diff options
Diffstat (limited to 'libnetdata/xxhash.h')
-rw-r--r-- | libnetdata/xxhash.h | 6773 |
1 files changed, 0 insertions, 6773 deletions
diff --git a/libnetdata/xxhash.h b/libnetdata/xxhash.h deleted file mode 100644 index 5e2c0ed24..000000000 --- a/libnetdata/xxhash.h +++ /dev/null @@ -1,6773 +0,0 @@ -/* - * xxHash - Extremely Fast Hash algorithm - * Header File - * Copyright (C) 2012-2023 Yann Collet - * - * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are - * met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following disclaimer - * in the documentation and/or other materials provided with the - * distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - * You can contact the author at: - * - xxHash homepage: https://www.xxhash.com - * - xxHash source repository: https://github.com/Cyan4973/xxHash - */ - -/*! - * @mainpage xxHash - * - * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed - * limits. - * - * It is proposed in four flavors, in three families: - * 1. @ref XXH32_family - * - Classic 32-bit hash function. Simple, compact, and runs on almost all - * 32-bit and 64-bit systems. - * 2. @ref XXH64_family - * - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most - * 64-bit systems (but _not_ 32-bit systems). - * 3. @ref XXH3_family - * - Modern 64-bit and 128-bit hash function family which features improved - * strength and performance across the board, especially on smaller data. - * It benefits greatly from SIMD and 64-bit without requiring it. - * - * Benchmarks - * --- - * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04. - * The open source benchmark program is compiled with clang v10.0 using -O3 flag. - * - * | Hash Name | ISA ext | Width | Large Data Speed | Small Data Velocity | - * | -------------------- | ------- | ----: | ---------------: | ------------------: | - * | XXH3_64bits() | @b AVX2 | 64 | 59.4 GB/s | 133.1 | - * | MeowHash | AES-NI | 128 | 58.2 GB/s | 52.5 | - * | XXH3_128bits() | @b AVX2 | 128 | 57.9 GB/s | 118.1 | - * | CLHash | PCLMUL | 64 | 37.1 GB/s | 58.1 | - * | XXH3_64bits() | @b SSE2 | 64 | 31.5 GB/s | 133.1 | - * | XXH3_128bits() | @b SSE2 | 128 | 29.6 GB/s | 118.1 | - * | RAM sequential read | | N/A | 28.0 GB/s | N/A | - * | ahash | AES-NI | 64 | 22.5 GB/s | 107.2 | - * | City64 | | 64 | 22.0 GB/s | 76.6 | - * | T1ha2 | | 64 | 22.0 GB/s | 99.0 | - * | City128 | | 128 | 21.7 GB/s | 57.7 | - * | FarmHash | AES-NI | 64 | 21.3 GB/s | 71.9 | - * | XXH64() | | 64 | 19.4 GB/s | 71.0 | - * | SpookyHash | | 64 | 19.3 GB/s | 53.2 | - * | Mum | | 64 | 18.0 GB/s | 67.0 | - * | CRC32C | SSE4.2 | 32 | 13.0 GB/s | 57.9 | - * | XXH32() | | 32 | 9.7 GB/s | 71.9 | - * | City32 | | 32 | 9.1 GB/s | 66.0 | - * | Blake3* | @b AVX2 | 256 | 4.4 GB/s | 8.1 | - * | Murmur3 | | 32 | 3.9 GB/s | 56.1 | - * | SipHash* | | 64 | 3.0 GB/s | 43.2 | - * | Blake3* | @b SSE2 | 256 | 2.4 GB/s | 8.1 | - * | HighwayHash | | 64 | 1.4 GB/s | 6.0 | - * | FNV64 | | 64 | 1.2 GB/s | 62.7 | - * | Blake2* | | 256 | 1.1 GB/s | 5.1 | - * | SHA1* | | 160 | 0.8 GB/s | 5.6 | - * | MD5* | | 128 | 0.6 GB/s | 7.8 | - * @note - * - Hashes which require a specific ISA extension are noted. SSE2 is also noted, - * even though it is mandatory on x64. - * - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic - * by modern standards. - * - Small data velocity is a rough average of algorithm's efficiency for small - * data. For more accurate information, see the wiki. - * - More benchmarks and strength tests are found on the wiki: - * https://github.com/Cyan4973/xxHash/wiki - * - * Usage - * ------ - * All xxHash variants use a similar API. Changing the algorithm is a trivial - * substitution. - * - * @pre - * For functions which take an input and length parameter, the following - * requirements are assumed: - * - The range from [`input`, `input + length`) is valid, readable memory. - * - The only exception is if the `length` is `0`, `input` may be `NULL`. - * - For C++, the objects must have the *TriviallyCopyable* property, as the - * functions access bytes directly as if it was an array of `unsigned char`. - * - * @anchor single_shot_example - * **Single Shot** - * - * These functions are stateless functions which hash a contiguous block of memory, - * immediately returning the result. They are the easiest and usually the fastest - * option. - * - * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits() - * - * @code{.c} - * #include <string.h> - * #include "xxhash.h" - * - * // Example for a function which hashes a null terminated string with XXH32(). - * XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed) - * { - * // NULL pointers are only valid if the length is zero - * size_t length = (string == NULL) ? 0 : strlen(string); - * return XXH32(string, length, seed); - * } - * @endcode - * - * @anchor streaming_example - * **Streaming** - * - * These groups of functions allow incremental hashing of unknown size, even - * more than what would fit in a size_t. - * - * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset() - * - * @code{.c} - * #include <stdio.h> - * #include <assert.h> - * #include "xxhash.h" - * // Example for a function which hashes a FILE incrementally with XXH3_64bits(). - * XXH64_hash_t hashFile(FILE* f) - * { - * // Allocate a state struct. Do not just use malloc() or new. - * XXH3_state_t* state = XXH3_createState(); - * assert(state != NULL && "Out of memory!"); - * // Reset the state to start a new hashing session. - * XXH3_64bits_reset(state); - * char buffer[4096]; - * size_t count; - * // Read the file in chunks - * while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) { - * // Run update() as many times as necessary to process the data - * XXH3_64bits_update(state, buffer, count); - * } - * // Retrieve the finalized hash. This will not change the state. - * XXH64_hash_t result = XXH3_64bits_digest(state); - * // Free the state. Do not use free(). - * XXH3_freeState(state); - * return result; - * } - * @endcode - * - * @file xxhash.h - * xxHash prototypes and implementation - */ - -#if defined (__cplusplus) -extern "C" { -#endif - -/* **************************** - * INLINE mode - ******************************/ -/*! - * @defgroup public Public API - * Contains details on the public xxHash functions. - * @{ - */ -#ifdef XXH_DOXYGEN -/*! - * @brief Gives access to internal state declaration, required for static allocation. - * - * Incompatible with dynamic linking, due to risks of ABI changes. - * - * Usage: - * @code{.c} - * #define XXH_STATIC_LINKING_ONLY - * #include "xxhash.h" - * @endcode - */ -# define XXH_STATIC_LINKING_ONLY -/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */ - -/*! - * @brief Gives access to internal definitions. - * - * Usage: - * @code{.c} - * #define XXH_STATIC_LINKING_ONLY - * #define XXH_IMPLEMENTATION - * #include "xxhash.h" - * @endcode - */ -# define XXH_IMPLEMENTATION -/* Do not undef XXH_IMPLEMENTATION for Doxygen */ - -/*! - * @brief Exposes the implementation and marks all functions as `inline`. - * - * Use these build macros to inline xxhash into the target unit. - * Inlining improves performance on small inputs, especially when the length is - * expressed as a compile-time constant: - * - * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html - * - * It also keeps xxHash symbols private to the unit, so they are not exported. - * - * Usage: - * @code{.c} - * #define XXH_INLINE_ALL - * #include "xxhash.h" - * @endcode - * Do not compile and link xxhash.o as a separate object, as it is not useful. - */ -# define XXH_INLINE_ALL -# undef XXH_INLINE_ALL -/*! - * @brief Exposes the implementation without marking functions as inline. - */ -# define XXH_PRIVATE_API -# undef XXH_PRIVATE_API -/*! - * @brief Emulate a namespace by transparently prefixing all symbols. - * - * If you want to include _and expose_ xxHash functions from within your own - * library, but also want to avoid symbol collisions with other libraries which - * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix - * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE - * (therefore, avoid empty or numeric values). - * - * Note that no change is required within the calling program as long as it - * includes `xxhash.h`: Regular symbol names will be automatically translated - * by this header. - */ -# define XXH_NAMESPACE /* YOUR NAME HERE */ -# undef XXH_NAMESPACE -#endif - -#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ - && !defined(XXH_INLINE_ALL_31684351384) - /* this section should be traversed only once */ -# define XXH_INLINE_ALL_31684351384 - /* give access to the advanced API, required to compile implementations */ -# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ -# define XXH_STATIC_LINKING_ONLY - /* make all functions private */ -# undef XXH_PUBLIC_API -# if defined(__GNUC__) -# define XXH_PUBLIC_API static __inline __attribute__((unused)) -# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) -# define XXH_PUBLIC_API static inline -# elif defined(_MSC_VER) -# define XXH_PUBLIC_API static __inline -# else - /* note: this version may generate warnings for unused static functions */ -# define XXH_PUBLIC_API static -# endif - - /* - * This part deals with the special case where a unit wants to inline xxHash, - * but "xxhash.h" has previously been included without XXH_INLINE_ALL, - * such as part of some previously included *.h header file. - * Without further action, the new include would just be ignored, - * and functions would effectively _not_ be inlined (silent failure). - * The following macros solve this situation by prefixing all inlined names, - * avoiding naming collision with previous inclusions. - */ - /* Before that, we unconditionally #undef all symbols, - * in case they were already defined with XXH_NAMESPACE. - * They will then be redefined for XXH_INLINE_ALL - */ -# undef XXH_versionNumber - /* XXH32 */ -# undef XXH32 -# undef XXH32_createState -# undef XXH32_freeState -# undef XXH32_reset -# undef XXH32_update -# undef XXH32_digest -# undef XXH32_copyState -# undef XXH32_canonicalFromHash -# undef XXH32_hashFromCanonical - /* XXH64 */ -# undef XXH64 -# undef XXH64_createState -# undef XXH64_freeState -# undef XXH64_reset -# undef XXH64_update -# undef XXH64_digest -# undef XXH64_copyState -# undef XXH64_canonicalFromHash -# undef XXH64_hashFromCanonical - /* XXH3_64bits */ -# undef XXH3_64bits -# undef XXH3_64bits_withSecret -# undef XXH3_64bits_withSeed -# undef XXH3_64bits_withSecretandSeed -# undef XXH3_createState -# undef XXH3_freeState -# undef XXH3_copyState -# undef XXH3_64bits_reset -# undef XXH3_64bits_reset_withSeed -# undef XXH3_64bits_reset_withSecret -# undef XXH3_64bits_update -# undef XXH3_64bits_digest -# undef XXH3_generateSecret - /* XXH3_128bits */ -# undef XXH128 -# undef XXH3_128bits -# undef XXH3_128bits_withSeed -# undef XXH3_128bits_withSecret -# undef XXH3_128bits_reset -# undef XXH3_128bits_reset_withSeed -# undef XXH3_128bits_reset_withSecret -# undef XXH3_128bits_reset_withSecretandSeed -# undef XXH3_128bits_update -# undef XXH3_128bits_digest -# undef XXH128_isEqual -# undef XXH128_cmp -# undef XXH128_canonicalFromHash -# undef XXH128_hashFromCanonical - /* Finally, free the namespace itself */ -# undef XXH_NAMESPACE - - /* employ the namespace for XXH_INLINE_ALL */ -# define XXH_NAMESPACE XXH_INLINE_ - /* - * Some identifiers (enums, type names) are not symbols, - * but they must nonetheless be renamed to avoid redeclaration. - * Alternative solution: do not redeclare them. - * However, this requires some #ifdefs, and has a more dispersed impact. - * Meanwhile, renaming can be achieved in a single place. - */ -# define XXH_IPREF(Id) XXH_NAMESPACE ## Id -# define XXH_OK XXH_IPREF(XXH_OK) -# define XXH_ERROR XXH_IPREF(XXH_ERROR) -# define XXH_errorcode XXH_IPREF(XXH_errorcode) -# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) -# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) -# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) -# define XXH32_state_s XXH_IPREF(XXH32_state_s) -# define XXH32_state_t XXH_IPREF(XXH32_state_t) -# define XXH64_state_s XXH_IPREF(XXH64_state_s) -# define XXH64_state_t XXH_IPREF(XXH64_state_t) -# define XXH3_state_s XXH_IPREF(XXH3_state_s) -# define XXH3_state_t XXH_IPREF(XXH3_state_t) -# define XXH128_hash_t XXH_IPREF(XXH128_hash_t) - /* Ensure the header is parsed again, even if it was previously included */ -# undef XXHASH_H_5627135585666179 -# undef XXHASH_H_STATIC_13879238742 -#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ - -/* **************************************************************** - * Stable API - *****************************************************************/ -#ifndef XXHASH_H_5627135585666179 -#define XXHASH_H_5627135585666179 1 - -/*! @brief Marks a global symbol. */ -#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) -# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) -# ifdef XXH_EXPORT -# define XXH_PUBLIC_API __declspec(dllexport) -# elif XXH_IMPORT -# define XXH_PUBLIC_API __declspec(dllimport) -# endif -# else -# define XXH_PUBLIC_API /* do nothing */ -# endif -#endif - -#ifdef XXH_NAMESPACE -# define XXH_CAT(A,B) A##B -# define XXH_NAME2(A,B) XXH_CAT(A,B) -# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) -/* XXH32 */ -# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) -# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) -# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) -# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) -# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) -# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) -# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) -# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) -# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) -/* XXH64 */ -# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) -# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) -# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) -# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) -# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) -# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) -# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) -# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) -# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) -/* XXH3_64bits */ -# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) -# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) -# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) -# define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed) -# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) -# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) -# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) -# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) -# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) -# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) -# define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed) -# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) -# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) -# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) -# define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed) -/* XXH3_128bits */ -# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) -# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) -# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) -# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) -# define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed) -# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) -# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) -# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) -# define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed) -# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) -# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) -# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) -# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) -# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) -# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) -#endif - - -/* ************************************* -* Compiler specifics -***************************************/ - -/* specific declaration modes for Windows */ -#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) -# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) -# ifdef XXH_EXPORT -# define XXH_PUBLIC_API __declspec(dllexport) -# elif XXH_IMPORT -# define XXH_PUBLIC_API __declspec(dllimport) -# endif -# else -# define XXH_PUBLIC_API /* do nothing */ -# endif -#endif - -#if defined (__GNUC__) -# define XXH_CONSTF __attribute__((const)) -# define XXH_PUREF __attribute__((pure)) -# define XXH_MALLOCF __attribute__((malloc)) -#else -# define XXH_CONSTF /* disable */ -# define XXH_PUREF -# define XXH_MALLOCF -#endif - -/* ************************************* -* Version -***************************************/ -#define XXH_VERSION_MAJOR 0 -#define XXH_VERSION_MINOR 8 -#define XXH_VERSION_RELEASE 2 -/*! @brief Version number, encoded as two digits each */ -#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) - -/*! - * @brief Obtains the xxHash version. - * - * This is mostly useful when xxHash is compiled as a shared library, - * since the returned value comes from the library, as opposed to header file. - * - * @return @ref XXH_VERSION_NUMBER of the invoked library. - */ -XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void); - - -/* **************************** -* Common basic types -******************************/ -#include <stddef.h> /* size_t */ -/*! - * @brief Exit code for the streaming API. - */ -typedef enum { - XXH_OK = 0, /*!< OK */ - XXH_ERROR /*!< Error */ -} XXH_errorcode; - - -/*-********************************************************************** -* 32-bit hash -************************************************************************/ -#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */ -/*! - * @brief An unsigned 32-bit integer. - * - * Not necessarily defined to `uint32_t` but functionally equivalent. - */ -typedef uint32_t XXH32_hash_t; - -#elif !defined (__VMS) \ - && (defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) -# include <stdint.h> - typedef uint32_t XXH32_hash_t; - -#else -# include <limits.h> -# if UINT_MAX == 0xFFFFFFFFUL - typedef unsigned int XXH32_hash_t; -# elif ULONG_MAX == 0xFFFFFFFFUL - typedef unsigned long XXH32_hash_t; -# else -# error "unsupported platform: need a 32-bit type" -# endif -#endif - -/*! - * @} - * - * @defgroup XXH32_family XXH32 family - * @ingroup public - * Contains functions used in the classic 32-bit xxHash algorithm. - * - * @note - * XXH32 is useful for older platforms, with no or poor 64-bit performance. - * Note that the @ref XXH3_family provides competitive speed for both 32-bit - * and 64-bit systems, and offers true 64/128 bit hash results. - * - * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families - * @see @ref XXH32_impl for implementation details - * @{ - */ - -/*! - * @brief Calculates the 32-bit hash of @p input using xxHash32. - * - * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s - * - * See @ref single_shot_example "Single Shot Example" for an example. - * - * @param input The block of data to be hashed, at least @p length bytes in size. - * @param length The length of @p input, in bytes. - * @param seed The 32-bit seed to alter the hash's output predictably. - * - * @pre - * The memory between @p input and @p input + @p length must be valid, - * readable, contiguous memory. However, if @p length is `0`, @p input may be - * `NULL`. In C++, this also must be *TriviallyCopyable*. - * - * @return The calculated 32-bit hash value. - * - * @see - * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): - * Direct equivalents for the other variants of xxHash. - * @see - * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version. - */ -XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); - -#ifndef XXH_NO_STREAM -/*! - * Streaming functions generate the xxHash value from an incremental input. - * This method is slower than single-call functions, due to state management. - * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. - * - * An XXH state must first be allocated using `XXH*_createState()`. - * - * Start a new hash by initializing the state with a seed using `XXH*_reset()`. - * - * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. - * - * The function returns an error code, with 0 meaning OK, and any other value - * meaning there is an error. - * - * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. - * This function returns the nn-bits hash as an int or long long. - * - * It's still possible to continue inserting input into the hash state after a - * digest, and generate new hash values later on by invoking `XXH*_digest()`. - * - * When done, release the state using `XXH*_freeState()`. - * - * @see streaming_example at the top of @ref xxhash.h for an example. - */ - -/*! - * @typedef struct XXH32_state_s XXH32_state_t - * @brief The opaque state struct for the XXH32 streaming API. - * - * @see XXH32_state_s for details. - */ -typedef struct XXH32_state_s XXH32_state_t; - -/*! - * @brief Allocates an @ref XXH32_state_t. - * - * Must be freed with XXH32_freeState(). - * @return An allocated XXH32_state_t on success, `NULL` on failure. - */ -XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void); -/*! - * @brief Frees an @ref XXH32_state_t. - * - * Must be allocated with XXH32_createState(). - * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState(). - * @return XXH_OK. - */ -XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); -/*! - * @brief Copies one @ref XXH32_state_t to another. - * - * @param dst_state The state to copy to. - * @param src_state The state to copy from. - * @pre - * @p dst_state and @p src_state must not be `NULL` and must not overlap. - */ -XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); - -/*! - * @brief Resets an @ref XXH32_state_t to begin a new hash. - * - * This function resets and seeds a state. Call it before @ref XXH32_update(). - * - * @param statePtr The state struct to reset. - * @param seed The 32-bit seed to alter the hash result predictably. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - */ -XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); - -/*! - * @brief Consumes a block of @p input to an @ref XXH32_state_t. - * - * Call this to incrementally consume blocks of data. - * - * @param statePtr The state struct to update. - * @param input The block of data to be hashed, at least @p length bytes in size. - * @param length The length of @p input, in bytes. - * - * @pre - * @p statePtr must not be `NULL`. - * @pre - * The memory between @p input and @p input + @p length must be valid, - * readable, contiguous memory. However, if @p length is `0`, @p input may be - * `NULL`. In C++, this also must be *TriviallyCopyable*. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - */ -XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); - -/*! - * @brief Returns the calculated hash value from an @ref XXH32_state_t. - * - * @note - * Calling XXH32_digest() will not affect @p statePtr, so you can update, - * digest, and update again. - * - * @param statePtr The state struct to calculate the hash from. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return The calculated xxHash32 value from that state. - */ -XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); -#endif /* !XXH_NO_STREAM */ - -/******* Canonical representation *******/ - -/* - * The default return values from XXH functions are unsigned 32 and 64 bit - * integers. - * This the simplest and fastest format for further post-processing. - * - * However, this leaves open the question of what is the order on the byte level, - * since little and big endian conventions will store the same number differently. - * - * The canonical representation settles this issue by mandating big-endian - * convention, the same convention as human-readable numbers (large digits first). - * - * When writing hash values to storage, sending them over a network, or printing - * them, it's highly recommended to use the canonical representation to ensure - * portability across a wider range of systems, present and future. - * - * The following functions allow transformation of hash values to and from - * canonical format. - */ - -/*! - * @brief Canonical (big endian) representation of @ref XXH32_hash_t. - */ -typedef struct { - unsigned char digest[4]; /*!< Hash bytes, big endian */ -} XXH32_canonical_t; - -/*! - * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t. - * - * @param dst The @ref XXH32_canonical_t pointer to be stored to. - * @param hash The @ref XXH32_hash_t to be converted. - * - * @pre - * @p dst must not be `NULL`. - */ -XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); - -/*! - * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t. - * - * @param src The @ref XXH32_canonical_t to convert. - * - * @pre - * @p src must not be `NULL`. - * - * @return The converted hash. - */ -XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); - - -/*! @cond Doxygen ignores this part */ -#ifdef __has_attribute -# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x) -#else -# define XXH_HAS_ATTRIBUTE(x) 0 -#endif -/*! @endcond */ - -/*! @cond Doxygen ignores this part */ -/* - * C23 __STDC_VERSION__ number hasn't been specified yet. For now - * leave as `201711L` (C17 + 1). - * TODO: Update to correct value when its been specified. - */ -#define XXH_C23_VN 201711L -/*! @endcond */ - -/*! @cond Doxygen ignores this part */ -/* C-language Attributes are added in C23. */ -#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute) -# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) -#else -# define XXH_HAS_C_ATTRIBUTE(x) 0 -#endif -/*! @endcond */ - -/*! @cond Doxygen ignores this part */ -#if defined(__cplusplus) && defined(__has_cpp_attribute) -# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) -#else -# define XXH_HAS_CPP_ATTRIBUTE(x) 0 -#endif -/*! @endcond */ - -/*! @cond Doxygen ignores this part */ -/* - * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute - * introduced in CPP17 and C23. - * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough - * C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough - */ -#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough) -# define XXH_FALLTHROUGH [[fallthrough]] -#elif XXH_HAS_ATTRIBUTE(__fallthrough__) -# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__)) -#else -# define XXH_FALLTHROUGH /* fallthrough */ -#endif -/*! @endcond */ - -/*! @cond Doxygen ignores this part */ -/* - * Define XXH_NOESCAPE for annotated pointers in public API. - * https://clang.llvm.org/docs/AttributeReference.html#noescape - * As of writing this, only supported by clang. - */ -#if XXH_HAS_ATTRIBUTE(noescape) -# define XXH_NOESCAPE __attribute__((noescape)) -#else -# define XXH_NOESCAPE -#endif -/*! @endcond */ - - -/*! - * @} - * @ingroup public - * @{ - */ - -#ifndef XXH_NO_LONG_LONG -/*-********************************************************************** -* 64-bit hash -************************************************************************/ -#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */ -/*! - * @brief An unsigned 64-bit integer. - * - * Not necessarily defined to `uint64_t` but functionally equivalent. - */ -typedef uint64_t XXH64_hash_t; -#elif !defined (__VMS) \ - && (defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) -# include <stdint.h> - typedef uint64_t XXH64_hash_t; -#else -# include <limits.h> -# if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL - /* LP64 ABI says uint64_t is unsigned long */ - typedef unsigned long XXH64_hash_t; -# else - /* the following type must have a width of 64-bit */ - typedef unsigned long long XXH64_hash_t; -# endif -#endif - -/*! - * @} - * - * @defgroup XXH64_family XXH64 family - * @ingroup public - * @{ - * Contains functions used in the classic 64-bit xxHash algorithm. - * - * @note - * XXH3 provides competitive speed for both 32-bit and 64-bit systems, - * and offers true 64/128 bit hash results. - * It provides better speed for systems with vector processing capabilities. - */ - -/*! - * @brief Calculates the 64-bit hash of @p input using xxHash64. - * - * This function usually runs faster on 64-bit systems, but slower on 32-bit - * systems (see benchmark). - * - * @param input The block of data to be hashed, at least @p length bytes in size. - * @param length The length of @p input, in bytes. - * @param seed The 64-bit seed to alter the hash's output predictably. - * - * @pre - * The memory between @p input and @p input + @p length must be valid, - * readable, contiguous memory. However, if @p length is `0`, @p input may be - * `NULL`. In C++, this also must be *TriviallyCopyable*. - * - * @return The calculated 64-bit hash. - * - * @see - * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): - * Direct equivalents for the other variants of xxHash. - * @see - * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version. - */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); - -/******* Streaming *******/ -#ifndef XXH_NO_STREAM -/*! - * @brief The opaque state struct for the XXH64 streaming API. - * - * @see XXH64_state_s for details. - */ -typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ - -/*! - * @brief Allocates an @ref XXH64_state_t. - * - * Must be freed with XXH64_freeState(). - * @return An allocated XXH64_state_t on success, `NULL` on failure. - */ -XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void); - -/*! - * @brief Frees an @ref XXH64_state_t. - * - * Must be allocated with XXH64_createState(). - * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState(). - * @return XXH_OK. - */ -XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); - -/*! - * @brief Copies one @ref XXH64_state_t to another. - * - * @param dst_state The state to copy to. - * @param src_state The state to copy from. - * @pre - * @p dst_state and @p src_state must not be `NULL` and must not overlap. - */ -XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state); - -/*! - * @brief Resets an @ref XXH64_state_t to begin a new hash. - * - * This function resets and seeds a state. Call it before @ref XXH64_update(). - * - * @param statePtr The state struct to reset. - * @param seed The 64-bit seed to alter the hash result predictably. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - */ -XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed); - -/*! - * @brief Consumes a block of @p input to an @ref XXH64_state_t. - * - * Call this to incrementally consume blocks of data. - * - * @param statePtr The state struct to update. - * @param input The block of data to be hashed, at least @p length bytes in size. - * @param length The length of @p input, in bytes. - * - * @pre - * @p statePtr must not be `NULL`. - * @pre - * The memory between @p input and @p input + @p length must be valid, - * readable, contiguous memory. However, if @p length is `0`, @p input may be - * `NULL`. In C++, this also must be *TriviallyCopyable*. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - */ -XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); - -/*! - * @brief Returns the calculated hash value from an @ref XXH64_state_t. - * - * @note - * Calling XXH64_digest() will not affect @p statePtr, so you can update, - * digest, and update again. - * - * @param statePtr The state struct to calculate the hash from. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return The calculated xxHash64 value from that state. - */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr); -#endif /* !XXH_NO_STREAM */ -/******* Canonical representation *******/ - -/*! - * @brief Canonical (big endian) representation of @ref XXH64_hash_t. - */ -typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; - -/*! - * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t. - * - * @param dst The @ref XXH64_canonical_t pointer to be stored to. - * @param hash The @ref XXH64_hash_t to be converted. - * - * @pre - * @p dst must not be `NULL`. - */ -XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash); - -/*! - * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t. - * - * @param src The @ref XXH64_canonical_t to convert. - * - * @pre - * @p src must not be `NULL`. - * - * @return The converted hash. - */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src); - -#ifndef XXH_NO_XXH3 - -/*! - * @} - * ************************************************************************ - * @defgroup XXH3_family XXH3 family - * @ingroup public - * @{ - * - * XXH3 is a more recent hash algorithm featuring: - * - Improved speed for both small and large inputs - * - True 64-bit and 128-bit outputs - * - SIMD acceleration - * - Improved 32-bit viability - * - * Speed analysis methodology is explained here: - * - * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html - * - * Compared to XXH64, expect XXH3 to run approximately - * ~2x faster on large inputs and >3x faster on small ones, - * exact differences vary depending on platform. - * - * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic, - * but does not require it. - * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3 - * at competitive speeds, even without vector support. Further details are - * explained in the implementation. - * - * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD - * implementations for many common platforms: - * - AVX512 - * - AVX2 - * - SSE2 - * - ARM NEON - * - WebAssembly SIMD128 - * - POWER8 VSX - * - s390x ZVector - * This can be controlled via the @ref XXH_VECTOR macro, but it automatically - * selects the best version according to predefined macros. For the x86 family, an - * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c. - * - * XXH3 implementation is portable: - * it has a generic C90 formulation that can be compiled on any platform, - * all implementations generate exactly the same hash value on all platforms. - * Starting from v0.8.0, it's also labelled "stable", meaning that - * any future version will also generate the same hash value. - * - * XXH3 offers 2 variants, _64bits and _128bits. - * - * When only 64 bits are needed, prefer invoking the _64bits variant, as it - * reduces the amount of mixing, resulting in faster speed on small inputs. - * It's also generally simpler to manipulate a scalar return type than a struct. - * - * The API supports one-shot hashing, streaming mode, and custom secrets. - */ -/*-********************************************************************** -* XXH3 64-bit variant -************************************************************************/ - -/*! - * @brief 64-bit unseeded variant of XXH3. - * - * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of 0, however - * it may have slightly better performance due to constant propagation of the - * defaults. - * - * @see - * XXH32(), XXH64(), XXH3_128bits(): equivalent for the other xxHash algorithms - * @see - * XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants - * @see - * XXH3_64bits_reset(), XXH3_64bits_update(), XXH3_64bits_digest(): Streaming version. - */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length); - -/*! - * @brief 64-bit seeded variant of XXH3 - * - * This variant generates a custom secret on the fly based on default secret - * altered using the `seed` value. - * - * While this operation is decently fast, note that it's not completely free. - * - * @note - * seed == 0 produces the same results as @ref XXH3_64bits(). - * - * @param input The data to hash - * @param length The length - * @param seed The 64-bit seed to alter the state. - */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); - -/*! - * The bare minimum size for a custom secret. - * - * @see - * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), - * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). - */ -#define XXH3_SECRET_SIZE_MIN 136 - -/*! - * @brief 64-bit variant of XXH3 with a custom "secret". - * - * It's