diff options
Diffstat (limited to 'database/sqlite/sqlite3.h')
-rw-r--r-- | database/sqlite/sqlite3.h | 541 |
1 files changed, 497 insertions, 44 deletions
diff --git a/database/sqlite/sqlite3.h b/database/sqlite/sqlite3.h index 3274bbe07..de393da9d 100644 --- a/database/sqlite/sqlite3.h +++ b/database/sqlite/sqlite3.h @@ -43,7 +43,30 @@ extern "C" { /* -** Provide the ability to override linkage features of the interface. +** Facilitate override of interface linkage and calling conventions. +** Be aware that these macros may not be used within this particular +** translation of the amalgamation and its associated header file. +** +** The SQLITE_EXTERN and SQLITE_API macros are used to instruct the +** compiler that the target identifier should have external linkage. +** +** The SQLITE_CDECL macro is used to set the calling convention for +** public functions that accept a variable number of arguments. +** +** The SQLITE_APICALL macro is used to set the calling convention for +** public functions that accept a fixed number of arguments. +** +** The SQLITE_STDCALL macro is no longer used and is now deprecated. +** +** The SQLITE_CALLBACK macro is used to set the calling convention for +** function pointers. +** +** The SQLITE_SYSAPI macro is used to set the calling convention for +** functions provided by the operating system. +** +** Currently, the SQLITE_CDECL, SQLITE_APICALL, SQLITE_CALLBACK, and +** SQLITE_SYSAPI macros are used only when building for environments +** that require non-default calling conventions. */ #ifndef SQLITE_EXTERN # define SQLITE_EXTERN extern @@ -123,9 +146,9 @@ extern "C" { ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ -#define SQLITE_VERSION "3.36.0" -#define SQLITE_VERSION_NUMBER 3036000 -#define SQLITE_SOURCE_ID "2021-06-18 18:36:39 5c9a6c06871cb9fe42814af9c039eb6da5427a6ec28f187af7ebfb62eafa66e5" +#define SQLITE_VERSION "3.38.5" +#define SQLITE_VERSION_NUMBER 3038005 +#define SQLITE_SOURCE_ID "2022-05-06 15:25:27 78d9c993d404cdfaa7fdd2973fa1052e3da9f66215cff9c5540ebe55c407d9fe" /* ** CAPI3REF: Run-Time Library Version Numbers @@ -537,12 +560,13 @@ SQLITE_API int sqlite3_exec( #define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) #define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8)) #define SQLITE_CONSTRAINT_PINNED (SQLITE_CONSTRAINT |(11<<8)) +#define SQLITE_CONSTRAINT_DATATYPE (SQLITE_CONSTRAINT |(12<<8)) #define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8)) #define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8)) #define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8)) #define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8)) #define SQLITE_OK_LOAD_PERMANENTLY (SQLITE_OK | (1<<8)) -#define SQLITE_OK_SYMLINK (SQLITE_OK | (2<<8)) +#define SQLITE_OK_SYMLINK (SQLITE_OK | (2<<8)) /* internal use only */ /* ** CAPI3REF: Flags For File Open Operations @@ -550,6 +574,19 @@ SQLITE_API int sqlite3_exec( ** These bit values are intended for use in the ** 3rd parameter to the [sqlite3_open_v2()] interface and ** in the 4th parameter to the [sqlite3_vfs.xOpen] method. +** +** Only those flags marked as "Ok for sqlite3_open_v2()" may be +** used as the third argument to the [sqlite3_open_v2()] interface. +** The other flags have historically been ignored by sqlite3_open_v2(), +** though future versions of SQLite might change so that an error is +** raised if any of the disallowed bits are passed into sqlite3_open_v2(). +** Applications should not depend on the historical behavior. +** +** Note in particular that passing the SQLITE_OPEN_EXCLUSIVE flag into +** [sqlite3_open_v2()] does *not* cause the underlying database file +** to be opened using O_EXCL. Passing SQLITE_OPEN_EXCLUSIVE into +** [sqlite3_open_v2()] has historically be a no-op and might become an +** error in future versions of SQLite. */ #define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */ @@ -572,6 +609,7 @@ SQLITE_API int sqlite3_exec( #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ #define SQLITE_OPEN_NOFOLLOW 0x01000000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_EXRESCODE 0x02000000 /* Extended result codes */ /* Reserved: 0x00F00000 */ /* Legacy compatibility: */ @@ -2464,11 +2502,14 @@ SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64); ** CAPI3REF: Count The Number Of Rows Modified ** METHOD: sqlite3 ** -** ^This function returns the number of rows modified, inserted or +** ^These functions return the number of rows modified, inserted or ** deleted by the most recently completed INSERT, UPDATE or DELETE ** statement on the database connection