diff options
Diffstat (limited to 'libnetdata/statistical/statistical.c')
-rw-r--r-- | libnetdata/statistical/statistical.c | 180 |
1 files changed, 94 insertions, 86 deletions
diff --git a/libnetdata/statistical/statistical.c b/libnetdata/statistical/statistical.c index ba8f0c45a..ef9fe4e56 100644 --- a/libnetdata/statistical/statistical.c +++ b/libnetdata/statistical/statistical.c @@ -2,28 +2,28 @@ #include "../libnetdata.h" -LONG_DOUBLE default_single_exponential_smoothing_alpha = 0.1; +NETDATA_DOUBLE default_single_exponential_smoothing_alpha = 0.1; -void log_series_to_stderr(LONG_DOUBLE *series, size_t entries, calculated_number result, const char *msg) { - const LONG_DOUBLE *value, *end = &series[entries]; +void log_series_to_stderr(NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE result, const char *msg) { + const NETDATA_DOUBLE *value, *end = &series[entries]; fprintf(stderr, "%s of %zu entries [ ", msg, entries); for(value = series; value < end ;value++) { if(value != series) fprintf(stderr, ", "); - fprintf(stderr, "%" LONG_DOUBLE_MODIFIER, *value); + fprintf(stderr, "%" NETDATA_DOUBLE_MODIFIER, *value); } - fprintf(stderr, " ] results in " CALCULATED_NUMBER_FORMAT "\n", result); + fprintf(stderr, " ] results in " NETDATA_DOUBLE_FORMAT "\n", result); } // -------------------------------------------------------------------------------------------------------------------- -inline LONG_DOUBLE sum_and_count(const LONG_DOUBLE *series, size_t entries, size_t *count) { - const LONG_DOUBLE *value, *end = &series[entries]; - LONG_DOUBLE sum = 0; +inline NETDATA_DOUBLE sum_and_count(const NETDATA_DOUBLE *series, size_t entries, size_t *count) { + const NETDATA_DOUBLE *value, *end = &series[entries]; + NETDATA_DOUBLE sum = 0; size_t c = 0; for(value = series; value < end ; value++) { - if(calculated_number_isnumber(*value)) { + if(netdata_double_isnumber(*value)) { sum += *value; c++; } @@ -35,42 +35,42 @@ inline LONG_DOUBLE sum_and_count(const LONG_DOUBLE *series, size_t entries, size return sum; } -inline LONG_DOUBLE sum(const LONG_DOUBLE *series, size_t entries) { +inline NETDATA_DOUBLE sum(const NETDATA_DOUBLE *series, size_t entries) { return sum_and_count(series, entries, NULL); } -inline LONG_DOUBLE average(const LONG_DOUBLE *series, size_t entries) { +inline NETDATA_DOUBLE average(const NETDATA_DOUBLE *series, size_t entries) { size_t count = 0; - LONG_DOUBLE sum = sum_and_count(series, entries, &count); + NETDATA_DOUBLE sum = sum_and_count(series, entries, &count); if(unlikely(!count)) return NAN; - return sum / (LONG_DOUBLE)count; + return sum / (NETDATA_DOUBLE)count; } // -------------------------------------------------------------------------------------------------------------------- -LONG_DOUBLE moving_average(const LONG_DOUBLE *series, size_t entries, size_t period) { +NETDATA_DOUBLE moving_average(const NETDATA_DOUBLE *series, size_t entries, size_t period) { if(unlikely(period <= 0)) return 0.0; size_t i, count; - LONG_DOUBLE sum = 0, avg = 0; - LONG_DOUBLE p[period]; + NETDATA_DOUBLE sum = 0, avg = 0; + NETDATA_DOUBLE p[period]; for(count = 0; count < period ; count++) p[count] = 0.0; for(i = 0, count = 0; i < entries; i++) { - LONG_DOUBLE value = series[i]; - if(unlikely(!calculated_number_isnumber(value))) continue; + NETDATA_DOUBLE value = series[i]; + if(unlikely(!netdata_double_isnumber(value))) continue; if(unlikely(count < period)) { sum += value; - avg = (count == period - 1) ? sum / (LONG_DOUBLE)period : 0; + avg = (count == period - 1) ? sum / (NETDATA_DOUBLE)period : 0; } else { sum = sum - p[count % period] + value; - avg = sum / (LONG_DOUBLE)period; + avg = sum / (NETDATA_DOUBLE)period; } p[count % period] = value; @@ -83,8 +83,8 @@ LONG_DOUBLE moving_average(const LONG_DOUBLE *series, size_t entries, size_t per // -------------------------------------------------------------------------------------------------------------------- static int qsort_compare(const void *a, const void *b) { - LONG_DOUBLE *p1 = (LONG_DOUBLE *)a, *p2 = (LONG_DOUBLE *)b; - LONG_DOUBLE n1 = *p1, n2 = *p2; + NETDATA_DOUBLE *p1 = (NETDATA_DOUBLE *)a, *p2 = (NETDATA_DOUBLE *)b; + NETDATA_DOUBLE n1 = *p1, n2 = *p2; if(unlikely(isnan(n1) || isnan(n2))) { if(isnan(n1) && !isnan(n2)) return -1; @@ -102,22 +102,22 @@ static int qsort_compare(const void *a, const void *b) { return 0; } -inline void sort_series(LONG_DOUBLE *series, size_t entries) { - qsort(series, entries, sizeof(LONG_DOUBLE), qsort_compare); +inline void sort_series(NETDATA_DOUBLE *series, size_t entries) { + qsort(series, entries, sizeof(NETDATA_DOUBLE), qsort_compare); } -inline LONG_DOUBLE *copy_series(const LONG_DOUBLE *series, size_t entries) { - LONG_DOUBLE *copy = mallocz(sizeof(LONG_DOUBLE) * entries); - memcpy(copy, series, sizeof(LONG_DOUBLE) * entries); +inline NETDATA_DOUBLE *copy_series(const NETDATA_DOUBLE *series, size_t entries) { + NETDATA_DOUBLE *copy = mallocz(sizeof(NETDATA_DOUBLE) * entries); + memcpy(copy, series, sizeof(NETDATA_DOUBLE) * entries); return copy; } -LONG_DOUBLE median_on_sorted_series(const LONG_DOUBLE *series, size_t entries) { +NETDATA_DOUBLE median_on_sorted_series(const NETDATA_DOUBLE *series, size_t entries) { if(unlikely(entries == 0)) return NAN; if(unlikely(entries == 1)) return series[0]; if(unlikely(entries == 2)) return (series[0] + series[1]) / 2; - LONG_DOUBLE average; + NETDATA_DOUBLE average; if(entries % 2 == 0) { size_t m = entries / 2; average = (series[m] + series[m + 1]) / 2; @@ -129,17 +129,17 @@ LONG_DOUBLE median_on_sorted_series(const LONG_DOUBLE *series, size_t entries) { return average; } -LONG_DOUBLE median(const LONG_DOUBLE *series, size_t entries) { +NETDATA_DOUBLE median(const NETDATA_DOUBLE *series, size_t entries) { if(unlikely(entries == 0)) return NAN; if(unlikely(entries == 1)) return series[0]; if(unlikely(entries == 2)) return (series[0] + series[1]) / 2; - LONG_DOUBLE *copy = copy_series(series, entries); + NETDATA_DOUBLE *copy = copy_series(series, entries); sort_series(copy, entries); - LONG_DOUBLE avg = median_on_sorted_series(copy, entries); + NETDATA_DOUBLE avg = median_on_sorted_series(copy, entries); freez(copy); return avg; @@ -147,18 +147,18 @@ LONG_DOUBLE median(const LONG_DOUBLE *series, size_t entries) { // -------------------------------------------------------------------------------------------------------------------- -LONG_DOUBLE moving_median(const LONG_DOUBLE *series, size_t entries, size_t period) { +NETDATA_DOUBLE moving_median(const NETDATA_DOUBLE *series, size_t entries, size_t period) { if(entries <= period) return median(series, entries); - LONG_DOUBLE *data = copy_series(series, entries); + NETDATA_DOUBLE *data = copy_series(series, entries); size_t