possible to provide any blob of bytes as a "secret" to generate the hash. - * This makes it more difficult for an external actor to prepare an intentional collision. - * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). - * However, the quality of the secret impacts the dispersion of the hash algorithm. - * Therefore, the secret _must_ look like a bunch of random bytes. - * Avoid "trivial" or structured data such as repeated sequences or a text document. - * Whenever in doubt about the "randomness" of the blob of bytes, - * consider employing "XXH3_generateSecret()" instead (see below). - * It will generate a proper high entropy secret derived from the blob of bytes. - * Another advantage of using XXH3_generateSecret() is that - * it guarantees that all bits within the initial blob of bytes - * will impact every bit of the output. - * This is not necessarily the case when using the blob of bytes directly - * because, when hashing _small_ inputs, only a portion of the secret is employed. - */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); - - -/******* Streaming *******/ -#ifndef XXH_NO_STREAM -/* - * Streaming requires state maintenance. - * This operation costs memory and CPU. - * As a consequence, streaming is slower than one-shot hashing. - * For better performance, prefer one-shot functions whenever applicable. - */ - -/*! - * @brief The state struct for the XXH3 streaming API. - * - * @see XXH3_state_s for details. - */ -typedef struct XXH3_state_s XXH3_state_t; -XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void); -XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); - -/*! - * @brief Copies one @ref XXH3_state_t to another. - * - * @param dst_state The state to copy to. - * @param src_state The state to copy from. - * @pre - * @p dst_state and @p src_state must not be `NULL` and must not overlap. - */ -XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state); - -/*! - * @brief Resets an @ref XXH3_state_t to begin a new hash. - * - * This function resets `statePtr` and generate a secret with default parameters. Call it before @ref XXH3_64bits_update(). - * Digest will be equivalent to `XXH3_64bits()`. - * - * @param statePtr The state struct to reset. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - * - */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); - -/*! - * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. - * - * This function resets `statePtr` and generate a secret from `seed`. Call it before @ref XXH3_64bits_update(). - * Digest will be equivalent to `XXH3_64bits_withSeed()`. - * - * @param statePtr The state struct to reset. - * @param seed The 64-bit seed to alter the state. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - * - */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); - -/*! - * XXH3_64bits_reset_withSecret(): - * `secret` is referenced, it _must outlive_ the hash streaming session. - * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, - * and the quality of produced hash values depends on secret's entropy - * (secret's content should look like a bunch of random bytes). - * When in doubt about the randomness of a candidate `secret`, - * consider employing `XXH3_generateSecret()` instead (see below). - */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); - -/*! - * @brief Consumes a block of @p input to an @ref XXH3_state_t. - * - * Call this to incrementally consume blocks of data. - * - * @param statePtr The state struct to update. - * @param input The block of data to be hashed, at least @p length bytes in size. - * @param length The length of @p input, in bytes. - * - * @pre - * @p statePtr must not be `NULL`. - * @pre - * The memory between @p input and @p input + @p length must be valid, - * readable, contiguous memory. However, if @p length is `0`, @p input may be - * `NULL`. In C++, this also must be *TriviallyCopyable*. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); - -/*! - * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t. - * - * @note - * Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update, - * digest, and update again. - * - * @param statePtr The state struct to calculate the hash from. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return The calculated XXH3 64-bit hash value from that state. - */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); -#endif /* !XXH_NO_STREAM */ - -/* note : canonical representation of XXH3 is the same as XXH64 - * since they both produce XXH64_hash_t values */ - - -/*-********************************************************************** -* XXH3 128-bit variant -************************************************************************/ - -/*! - * @brief The return value from 128-bit hashes. - * - * Stored in little endian order, although the fields themselves are in native - * endianness. - */ -typedef struct { - XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ - XXH64_hash_t high64; /*!< `value >> 64` */ -} XXH128_hash_t; - -/*! - * @brief Unseeded 128-bit variant of XXH3 - * - * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead - * for shorter inputs. - * - * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of 0, however - * it may have slightly better performance due to constant propagation of the - * defaults. - * - * @see - * XXH32(), XXH64(), XXH3_64bits(): equivalent for the other xxHash algorithms - * @see - * XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants - * @see - * XXH3_128bits_reset(), XXH3_128bits_update(), XXH3_128bits_digest(): Streaming version. - */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len); -/*! @brief Seeded 128-bit variant of XXH3. @see XXH3_64bits_withSeed(). */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); -/*! @brief Custom secret 128-bit variant of XXH3. @see XXH3_64bits_withSecret(). */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); - -/******* Streaming *******/ -#ifndef XXH_NO_STREAM -/* - * Streaming requires state maintenance. - * This operation costs memory and CPU. - * As a consequence, streaming is slower than one-shot hashing. - * For better performance, prefer one-shot functions whenever applicable. - * - * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). - * Use already declared XXH3_createState() and XXH3_freeState(). - * - * All reset and streaming functions have same meaning as their 64-bit counterpart. - */ - -/*! - * @brief Resets an @ref XXH3_state_t to begin a new hash. - * - * This function resets `statePtr` and generate a secret with default parameters. Call it before @ref XXH3_128bits_update(). - * Digest will be equivalent to `XXH3_128bits()`. - * - * @param statePtr The state struct to reset. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - * - */ -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); - -/*! - * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. - * - * This function resets `statePtr` and generate a secret from `seed`. Call it before @ref XXH3_128bits_update(). - * Digest will be equivalent to `XXH3_128bits_withSeed()`. - * - * @param statePtr The state struct to reset. - * @param seed The 64-bit seed to alter the state. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - * - */ -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); -/*! @brief Custom secret 128-bit variant of XXH3. @see XXH_64bits_reset_withSecret(). */ -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); - -/*! - * @brief Consumes a block of @p input to an @ref XXH3_state_t. - * - * Call this to incrementally consume blocks of data. - * - * @param statePtr The state struct to update. - * @param input The block of data to be hashed, at least @p length bytes in size. - * @param length The length of @p input, in bytes. - * - * @pre - * @p statePtr must not be `NULL`. - * @pre - * The memory between @p input and @p input + @p length must be valid, - * readable, contiguous memory. However, if @p length is `0`, @p input may be - * `NULL`. In C++, this also must be *TriviallyCopyable*. - * - * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. - */ -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); - -/*! - * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t. - * - * @note - * Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update, - * digest, and update again. - * - * @param statePtr The state struct to calculate the hash from. - * - * @pre - * @p statePtr must not be `NULL`. - * - * @return The calculated XXH3 128-bit hash value from that state. - */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); -#endif /* !XXH_NO_STREAM */ - -/* Following helper functions make it possible to compare XXH128_hast_t values. - * Since XXH128_hash_t is a structure, this capability is not offered by the language. - * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ - -/*! - * XXH128_isEqual(): - * Return: 1 if `h1` and `h2` are equal, 0 if they are not. - */ -XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); - -/*! - * @brief Compares two @ref XXH128_hash_t - * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. - * - * @return: >0 if *h128_1 > *h128_2 - * =0 if *h128_1 == *h128_2 - * <0 if *h128_1 < *h128_2 - */ -XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2); - - -/******* Canonical representation *******/ -typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; - - -/*! - * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t. - * - * @param dst The @ref XXH128_canonical_t pointer to be stored to. - * @param hash The @ref XXH128_hash_t to be converted. - * - * @pre - * @p dst must not be `NULL`. - */ -XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash); - -/*! - * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t. - * - * @param src The @ref XXH128_canonical_t to convert. - * - * @pre - * @p src must not be `NULL`. - * - * @return The converted hash. - */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src); - - -#endif /* !XXH_NO_XXH3 */ -#endif /* XXH_NO_LONG_LONG */ - -/*! - * @} - */ -#endif /* XXHASH_H_5627135585666179 */ - - - -#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) -#define XXHASH_H_STATIC_13879238742 -/* **************************************************************************** - * This section contains declarations which are not guaranteed to remain stable. - * They may change in future versions, becoming incompatible with a different - * version of the library. - * These declarations should only be used with static linking. - * Never use them in association with dynamic linking! - ***************************************************************************** */ - -/* - * These definitions are only present to allow static allocation - * of XXH states, on stack or in a struct, for example. - * Never **ever** access their members directly. - */ - -/*! - * @internal - * @brief Structure for XXH32 streaming API. - * - * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, - * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is - * an opaque type. This allows fields to safely be changed. - * - * Typedef'd to @ref XXH32_state_t. - * Do not access the members of this struct directly. - * @see XXH64_state_s, XXH3_state_s - */ -struct XXH32_state_s { - XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */ - XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */ - XXH32_hash_t v[4]; /*!< Accumulator lanes */ - XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */ - XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */ - XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */ -}; /* typedef'd to XXH32_state_t */ - - -#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ - -/*! - * @internal - * @brief Structure for XXH64 streaming API. - * - * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, - * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is - * an opaque type. This allows fields to safely be changed. - * - * Typedef'd to @ref XXH64_state_t. - * Do not access the members of this struct directly. - * @see XXH32_state_s, XXH3_state_s - */ -struct XXH64_state_s { - XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */ - XXH64_hash_t v[4]; /*!< Accumulator lanes */ - XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */ - XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */ - XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/ - XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */ -}; /* typedef'd to XXH64_state_t */ - -#ifndef XXH_NO_XXH3 - -#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */ -# include <stdalign.h> -# define XXH_ALIGN(n) alignas(n) -#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */ -/* In C++ alignas() is a keyword */ -# define XXH_ALIGN(n) alignas(n) -#elif defined(__GNUC__) -# define XXH_ALIGN(n) __attribute__ ((aligned(n))) -#elif defined(_MSC_VER) -# define XXH_ALIGN(n) __declspec(align(n)) -#else -# define XXH_ALIGN(n) /* disabled */ -#endif - -/* Old GCC versions only accept the attribute after the type in structures. */ -#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ - && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \ - && defined(__GNUC__) -# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) -#else -# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type -#endif - -/*! - * @brief The size of the internal XXH3 buffer. - * - * This is the optimal update size for incremental hashing. - * - * @see XXH3_64b_update(), XXH3_128b_update(). - */ -#define XXH3_INTERNALBUFFER_SIZE 256 - -/*! - * @internal - * @brief Default size of the secret buffer (and @ref XXH3_kSecret). - * - * This is the size used in @ref XXH3_kSecret and the seeded functions. - * - * Not to be confused with @ref XXH3_SECRET_SIZE_MIN. - */ -#define XXH3_SECRET_DEFAULT_SIZE 192 - -/*! - * @internal - * @brief Structure for XXH3 streaming API. - * - * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, - * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. - * Otherwise it is an opaque type. - * Never use this definition in combination with dynamic library. - * This allows fields to safely be changed in the future. - * - * @note ** This structure has a strict alignment requirement of 64 bytes!! ** - * Do not allocate this with `malloc()` or `new`, - * it will not be sufficiently aligned. - * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation. - * - * Typedef'd to @ref XXH3_state_t. - * Do never access the members of this struct directly. - * - * @see XXH3_INITSTATE() for stack initialization. - * @see XXH3_createState(), XXH3_freeState(). - * @see XXH32_state_s, XXH64_state_s - */ -struct XXH3_state_s { - XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); - /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */ - XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); - /*!