specified by the only parameter. -** ^Executing any other type of SQL statement does not modify the value -** returned by this function. +** The two functions are identical except for the type of the return value +** and that if the number of rows modified by the most recent INSERT, UPDATE +** or DELETE is greater than the maximum value supported by type "int", then +** the return value of sqlite3_changes() is undefined. ^Executing any other +** type of SQL statement does not modify the value returned by these functions. ** ** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are ** considered - auxiliary changes caused by [CREATE TRIGGER | triggers], @@ -2517,16 +2558,21 @@ SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64); ** </ul> */ SQLITE_API int sqlite3_changes(sqlite3*); +SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3*); /* ** CAPI3REF: Total Number Of Rows Modified ** METHOD: sqlite3 ** -** ^This function returns the total number of rows inserted, modified or +** ^These functions return the total number of rows inserted, modified or ** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed ** since the database connection was opened, including those executed as -** part of trigger programs. ^Executing any other type of SQL statement -** does not affect the value returned by sqlite3_total_changes(). +** part of trigger programs. The two functions are identical except for the +** type of the return value and that if the number of rows modified by the +** connection exceeds the maximum value supported by type "int", then +** the return value of sqlite3_total_changes() is undefined. ^Executing +** any other type of SQL statement does not affect the value returned by +** sqlite3_total_changes(). ** ** ^Changes made as part of [foreign key actions] are included in the ** count, but those made as part of REPLACE constraint resolution are @@ -2554,6 +2600,7 @@ SQLITE_API int sqlite3_changes(sqlite3*); ** </ul> */ SQLITE_API int sqlite3_total_changes(sqlite3*); +SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3*); /* ** CAPI3REF: Interrupt A Long-Running Query @@ -3383,6 +3430,14 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); ** the default shared cache setting provided by ** [sqlite3_enable_shared_cache()].)^ ** +** [[OPEN_EXRESCODE]] ^(<dt>[SQLITE_OPEN_EXRESCODE]</dt> +** <dd>The database connection comes up in "extended result code mode". +** In other words, the database behaves has if +** [sqlite3_extended_result_codes(db,1)] where called on the database +** connection as soon as the connection is created. In addition to setting +** the extended result code mode, this flag also causes [sqlite3_open_v2()] +** to return an extended result code.</dd> +** ** [[OPEN_NOFOLLOW]] ^(<dt>[SQLITE_OPEN_NOFOLLOW]</dt> ** <dd>The database filename is not allowed to be a symbolic link</dd> ** </dl>)^ @@ -3390,7 +3445,15 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); ** If the 3rd parameter to sqlite3_open_v2() is not one of the ** required combinations shown above optionally combined with other ** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits] -** then the behavior is undefined. +** then the behavior is undefined. Historic versions of SQLite +** have silently ignored surplus bits in the flags parameter to +** sqlite3_open_v2(), however that behavior might not be carried through +** into future versions of SQLite and so applications should not rely +** upon it. Note in particular that the SQLITE_OPEN_EXCLUSIVE flag is a no-op +** for sqlite3_open_v2(). The SQLITE_OPEN_EXCLUSIVE does *not* cause +** the open to fail if the database already exists. The SQLITE_OPEN_EXCLUSIVE +** flag is intended for use by the [sqlite3_vfs|VFS interface] only, and not +** by sqlite3_open_v2(). ** ** ^The fourth parameter to sqlite3_open_v2() is the name of the ** [sqlite3_vfs] object that defines the operating system interface that @@ -3761,13 +3824,14 @@ SQLITE_API void sqlite3_free_filename(char*); ** sqlite3_extended_errcode() might change with each API call. ** Except, there are some interfaces that are guaranteed to never ** change the value of the error code. The error-code preserving -** interfaces are: +** interfaces include the following: ** ** <ul> ** <li> sqlite3_errcode() ** <li> sqlite3_extended_errcode() ** <li> sqlite3_errmsg() ** <li> sqlite3_errmsg16() +** <li> sqlite3_error_offset() ** </ul> ** ** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language @@ -3782,6 +3846,13 @@ SQLITE_API void sqlite3_free_filename(char*); ** ^(Memory to hold the error message string is managed