i; for(i = period; i < entries; i++) { data[i - period] = median(&series[i - period], period); } - LONG_DOUBLE avg = median(data, entries - period); + NETDATA_DOUBLE avg = median(data, entries - period); freez(data); return avg; } @@ -166,17 +166,17 @@ LONG_DOUBLE moving_median(const LONG_DOUBLE *series, size_t entries, size_t peri // -------------------------------------------------------------------------------------------------------------------- // http://stackoverflow.com/a/15150143/4525767 -LONG_DOUBLE running_median_estimate(const LONG_DOUBLE *series, size_t entries) { - LONG_DOUBLE median = 0.0f; - LONG_DOUBLE average = 0.0f; +NETDATA_DOUBLE running_median_estimate(const NETDATA_DOUBLE *series, size_t entries) { + NETDATA_DOUBLE median = 0.0f; + NETDATA_DOUBLE average = 0.0f; size_t i; for(i = 0; i < entries ; i++) { - LONG_DOUBLE value = series[i]; - if(unlikely(!calculated_number_isnumber(value))) continue; + NETDATA_DOUBLE value = series[i]; + if(unlikely(!netdata_double_isnumber(value))) continue; average += ( value - average ) * 0.1f; // rough running average. - median += copysignl( average * 0.01, value - median ); + median += copysignndd( average * 0.01, value - median ); } return median; @@ -184,16 +184,16 @@ LONG_DOUBLE running_median_estimate(const LONG_DOUBLE *series, size_t entries) { // -------------------------------------------------------------------------------------------------------------------- -LONG_DOUBLE standard_deviation(const LONG_DOUBLE *series, size_t entries) { +NETDATA_DOUBLE standard_deviation(const NETDATA_DOUBLE *series, size_t entries) { if(unlikely(entries == 0)) return NAN; if(unlikely(entries == 1)) return series[0]; - const LONG_DOUBLE *value, *end = &series[entries]; + const NETDATA_DOUBLE *value, *end = &series[entries]; size_t count; - LONG_DOUBLE sum; + NETDATA_DOUBLE sum; for(count = 0, sum = 0, value = series ; value < end ;value++) { - if(likely(calculated_number_isnumber(*value))) { + if(likely(netdata_double_isnumber(*value))) { count++; sum += *value; } @@ -202,55 +202,55 @@ LONG_DOUBLE standard_deviation(const LONG_DOUBLE *series, size_t entries) { if(unlikely(count == 0)) return NAN; if(unlikely(count == 1)) return sum; - LONG_DOUBLE average = sum / (LONG_DOUBLE)count; + NETDATA_DOUBLE average = sum / (NETDATA_DOUBLE)count; for(count = 0, sum = 0, value = series ; value < end ;value++) { - if(calculated_number_isnumber(*value)) { + if(netdata_double_isnumber(*value)) { count++; - sum += powl(*value - average, 2); + sum += powndd(*value - average, 2); } } if(unlikely(count == 0)) return NAN; if(unlikely(count == 1)) return average; - LONG_DOUBLE variance = sum / (LONG_DOUBLE)(count); // remove -1 from count to have a population stddev - LONG_DOUBLE stddev = sqrtl(variance); + NETDATA_DOUBLE variance = sum / (NETDATA_DOUBLE)(count); // remove -1 from count to have a population stddev + NETDATA_DOUBLE stddev = sqrtndd(variance); return stddev; } // -------------------------------------------------------------------------------------------------------------------- -LONG_DOUBLE single_exponential_smoothing(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE alpha) { +NETDATA_DOUBLE single_exponential_smoothing(const NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE alpha) { if(unlikely(entries == 0)) return