml_machine_learning_stats_t(); - //host->ts = ml_training_stats_t(); + host->host_anomaly_rate = 0.0; static std::atomic<size_t> times_called(0); host->training_queue = Cfg.training_threads[times_called++ % Cfg.num_training_threads].training_queue; - host->host_anomaly_rate = 0.0; - netdata_mutex_init(&host->mutex); + host->ml_running = true; rh->ml_host = (rrd_ml_host_t *) host; } @@ -1237,6 +1239,70 @@ void ml_host_delete(RRDHOST *rh) rh->ml_host = NULL; } +void ml_host_start(RRDHOST *rh) { + ml_host_t *host = (ml_host_t *) rh->ml_host; + if (!host) + return; + + host->ml_running = true; +} + +void ml_host_stop(RRDHOST *rh) { + ml_host_t *host = (ml_host_t *) rh->ml_host; + if (!host || !host->ml_running) + return; + + netdata_mutex_lock(&host->mutex); + + // reset host stats + host->mls = ml_machine_learning_stats_t(); + + // reset charts/dims + void *rsp = NULL; + rrdset_foreach_read(rsp, host->rh) { + RRDSET *rs = static_cast<RRDSET *>(rsp); + + ml_chart_t *chart = (ml_chart_t *) rs->ml_chart; + if (!chart) + continue; + + // reset chart + chart->mls = ml_machine_learning_stats_t(); + + void *rdp = NULL; + rrddim_foreach_read(rdp, rs) { + RRDDIM *rd = static_cast<RRDDIM *>(rdp); + + ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension; + if (!dim) + continue; + + spinlock_lock(&dim->slock); + + // reset dim + // TODO: should we drop in-mem models, or mark them as stale? Is it + // okay to resume training straight away? + + dim->mt = METRIC_TYPE_CONSTANT; + dim->ts = TRAINING_STATUS_UNTRAINED; + dim->last_training_time = 0; + dim->suppression_anomaly_counter = 0; + dim->suppression_window_counter = 0; + dim->cns.clear(); + + ml_kmeans_init(&dim->kmeans); + + spinlock_unlock(&dim->slock); + } + rrddim_foreach_done(rdp); + } + rrdset_foreach_done(rsp); + + netdata_mutex_unlock(&host->mutex); + + host->ml_running = false; +} + void ml_host_get_info(RRDHOST *rh, BUFFER *wb) { ml_host_t *host = (ml_host_t *) rh->ml_host; @@ -1279,7 +1345,8 @@ void ml_host_get_detection_info(RRDHOST *rh, BUFFER *wb) netdata_mutex_lock(&host->mutex); - buffer_json_member_add_uint64(wb, "version", 1); + buffer_json_member_add_uint64(wb, "version", 2); + buffer_json_member_add_uint64(wb, "ml-running", host->ml_running); buffer_json_member_add_uint64(wb, "anomalous-dimensions", host->mls.num_anomalous_dimensions); buffer_json_member_add_uint64(wb, "normal-dimensions", host->mls.num_normal_dimensions); buffer_json_member_add_uint64(wb, "total-dimensions", host->mls.num_anomalous_dimensions + @@ -1289,13 +1356,41 @@ void ml_host_get_detection_info(RRDHOST *rh, BUFFER *wb) netdata_mutex_unlock(&host->mutex); } +bool ml_host_get_host_status(RRDHOST *rh, struct ml_metrics_statistics *mlm) { + ml_host_t *host = (ml_host_t *) rh->ml_host; + if (!host) { + memset(mlm, 0, sizeof(*mlm)); + return false; + } + + netdata_mutex_lock(&host->mutex); + + mlm->anomalous = host->mls.num_anomalous_dimensions; + mlm->normal = host->mls.num_normal_dimensions; + mlm->trained = host->mls.num_training_status_trained + host->mls.num_training_status_pending_with_model; + mlm->pending = host->mls.num_training_status_untrained + host->mls.num_training_status_pending_without_model; + mlm->silenced = host->mls.num_training_status_silenced; + + netdata_mutex_unlock(&host->mutex); + + return true; +} + +bool ml_host_running(RRDHOST *rh) { + ml_host_t *host = (ml_host_t *) rh->ml_host; + if(!host) + return false; + + return true; +} + void ml_host_get_models(RRDHOST *rh, BUFFER *wb) { UNUSED(rh); UNUSED(wb); // TODO: To be implemented - error("Fetching KMeans models is not supported yet"); + netdata_log_error("Fetching KMeans models is not supported yet"); } void ml_chart_new(RRDSET *rs) @@ -1309,8 +1404,6 @@ void ml_chart_new(RRDSET *rs) chart->rs = rs; chart->mls = ml_machine_learning_stats_t(); - netdata_mutex_init(&chart->mutex); - rs->ml_chart = (rrd_ml_chart_t *) chart; } @@ -1322,8 +1415,6 @@ void ml_chart_delete(RRDSET *rs) ml_chart_t *chart = (ml_chart_t *) rs->ml_chart; - netdata_mutex_destroy(&chart->mutex); - delete chart; rs->ml_chart = NULL; } @@ -1334,7 +1425,6 @@ bool ml_chart_update_begin(RRDSET *rs) if (!chart) return false; - netdata_mutex_lock(&chart->mutex); chart->mls = {}; return true; } @@ -1344,8 +1434,6 @@ void ml_chart_update_end(RRDSET *rs) ml_chart_t *chart = (ml_chart_t *) rs->ml_chart; if (!chart) return; - - netdata_mutex_unlock(&chart->mutex); } void ml_dimension_new(RRDDIM *rd) @@ -1360,8 +1448,9 @@ void ml_dimension_new(RRDDIM *rd) dim->mt = METRIC_TYPE_CONSTANT; dim->ts = TRAINING_STATUS_UNTRAINED; - dim->last_training_time = 0; + dim->suppression_anomaly_counter = 0; + dim->suppression_window_counter = 0; ml_kmeans_init(&dim->kmeans); @@ -1370,7 +1459,7 @@ void ml_dimension_new(RRDDIM *rd) else dim->mls = MACHINE_LEARNING_STATUS_ENABLED; - netdata_mutex_init(&dim->mutex); + spinlock_init(&dim->slock); dim->km_contexts.reserve(Cfg.num_models_to_use); @@ -1385,8 +1474,6 @@ void ml_dimension_delete(RRDDIM *rd) if (!dim) return; - netdata_mutex_destroy(&dim->mutex); - delete dim; rd->ml_dimension = NULL; } @@ -1397,6 +1484,10 @@ bool ml_dimension_is_anomalous(RRDDIM *rd, time_t curr_time, double value, bool if (!dim) return false; + ml_host_t *host = (ml_host_t *) rd->rrdset->rrdhost->ml_host; + if (!host->ml_running) + return false; + ml_chart_t *chart = (ml_chart_t *) rd->rrdset->ml_chart; bool is_anomalous = ml_dimension_predict(dim, curr_time, value, exists); @@ -1428,11 +1519,11 @@ static void ml_flush_pending_models(ml_training_thread_t *training_thread) { // try to rollback transaction if we got any failures if (rc) { - error("Trying to rollback ML transaction because it failed with rc=%d, op_no=%d", rc, op_no); + netdata_log_error("Trying to rollback ML transaction because it failed with rc=%d, op_no=%d", rc, op_no); op_no++; rc = db_execute(db, "ROLLBACK;"); if (rc) - error("ML transaction rollback failed with rc=%d", rc); + netdata_log_error("ML transaction rollback failed with rc=%d", rc); } training_thread->pending_model_info.clear(); |