internally ** and must not be freed by the application)^. ** +** ^If the most recent error references a specific token in the input +** SQL, the sqlite3_error_offset() interface returns the byte offset +** of the start of that token. ^The byte offset returned by +** sqlite3_error_offset() assumes that the input SQL is UTF8. +** ^If the most recent error does not reference a specific token in the input +** SQL, then the sqlite3_error_offset() function returns -1. +** ** When the serialized [threading mode] is in use, it might be the ** case that a second error occurs on a separate thread in between ** the time of the first error and the call to these interfaces. @@ -3801,6 +3872,7 @@ SQLITE_API int sqlite3_extended_errcode(sqlite3 *db); SQLITE_API const char *sqlite3_errmsg(sqlite3*); SQLITE_API const void *sqlite3_errmsg16(sqlite3*); SQLITE_API const char *sqlite3_errstr(int); +SQLITE_API int sqlite3_error_offset(sqlite3 *db); /* ** CAPI3REF: Prepared Statement Object @@ -4158,12 +4230,17 @@ SQLITE_API int sqlite3_prepare16_v3( ** are managed by SQLite and are automatically freed when the prepared ** statement is finalized. ** ^The string returned by sqlite3_expanded_sql(P), on the other hand, -** is obtained from [sqlite3_malloc()] and must be free by the application +** is obtained from [sqlite3_malloc()] and must be freed by the application ** by passing it to [sqlite3_free()]. +** +** ^The sqlite3_normalized_sql() interface is only available if +** the [SQLITE_ENABLE_NORMALIZE] compile-time option is defined. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt); +#ifdef SQLITE_ENABLE_NORMALIZE SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt); +#endif /* ** CAPI3REF: Determine If An SQL Statement Writes The Database @@ -4207,6 +4284,10 @@ SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt); ** be false. ^Similarly, a CREATE TABLE IF NOT EXISTS statement is a ** read-only no-op if the table already exists, but ** sqlite3_stmt_readonly() still returns false for such a statement. +** +** ^If prepared statement X is an [EXPLAIN] or [EXPLAIN QUERY PLAN] +** statement, then sqlite3_stmt_readonly(X) returns the same value as +** if the EXPLAIN or EXPLAIN QUERY PLAN prefix were omitted. */ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); @@ -4275,6 +4356,8 @@ SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*); ** ** ^The sqlite3_value objects that are passed as parameters into the ** implementation of [application-defined SQL functions] are protected. +** ^The sqlite3_value objects returned by [sqlite3_vtab_rhs_value()] +** are protected. ** ^The sqlite3_value object returned by ** [sqlite3_column_value()] is unprotected. ** Unprotected sqlite3_value objects may only be used as arguments @@ -4896,6 +4979,10 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); ** even empty strings, are always zero-terminated. ^The return ** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer. ** +** ^Strings returned by sqlite3_column_text16() always have the endianness +** which is native to the platform, regardless of the text encoding set +** for the database. +** ** <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an ** [unprotected sqlite3_value] object. In a multithreaded environment, ** an unprotected sqlite3_value object may only be used safely with @@ -4909,7 +4996,7 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); ** [application-defined SQL functions] or [virtual tables], not within ** top-level application code. ** -** The these routines may attempt to convert the datatype of the result. +** These routines may attempt to convert the datatype of the result. ** ^For example, if the internal representation is FLOAT and a text result ** is requested, [sqlite3_snprintf()] is used internally to perform the ** conversion automatically. ^(The following table details the conversions @@ -4934,7 +5021,7 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); ** <tr><td> TEXT <td> BLOB <td> No change ** <tr><td> BLOB <td> INTEGER <td> [CAST] to INTEGER ** <tr><td> BLOB <td> FLOAT <td> [CAST] to REAL -** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed +** <tr><td> BLOB <td> TEXT <td> [CAST] to TEXT, ensure zero terminator ** </table> ** </blockquote>)^ ** @@ -6348,6 +6435,72 @@ SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); /* +** CAPI3REF: Autovacuum Compaction Amount Callback +** METHOD: sqlite3 +** +** ^The sqlite3_autovacuum_pages(D,C,P,X) interface registers a callback +** function C that is invoked prior to each autovacuum of the database +** file. ^The callback is passed a