NAN; if(unlikely(isnan(alpha))) alpha = default_single_exponential_smoothing_alpha; - const LONG_DOUBLE *value = series, *end = &series[entries]; - LONG_DOUBLE level = (1.0 - alpha) * (*value); + const NETDATA_DOUBLE *value = series, *end = &series[entries]; + NETDATA_DOUBLE level = (1.0 - alpha) * (*value); for(value++ ; value < end; value++) { - if(likely(calculated_number_isnumber(*value))) + if(likely(netdata_double_isnumber(*value))) level = alpha * (*value) + (1.0 - alpha) * level; } return level; } -LONG_DOUBLE single_exponential_smoothing_reverse(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE alpha) { +NETDATA_DOUBLE single_exponential_smoothing_reverse(const NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE alpha) { if(unlikely(entries == 0)) return NAN; if(unlikely(isnan(alpha))) alpha = default_single_exponential_smoothing_alpha; - const LONG_DOUBLE *value = &series[entries -1]; - LONG_DOUBLE level = (1.0 - alpha) * (*value); + const NETDATA_DOUBLE *value = &series[entries -1]; + NETDATA_DOUBLE level = (1.0 - alpha) * (*value); for(value++ ; value >= series; value--) { - if(likely(calculated_number_isnumber(*value))) + if(likely(netdata_double_isnumber(*value))) level = alpha * (*value) + (1.0 - alpha) * level; } @@ -260,11 +260,14 @@ LONG_DOUBLE single_exponential_smoothing_reverse(const LONG_DOUBLE *series, size // -------------------------------------------------------------------------------------------------------------------- // http://grisha.org/blog/2016/02/16/triple-exponential-smoothing-forecasting-part-ii/ -LONG_DOUBLE double_exponential_smoothing(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE alpha, LONG_DOUBLE beta, LONG_DOUBLE *forecast) { +NETDATA_DOUBLE double_exponential_smoothing(const NETDATA_DOUBLE *series, size_t entries, + NETDATA_DOUBLE alpha, + NETDATA_DOUBLE beta, + NETDATA_DOUBLE *forecast) { if(unlikely(entries == 0)) return NAN; - LONG_DOUBLE level, trend; + NETDATA_DOUBLE level, trend; if(unlikely(isnan(alpha))) alpha = 0.3; @@ -279,11 +282,10 @@ LONG_DOUBLE double_exponential_smoothing(const LONG_DOUBLE *series, size_t entri else trend = 0; - const LONG_DOUBLE *value = series; + const NETDATA_DOUBLE *value = series; for(value++ ; value >= series; value--) { - if(likely(calculated_number_isnumber(*value))) { - - LONG_DOUBLE last_level = level; + if(likely(netdata_double_isnumber(*value))) { + NETDATA_DOUBLE last_level = level; level = alpha * *value + (1.0 - alpha) * (level + trend); trend = beta * (level - last_level) + (1.0 - beta) * trend; @@ -320,24 +322,26 @@ LONG_DOUBLE double_exponential_smoothing(const LONG_DOUBLE *series, size_t entri * s[t] = γ (Y[t] / a[t]) + (1-γ) s[t-p] */ static int __HoltWinters( - const LONG_DOUBLE *series, + const NETDATA_DOUBLE *series, int entries, // start_time + h - LONG_DOUBLE alpha, // alpha parameter of Holt-Winters Filter. - LONG_DOUBLE beta, // beta parameter of Holt-Winters Filter. If set to 0, the function will do exponential smoothing. - LONG_DOUBLE gamma, // gamma parameter used for the seasonal component. If set to 0, an non-seasonal model is fitted. + NETDATA_DOUBLE alpha, // alpha parameter of Holt-Winters Filter. + NETDATA_DOUBLE + beta, // beta parameter of Holt-Winters Filter. If set to 0, the function will do exponential smoothing. + NETDATA_DOUBLE + gamma, // gamma parameter used for the seasonal component. If