diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2022-11-30 18:47:00 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2022-11-30 18:47:00 +0000 |
commit | 03bf87dcb06f7021bfb2df2fa8691593c6148aff (patch) | |
tree | e16b06711a2ed77cafb4b7754be0220c3d14a9d7 /ml/ml.cc | |
parent | Adding upstream version 1.36.1. (diff) | |
download | netdata-03bf87dcb06f7021bfb2df2fa8691593c6148aff.tar.xz netdata-03bf87dcb06f7021bfb2df2fa8691593c6148aff.zip |
Adding upstream version 1.37.0.upstream/1.37.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/ml.cc')
-rw-r--r-- | ml/ml.cc | 99 |
1 files changed, 13 insertions, 86 deletions
@@ -16,7 +16,7 @@ bool ml_enabled(RRDHOST *RH) { if (!Cfg.EnableAnomalyDetection) return false; - if (simple_pattern_matches(Cfg.SP_HostsToSkip, RH->hostname)) + if (simple_pattern_matches(Cfg.SP_HostsToSkip, rrdhost_hostname(RH))) return false; return true; @@ -76,7 +76,7 @@ void ml_new_dimension(RRDDIM *RD) { if (static_cast<unsigned>(RD->update_every) != H->updateEvery()) return; - if (simple_pattern_matches(Cfg.SP_ChartsToSkip, RS->name)) + if (simple_pattern_matches(Cfg.SP_ChartsToSkip, rrdset_name(RS))) return; Dimension *D = new Dimension(RD); @@ -108,7 +108,7 @@ char *ml_get_host_info(RRDHOST *RH) { ConfigJson["enabled"] = false; } - return strdup(ConfigJson.dump(2, '\t').c_str()); + return strdupz(ConfigJson.dump(2, '\t').c_str()); } char *ml_get_host_runtime_info(RRDHOST *RH) { @@ -124,97 +124,24 @@ char *ml_get_host_runtime_info(RRDHOST *RH) { return strdup(ConfigJson.dump(1, '\t').c_str()); } -bool ml_is_anomalous(RRDDIM *RD, double Value, bool Exists) { - Dimension *D = static_cast<Dimension *>(RD->ml_dimension); - if (!D) - return false; - - D->addValue(Value, Exists); - bool Result = D->predict().second; - return Result; -} - -char *ml_get_anomaly_events(RRDHOST *RH, const char *AnomalyDetectorName, - int AnomalyDetectorVersion, time_t After, time_t Before) { - if (!RH || !RH->ml_host) { - error("No host"); - return nullptr; - } - - Host *H = static_cast<Host *>(RH->ml_host); - std::vector<std::pair<time_t, time_t>> TimeRanges; - - bool Res = H->getAnomaliesInRange(TimeRanges, AnomalyDetectorName, - AnomalyDetectorVersion, - H->getUUID(), - After, Before); - if (!Res) { - error("DB result is empty"); - return nullptr; - } - - nlohmann::json Json = TimeRanges; - return strdup(Json.dump(4).c_str()); -} - -char *ml_get_anomaly_event_info(RRDHOST *RH, const char *AnomalyDetectorName, - int AnomalyDetectorVersion, time_t After, time_t Before) { - if (!RH || !RH->ml_host) { - error("No host"); - return nullptr; - } - - Host *H = static_cast<Host *>(RH->ml_host); +char *ml_get_host_models(RRDHOST *RH) { + nlohmann::json ModelsJson; - nlohmann::json Json; - bool Res = H->getAnomalyInfo(Json, AnomalyDetectorName, - AnomalyDetectorVersion, - H->getUUID(), - After, Before); - if (!Res) { - error("DB result is empty"); - return nullptr; + if (RH && RH->ml_host) { + Host *H = static_cast<Host *>(RH->ml_host); + H->getModelsAsJson(ModelsJson); + return strdup(ModelsJson.dump(2, '\t').c_str()); } - return strdup(Json.dump(4, '\t').c_str()); -} - -void ml_process_rrdr(RRDR *R, int MaxAnomalyRates) { - if (R->rows != 1) - return; - - if (MaxAnomalyRates < 1 || MaxAnomalyRates >= R->d) - return; - - NETDATA_DOUBLE *CNs = R->v; - RRDR_DIMENSION_FLAGS *DimFlags = R->od; - - std::vector<std::pair<NETDATA_DOUBLE, int>> V; - - V.reserve(R->d); - for (int Idx = 0; Idx != R->d; Idx++) - V.emplace_back(CNs[Idx], Idx); - - std::sort(V.rbegin(), V.rend()); - - for (int Idx = MaxAnomalyRates; Idx != R->d; Idx++) { - int UnsortedIdx = V[Idx].second; - - int OldFlags = static_cast<int>(DimFlags[UnsortedIdx]); - int NewFlags = OldFlags | RRDR_DIMENSION_HIDDEN; - - DimFlags[UnsortedIdx] = static_cast<rrdr_dimension_flag>(NewFlags); - } + return nullptr; } -void ml_dimension_update_name(RRDSET *RS, RRDDIM *RD, const char *Name) { - (void) RS; - +bool ml_is_anomalous(RRDDIM *RD, double Value, bool Exists) { Dimension *D = static_cast<Dimension *>(RD->ml_dimension); if (!D) - return; + return false; - D->setAnomalyRateRDName(Name); + return D->predict(Value, Exists); } bool ml_streaming_enabled() { |