copy of the generic data pointer (P), +** the schema-name of the attached database that is being autovacuumed, +** the the size of the database file in pages, the number of free pages, +** and the number of bytes per page, respectively. The callback should +** return the number of free pages that should be removed by the +** autovacuum. ^If the callback returns zero, then no autovacuum happens. +** ^If the value returned is greater than or equal to the number of +** free pages, then a complete autovacuum happens. +** +** <p>^If there are multiple ATTACH-ed database files that are being +** modified as part of a transaction commit, then the autovacuum pages +** callback is invoked separately for each file. +** +** <p><b>The callback is not reentrant.</b> The callback function should +** not attempt to invoke any other SQLite interface. If it does, bad +** things may happen, including segmentation faults and corrupt database +** files. The callback function should be a simple function that +** does some arithmetic on its input parameters and returns a result. +** +** ^The X parameter to sqlite3_autovacuum_pages(D,C,P,X) is an optional +** destructor for the P parameter. ^If X is not NULL, then X(P) is +** invoked whenever the database connection closes or when the callback +** is overwritten by another invocation of sqlite3_autovacuum_pages(). +** +** <p>^There is only one autovacuum pages callback per database connection. +** ^Each call to the sqlite3_autovacuum_pages() interface overrides all +** previous invocations for that database connection. ^If the callback +** argument (C) to sqlite3_autovacuum_pages(D,C,P,X) is a NULL pointer, +** then the autovacuum steps callback is cancelled. The return value +** from sqlite3_autovacuum_pages() is normally SQLITE_OK, but might +** be some other error code if something goes wrong. The current +** implementation will only return SQLITE_OK or SQLITE_MISUSE, but other +** return codes might be added in future releases. +** +** <p>If no autovacuum pages callback is specified (the usual case) or +** a NULL pointer is provided for the callback, +** then the default behavior is to vacuum all free pages. So, in other +** words, the default behavior is the same as if the callback function +** were something like this: +** +** <blockquote><pre> +** unsigned int demonstration_autovac_pages_callback( +** void *pClientData, +** const char *zSchema, +** unsigned int nDbPage, +** unsigned int nFreePage, +** unsigned int nBytePerPage +** ){ +** return nFreePage; +** } +** </pre></blockquote> +*/ +SQLITE_API int sqlite3_autovacuum_pages( + sqlite3 *db, + unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int), + void*, + void(*)(void*) +); + + +/* ** CAPI3REF: Data Change Notification Callbacks ** METHOD: sqlite3 ** @@ -6988,24 +7141,56 @@ struct sqlite3_index_info { ** ** These macros define the allowed values for the ** [sqlite3_index_info].aConstraint[].op field. Each value represents -** an operator that is part of a constraint term in the wHERE clause of +** an operator that is part of a constraint term in the WHERE clause of ** a query that uses a [virtual table]. -*/ -#define SQLITE_INDEX_CONSTRAINT_EQ 2 -#define SQLITE_INDEX_CONSTRAINT_GT 4 -#define SQLITE_INDEX_CONSTRAINT_LE 8 -#define SQLITE_INDEX_CONSTRAINT_LT 16 -#define SQLITE_INDEX_CONSTRAINT_GE 32 -#define SQLITE_INDEX_CONSTRAINT_MATCH 64 -#define SQLITE_INDEX_CONSTRAINT_LIKE 65 -#define SQLITE_INDEX_CONSTRAINT_GLOB 66 -#define SQLITE_INDEX_CONSTRAINT_REGEXP 67 -#define SQLITE_INDEX_CONSTRAINT_NE 68 -#define SQLITE_INDEX_CONSTRAINT_ISNOT 69 -#define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70 -#define SQLITE_INDEX_CONSTRAINT_ISNULL 71 -#define SQLITE_INDEX_CONSTRAINT_IS 72 -#define SQLITE_INDEX_CONSTRAINT_FUNCTION 150 +** +** ^The left-hand operand of the operator is given by the corresponding +** aConstraint[].iColumn field. ^An iColumn of -1 indicates the left-hand +** operand is the rowid. +** The SQLITE_INDEX_CONSTRAINT_LIMIT and SQLITE_INDEX_CONSTRAINT_OFFSET +** operators have no left-hand operand, and so for those operators the +** corresponding aConstraint[].iColumn is meaningless and should not be +** used. +** +** All operator values from SQLITE_INDEX_CONSTRAINT_FUNCTION through +** value 255 are reserved to represent functions that are overloaded +** by the [xFindFunction|xFindFunction method] of the virtual table +** implementation. +** +** The right-hand operands for each constraint might be accessible using +** the [sqlite3_vtab_rhs_value()] interface. Usually the right-hand +** operand is only