set to 0, an non-seasonal model is fitted. const int *seasonal, const int *period, - const LONG_DOUBLE *a, // Start value for level (a[0]). - const LONG_DOUBLE *b, // Start value for trend (b[0]). - LONG_DOUBLE *s, // Vector of start values for the seasonal component (s_1[0] ... s_p[0]) + const NETDATA_DOUBLE *a, // Start value for level (a[0]). + const NETDATA_DOUBLE *b, // Start value for trend (b[0]). + NETDATA_DOUBLE *s, // Vector of start values for the seasonal component (s_1[0] ... s_p[0]) /* return values */ - LONG_DOUBLE *SSE, // The final sum of squared errors achieved in optimizing - LONG_DOUBLE *level, // Estimated values for the level component (size entries - t + 2) - LONG_DOUBLE *trend, // Estimated values for the trend component (size entries - t + 2) - LONG_DOUBLE *season // Estimated values for the seasonal component (size entries - t + 2) + NETDATA_DOUBLE *SSE, // The final sum of squared errors achieved in optimizing + NETDATA_DOUBLE *level, // Estimated values for the level component (size entries - t + 2) + NETDATA_DOUBLE *trend, // Estimated values for the trend component (size entries - t + 2) + NETDATA_DOUBLE *season // Estimated values for the seasonal component (size entries - t + 2) ) { if(unlikely(entries < 4)) @@ -345,13 +349,13 @@ static int __HoltWinters( int start_time = 2; - LONG_DOUBLE res = 0, xhat = 0, stmp = 0; + NETDATA_DOUBLE res = 0, xhat = 0, stmp = 0; int i, i0, s0; /* copy start values to the beginning of the vectors */ level[0] = *a; if(beta > 0) trend[0] = *b; - if(gamma > 0) memcpy(season, s, *period * sizeof(LONG_DOUBLE)); + if(gamma > 0) memcpy(season, s, *period * sizeof(NETDATA_DOUBLE)); for(i = start_time - 1; i < entries; i++) { /* indices for period i */ @@ -397,7 +401,11 @@ static int __HoltWinters( return 1; } -LONG_DOUBLE holtwinters(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE alpha, LONG_DOUBLE beta, LONG_DOUBLE gamma, LONG_DOUBLE *forecast) { +NETDATA_DOUBLE holtwinters(const NETDATA_DOUBLE *series, size_t entries, + NETDATA_DOUBLE alpha, + NETDATA_DOUBLE beta, + NETDATA_DOUBLE gamma, + NETDATA_DOUBLE *forecast) { if(unlikely(isnan(alpha))) alpha = 0.3; @@ -409,15 +417,15 @@ LONG_DOUBLE holtwinters(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE a int seasonal = 0; int period = 0; - LONG_DOUBLE a0 = series[0]; - LONG_DOUBLE b0 = 0; - LONG_DOUBLE s[] = {}; + NETDATA_DOUBLE a0 = series[0]; + NETDATA_DOUBLE b0 = 0; + NETDATA_DOUBLE s[] = {}; - LONG_DOUBLE errors = 0.0; + NETDATA_DOUBLE errors = 0.0; size_t nb_computations = entries; - LONG_DOUBLE *estimated_level = callocz(nb_computations, sizeof(LONG_DOUBLE)); - LONG_DOUBLE *estimated_trend = callocz(nb_computations, sizeof(LONG_DOUBLE)); - LONG_DOUBLE *estimated_season = callocz(nb_computations, sizeof(LONG_DOUBLE)); + NETDATA_DOUBLE *estimated_level = callocz(nb_computations, sizeof(NETDATA_DOUBLE)); + NETDATA_DOUBLE *estimated_trend = callocz(nb_computations, sizeof(NETDATA_DOUBLE)); + NETDATA_DOUBLE *estimated_season = callocz(nb_computations, sizeof(NETDATA_DOUBLE)); int ret = __HoltWinters( series, @@ -436,7 +444,7 @@ LONG_DOUBLE holtwinters(const LONG_DOUBLE *series, size_t entries, LONG_DOUBLE a estimated_season ); - LONG_DOUBLE value = estimated_level[nb_computations - 1]; + NETDATA_DOUBLE value = estimated_level[nb_computations - 1]; if(forecast) *forecast = 0.0; |