available if it appears as a single constant literal +** in the input SQL. If the right-hand operand is another column or an +** expression (even a constant expression) or a parameter, then the +** sqlite3_vtab_rhs_value() probably will not be able to extract it. +** ^The SQLITE_INDEX_CONSTRAINT_ISNULL and +** SQLITE_INDEX_CONSTRAINT_ISNOTNULL operators have no right-hand operand +** and hence calls to sqlite3_vtab_rhs_value() for those operators will +** always return SQLITE_NOTFOUND. +** +** The collating sequence to be used for comparison can be found using +** the [sqlite3_vtab_collation()] interface. For most real-world virtual +** tables, the collating sequence of constraints does not matter (for example +** because the constraints are numeric) and so the sqlite3_vtab_collation() +** interface is no commonly needed. +*/ +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 +#define SQLITE_INDEX_CONSTRAINT_LIKE 65 +#define SQLITE_INDEX_CONSTRAINT_GLOB 66 +#define SQLITE_INDEX_CONSTRAINT_REGEXP 67 +#define SQLITE_INDEX_CONSTRAINT_NE 68 +#define SQLITE_INDEX_CONSTRAINT_ISNOT 69 +#define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70 +#define SQLITE_INDEX_CONSTRAINT_ISNULL 71 +#define SQLITE_INDEX_CONSTRAINT_IS 72 +#define SQLITE_INDEX_CONSTRAINT_LIMIT 73 +#define SQLITE_INDEX_CONSTRAINT_OFFSET 74 +#define SQLITE_INDEX_CONSTRAINT_FUNCTION 150 /* ** CAPI3REF: Register A Virtual Table Implementation @@ -7034,7 +7219,7 @@ struct sqlite3_index_info { ** destructor. ** ** ^If the third parameter (the pointer to the sqlite3_module object) is -** NULL then no new module is create and any existing modules with the +** NULL then no new module is created and any existing modules with the ** same name are dropped. ** ** See also: [sqlite3_drop_modules()] @@ -7810,7 +7995,8 @@ SQLITE_API int sqlite3_test_control(int op, ...); #define SQLITE_TESTCTRL_SEEK_COUNT 30 #define SQLITE_TESTCTRL_TRACEFLAGS 31 #define SQLITE_TESTCTRL_TUNE 32 -#define SQLITE_TESTCTRL_LAST 32 /* Largest TESTCTRL */ +#define SQLITE_TESTCTRL_LOGEST 33 +#define SQLITE_TESTCTRL_LAST 33 /* Largest TESTCTRL */ /* ** CAPI3REF: SQL Keyword Checking @@ -8333,6 +8519,16 @@ SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg); ** The counter is incremented on the first [sqlite3_step()] call of each ** cycle. ** +** [[SQLITE_STMTSTATUS_FILTER_MISS]] +** [[SQLITE_STMTSTATUS_FILTER HIT]] +** <dt>SQLITE_STMTSTATUS_FILTER_HIT<br> +** SQLITE_STMTSTATUS_FILTER_MISS</dt> +** <dd>^SQLITE_STMTSTATUS_FILTER_HIT is the number of times that a join +** step was bypassed because a Bloom filter returned not-found. The +** corresponding SQLITE_STMTSTATUS_FILTER_MISS value is the number of +** times that the Bloom filter returned a find, and thus the join step +** had to be processed as normal. +** ** [[SQLITE_STMTSTATUS_MEMUSED]] <dt>SQLITE_STMTSTATUS_MEMUSED</dt> ** <dd>^This is the approximate number of bytes of heap memory ** used to store the prepared statement. ^This value is not actually @@ -8347,6 +8543,8 @@ SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg); #define SQLITE_STMTSTATUS_VM_STEP 4 #define SQLITE_STMTSTATUS_REPREPARE 5 #define SQLITE_STMTSTATUS_RUN 6 +#define SQLITE_STMTSTATUS_FILTER_MISS 7 +#define SQLITE_STMTSTATUS_FILTER_HIT 8 #define SQLITE_STMTSTATUS_MEMUSED 99 /* @@ -9010,8 +9208,9 @@ SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...); ** ** A single database handle may have at most a single write-ahead log callback ** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any -** previously registered write-ahead log callback. ^Note that the -** [sqlite3_wal_autocheckpoint()] interface and the +** previously registered write-ahead log callback. ^The return value is +** a copy of the third parameter from the previous call, if any, or 0. +** ^Note that the [sqlite3_wal_autocheckpoint()] interface and the ** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will ** overwrite any prior [sqlite3_wal_hook()] settings. */ @@ -9314,20 +9513,270 @@ SQLITE_API int sqlite3_vtab_nochange(sqlite3_context*); /* ** CAPI3REF: Determine The Collation For a Virtual Table Constraint +** METHOD: sqlite3_index_info ** ** This function may only be called from within a call to the [xBestIndex] -** method of a [virtual table]. +** method of a [virtual table]. This function returns a pointer to a string +** that is the name of the appropriate collation sequence to use for text +** comparisons on the constraint identified by its arguments. ** -** The first argument must be the sqlite3_index_info object that is the -** first parameter to the xBestIndex() method. The second argument must be -** an index into the aConstraint[] array belonging to the sqlite3_index_info -** structure passed to xBestIndex. This function returns a pointer to a buffer -** containing the name of the collation sequence for the corresponding -** constraint. +** The first argument must be the pointer to the [sqlite3_index_info] object +** that is the first parameter to the xBestIndex() method. The second argument +** must be an index into the aConstraint[] array belonging to the +** sqlite3_index_info structure passed to xBestIndex. +** +** Important: +** The first parameter must be the same pointer that is passed into the +** xBestMethod() method. The first parameter may not be a pointer to a +** different [sqlite3_index_info] object, even an exact copy. +** +** The return value is computed as follows: +** +** <ol> +** <li><p> If the constraint comes from a WHERE clause expression that contains +** a [COLLATE operator], then the name of the collation specified by +** that COLLATE operator is returned. +** <li><p> If there is no COLLATE operator, but the column that is the subject +** of the constraint specifies an alternative collating sequence via +** a [COLLATE clause] on the column definition within the CREATE TABLE +** statement that was passed into [sqlite3_declare_vtab()], then the +** name of that alternative collating sequence is returned. +** <li><p> Otherwise, "BINARY" is returned. +** </ol> */ SQLITE_API SQLITE_EXPERIMENTAL const char *sqlite3_vtab_collation(sqlite3_index_info*,int); /* +** CAPI3REF: Determine if a virtual table query is DISTINCT +** METHOD: sqlite3_index_info +** +** This API may only be used from within an [xBestIndex|xBestIndex method] +** of a [virtual table] implementation. The result of calling this +** interface from outside of xBestIndex() is undefined and probably harmful. +** +** ^The sqlite3_vtab_distinct() interface returns an integer that is +** either 0, 1, or 2. The integer returned by sqlite3_vtab_distinct() +** gives the virtual table additional information about how the query +** planner wants the output to be ordered. As long as the virtual table +** can meet the ordering requirements of the query planner, it may set +** the "orderByConsumed" flag. +** +** <ol><li value="0"><p> +** ^If the sqlite3_vtab_distinct() interface returns 0, that means +** that the query planner needs the virtual table to return all rows in the +** sort order defined by the "nOrderBy" and "aOrderBy" fields of the +** [sqlite3_index_info] object. This is the default expectation. If the +** virtual table outputs all rows in sorted order, then it is always safe for +** the xBestIndex method to set the "orderByConsumed" flag, regardless of +** the return value from sqlite3_vtab_distinct(). +** <li value="1"><p> +** ^(If the sqlite3_vtab_distinct() interface returns 1, that means +** that the query planner does not need the rows to be returned in sorted order +** as long as all rows with the same values in all columns identified by the +** "aOrderBy" field are adjacent.)^ This mode is used when the query planner +** is doing a GROUP BY. +** <li value="2"><p> +** ^(If the sqlite3_vtab_distinct() interface returns 2, that means +** that the query planner does not need the rows returned in any particular +** order, as long as rows with the same values in all "aOrderBy" columns +** are adjacent.)^ ^(Furthermore, only a single row for each particular +** combination of values in the columns identified by the "aOrderBy" field +** needs to be returned.)^ ^It is always ok for two or more rows with the same +** values in all "aOrderBy" columns to be returned, as long as all such rows +** are adjacent. ^The virtual table may, if it chooses, omit extra rows +** that have the same value for all columns identified by "aOrderBy". +** ^However omitting the extra rows is optional. +** This mode is used for a DISTINCT query. +** </ol> +** +** ^For the purposes of comparing virtual table output values to see if the +** values are same value for sorting purposes, two NULL values are considered +** to be the same. In other words, the comparison operator is "IS" +** (or "IS NOT DISTINCT FROM") and not "==". +** +** If a virtual table implementation is unable to meet the requirements +** specified above, then it must not set the "orderByConsumed" flag in the +** [sqlite3_index_info] object or an incorrect answer may result. +** +** ^A virtual table implementation is always free to return rows in any order +** it wants, as long as the "orderByConsumed" flag is not set. ^When the +** the "orderByConsumed" flag is unset, the query planner will add extra +** [bytecode] to ensure that the final results returned by the SQL query are +** ordered correctly. The use of the "orderByConsumed" flag and the +** sqlite3_vtab_distinct() interface is merely an optimization. ^Careful +** use of the sqlite3_vtab_distinct() interface and the "orderByConsumed" +** flag might help queries against a virtual table to run faster. Being +** overly aggressive and setting the "orderByConsumed" flag when it is not +** valid to do so, on the other hand, might cause SQLite to return incorrect +** results. +*/ +SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info*); + +/* +** CAPI3REF: Identify and handle IN constraints in xBestIndex +** +** This interface may only be used from within an +** [xBestIndex|xBestIndex() method] of a [virtual table] implementation. +** The result of invoking this interface from any other context is +** undefined and probably harmful. +** +** ^(A constraint on a virtual table of the form +** "[IN operator|column IN (...)]" is +** communicated to the xBestIndex method as a +** [SQLITE_INDEX_CONSTRAINT_EQ] constraint.)^ If xBestIndex wants to use +** this constraint, it must set the corresponding +** aConstraintUsage[].argvIndex to a postive integer. ^(Then, under +** the usual mode of handling IN operators, SQLite generates [bytecode] +** that invokes the [xFilter|xFilter() method] once for each value +** on the right-hand side of the IN operator.)^ Thus the virtual table +** only sees a single value from the right-hand side of the IN operator +** at a time. +** +** In some cases, however, it would be advantageous for the virtual +** table to see all values on the right-hand of the IN operator all at +** once. The sqlite3_vtab_in() interfaces facilitates this in two ways: +** +** <ol> +** <li><p> +** ^A call to sqlite3_vtab_in(P,N,-1) will return true (non-zero) +** if and only if the [sqlite3_index_info|P->aConstraint][N] constraint +** is an [IN operator] that can be processed all at once. ^In other words, +** sqlite3_vtab_in() with -1 in the third argument is a mechanism +** by which the virtual table can ask SQLite if all-at-once processing +** of the IN operator is even possible. +** +** <li><p> +** ^A call to sqlite3_vtab_in(P,N,F) with F==1 or F==0 indicates +** to SQLite that the virtual table does or does not want to process +** the IN operator all-at-once, respectively. ^Thus when the third +** parameter (F) is non-negative, this interface is the mechanism by +** which the virtual table tells SQLite how it wants to process the +** IN operator. +** </ol> +** +** ^The sqlite3_vtab_in(P,N,F) interface can be invoked multiple times +** within the same xBestIndex method call. ^For any given P,N pair, +** the return value from sqlite3_vtab_in(P,N,F) will always be the same +** within the same xBestIndex call. ^If the interface returns true +** (non-zero), that means that the constraint is an IN operator +** that can be processed all-at-once. ^If the constraint is not an IN +** operator or cannot be processed all-at-once, then the interface returns +** false. +** +** ^(All-at-once processing of the IN operator is selected if both of the +** following conditions are met: +** +** <ol> +** <li><p> The P->aConstraintUsage[N].argvIndex value is set to a positive +** integer. This is how the virtual table tells SQLite that it wants to +** use the N-th constraint. +** +** <li><p> The last call to sqlite3_vtab_in(P,N,F) for which F was +** non-negative had F>=1. +** </ol>)^ +** +** ^If either or both of the conditions above are false, then SQLite uses +** the traditional one-at-a-time processing strategy for the IN constraint. +** ^If both conditions are true, then the argvIndex-th parameter to the +** xFilter method will be an [sqlite3_value] that appears to be NULL, +** but which can be passed to [sqlite3_vtab_in_first()] and +** [sqlite3_vtab_in_next()] to find all values on the right-hand side +** of the IN constraint. +*/ +SQLITE_API int sqlite3_vtab_in(sqlite3_index_info*, int iCons, int bHandle); + +/* +** CAPI3REF: Find all elements on the right-hand side of an IN constraint. +** +** These interfaces are only useful from within the +** [xFilter|xFilter() method] of a [virtual table] implementation. +** The result of invoking these interfaces from any other context +** is undefined and probably harmful. +** +** The X parameter in a call to sqlite3_vtab_in_first(X,P) or +** sqlite3_vtab_in_next(X,P) must be one of the parameters to the +** xFilter method which invokes these routines, and specifically +** a parameter that was previously selected for all-at-once IN constraint +** processing use the [sqlite3_vtab_in()] interface in the +** [xBestIndex|xBestIndex method]. ^(If the X parameter is not +** an xFilter argument that was selected for all-at-once IN constraint +** processing, then these routines return [SQLITE_MISUSE])^ or perhaps +** exhibit some other undefined or harmful behavior. +** +** ^(Use these routines to access all values on the right-hand side +** of the IN constraint using code like the following: +** +** <blockquote><pre> +** for(rc=sqlite3_vtab_in_first(pList, &pVal); +** rc==SQLITE_OK && pVal +** rc=sqlite3_vtab_in_next(pList, &pVal) +** ){ +** // do something with pVal +** } +** if( rc!=SQLITE_OK ){ +** // an error has occurred +** } +** </pre></blockquote>)^ +** +** ^On success, the sqlite3_vtab_in_first(X,P) and sqlite3_vtab_in_next(X,P) +** routines return SQLITE_OK and set *P to point to the first or next value +** on the RHS of the IN constraint. ^If there are no more values on the +** right hand side of the IN constraint, then *P is set to NULL and these +** routines return [SQLITE_DONE]. ^The return value might be +** some other value, such as SQLITE_NOMEM, in the event of a malfunction. +** +** The *ppOut values returned by these routines are only valid until the +** next call to either of these routines or until the end of the xFilter +** method from which these routines were called. If the virtual table +** implementation needs to retain the *ppOut values for longer, it must make +** copies. The *ppOut values are [protected sqlite3_value|protected]. +*/ +SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut); +SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut); + +/* +** CAPI3REF: Constraint values in xBestIndex() +** METHOD: sqlite3_index_info +** +** This API may only be used from within the [xBestIndex|xBestIndex method] +** of a [virtual table] implementation. The result of calling this interface +** from outside of an xBestIndex method are undefined and probably harmful. +** +** ^When the sqlite3_vtab_rhs_value(P,J,V) interface is invoked from within +** the [xBestIndex] method of a [virtual table] implementation, with P being +** a copy of the [sqlite3_index_info] object pointer passed into xBestIndex and +** J being a 0-based index into P->aConstraint[], then this routine +** attempts to set *V to the value of the right-hand operand of +** that constraint if the right-hand operand is known. ^If the +** right-hand operand is not known, then *V is set to a NULL pointer. +** ^The sqlite3_vtab_rhs_value(P,J,V) interface returns SQLITE_OK if +** and only if *V is set to a value. ^The sqlite3_vtab_rhs_value(P,J,V) +** inteface returns SQLITE_NOTFOUND if the right-hand side of the J-th +** constraint is not available. ^The sqlite3_vtab_rhs_value() interface +** can return an result code other than SQLITE_OK or SQLITE_NOTFOUND if +** something goes wrong. +** +** The sqlite3_vtab_rhs_value() interface is usually only successful if +** the right-hand operand of a constraint is a literal value in the original +** SQL statement. If the right-hand operand is an expression or a reference +** to some other column or a [host parameter], then sqlite3_vtab_rhs_value() +** will probably return [SQLITE_NOTFOUND]. +** +** ^(Some constraints, such as [SQLITE_INDEX_CONSTRAINT_ISNULL] and +** [SQLITE_INDEX_CONSTRAINT_ISNOTNULL], have no right-hand operand. For such +** constraints, sqlite3_vtab_rhs_value() always returns SQLITE_NOTFOUND.)^ +** +** ^The [sqlite3_value] object returned in *V is a protected sqlite3_value +** and remains valid for the duration of the xBestIndex method call. +** ^When xBestIndex returns, the sqlite3_value object returned by +** sqlite3_vtab_rhs_value() is automatically deallocated. +** +** The "_rhs_" in the name of this routine is an abbreviation for +** "Right-Hand Side". +*/ +SQLITE_API int sqlite3_vtab_rhs_value(sqlite3_index_info*, int, sqlite3_value **ppVal); + +/* ** CAPI3REF: Conflict resolution modes ** KEYWORDS: {conflict resolution mode} ** @@ -9878,6 +10327,10 @@ SQLITE_API unsigned char *sqlite3_serialize( ** database is currently in a read transaction or is involved in a backup ** operation. ** +** It is not possible to deserialized into the TEMP database. If the +** S argument to sqlite3_deserialize(D,S,P,N,M,F) is "temp" then the +** function returns SQLITE_ERROR. +** ** If sqlite3_deserialize(D,S,P,N,M,F) fails for any reason and if the ** SQLITE_DESERIALIZE_FREEONCLOSE bit is set in argument F, then ** [sqlite3_free()] is invoked on argument P prior to returning. |