< Used to store a custom secret generated from a seed. */ - XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); - /*!< The internal buffer. @see XXH32_state_s::mem32 */ - XXH32_hash_t bufferedSize; - /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */ - XXH32_hash_t useSeed; - /*!< Reserved field. Needed for padding on 64-bit. */ - size_t nbStripesSoFar; - /*!< Number or stripes processed. */ - XXH64_hash_t totalLen; - /*!< Total length hashed. 64-bit even on 32-bit targets. */ - size_t nbStripesPerBlock; - /*!< Number of stripes per block. */ - size_t secretLimit; - /*!< Size of @ref customSecret or @ref extSecret */ - XXH64_hash_t seed; - /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */ - XXH64_hash_t reserved64; - /*!< Reserved field. */ - const unsigned char* extSecret; - /*!< Reference to an external secret for the _withSecret variants, NULL - * for other variants. */ - /* note: there may be some padding at the end due to alignment on 64 bytes */ -}; /* typedef'd to XXH3_state_t */ - -#undef XXH_ALIGN_MEMBER - -/*! - * @brief Initializes a stack-allocated `XXH3_state_s`. - * - * When the @ref XXH3_state_t structure is merely emplaced on stack, - * it should be initialized with XXH3_INITSTATE() or a memset() - * in case its first reset uses XXH3_NNbits_reset_withSeed(). - * This init can be omitted if the first reset uses default or _withSecret mode. - * This operation isn't necessary when the state is created with XXH3_createState(). - * Note that this doesn't prepare the state for a streaming operation, - * it's still necessary to use XXH3_NNbits_reset*() afterwards. - */ -#define XXH3_INITSTATE(XXH3_state_ptr) \ - do { \ - XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \ - tmp_xxh3_state_ptr->seed = 0; \ - tmp_xxh3_state_ptr->extSecret = NULL; \ - } while(0) - - -/*! - * simple alias to pre-selected XXH3_128bits variant - */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); - - -/* === Experimental API === */ -/* Symbols defined below must be considered tied to a specific library version. */ - -/*! - * XXH3_generateSecret(): - * - * Derive a high-entropy secret from any user-defined content, named customSeed. - * The generated secret can be used in combination with `*_withSecret()` functions. - * The `_withSecret()` variants are useful to provide a higher level of protection - * than 64-bit seed, as it becomes much more difficult for an external actor to - * guess how to impact the calculation logic. - * - * The function accepts as input a custom seed of any length and any content, - * and derives from it a high-entropy secret of length @p secretSize into an - * already allocated buffer @p secretBuffer. - * - * The generated secret can then be used with any `*_withSecret()` variant. - * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(), - * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret() - * are part of this list. They all accept a `secret` parameter - * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN) - * _and_ feature very high entropy (consist of random-looking bytes). - * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can - * be employed to ensure proper quality. - * - * @p customSeed can be anything. It can have any size, even small ones, - * and its content can be anything, even "poor entropy" sources such as a bunch - * of zeroes. The resulting `secret` will nonetheless provide all required qualities. - * - * @pre - * - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN - * - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior. - * - * Example code: - * @code{.c} - * #include <stdio.h> - * #include <stdlib.h> - * #include <string.h> - * #define XXH_STATIC_LINKING_ONLY // expose unstable API - * #include "xxhash.h" - * // Hashes argv[2] using the entropy from argv[1]. - * int main(int argc, char* argv[]) - * { - * char secret[XXH3_SECRET_SIZE_MIN]; - * if (argv != 3) { return 1; } - * XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1])); - * XXH64_hash_t h = XXH3_64bits_withSecret( - * argv[2], strlen(argv[2]), - * secret, sizeof(secret) - * ); - * printf("%016llx\n", (unsigned long long) h); - * } - * @endcode - */ -XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize); - -/*! - * @brief Generate the same secret as the _withSeed() variants. - * - * The generated secret can be used in combination with - *`*_withSecret()` and `_withSecretandSeed()` variants. - * - * Example C++ `std::string` hash class: - * @code{.cpp} - * #include <string> - * #define XXH_STATIC_LINKING_ONLY // expose unstable API - * #include "xxhash.h" - * // Slow, seeds each time - * class HashSlow { - * XXH64_hash_t seed; - * public: - * HashSlow(XXH64_hash_t s) : seed{s} {} - * size_t operator()(const std::string& x) const { - * return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)}; - * } - * }; - * // Fast, caches the seeded secret for future uses. - * class HashFast { - * unsigned char secret[XXH3_SECRET_SIZE_MIN]; - * public: - * HashFast(XXH64_hash_t s) { - * XXH3_generateSecret_fromSeed(secret, seed); - * } - * size_t operator()(const std::string& x) const { - * return size_t{ - * XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret)) - * }; - * } - * }; - * @endcode - * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes - * @param seed The seed to seed the state. - */ -XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed); - -/*! - * These variants generate hash values using either - * @p seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes) - * or @p secret for "large" keys (>= XXH3_MIDSIZE_MAX). - * - * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`. - * `_withSeed()` has to generate the secret on the fly for "large" keys. - * It's fast, but can be perceptible for "not so large" keys (< 1 KB). - * `_withSecret()` has to generate the masks on the fly for "small" keys, - * which requires more instructions than _withSeed() variants. - * Therefore, _withSecretandSeed variant combines the best of both worlds. - * - * When @p secret has been generated by XXH3_generateSecret_fromSeed(), - * this variant produces *exactly* the same results as `_withSeed()` variant, - * hence offering only a pure speed benefit on "large" input, - * by skipping the need to regenerate the secret for every large input. - * - * Another usage scenario is to hash the secret to a 64-bit hash value, - * for example with XXH3_64bits(), which then becomes the seed, - * and then employ both the seed and the secret in _withSecretandSeed(). - * On top of speed, an added benefit is that each bit in the secret - * has a 50% chance to swap each bit in the output, via its impact to the seed. - * - * This is not guaranteed when using the secret directly in "small data" scenarios, - * because only portions of the secret are employed for small data. - */ -XXH_PUBLIC_API XXH_PUREF XXH64_hash_t -XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len, - XXH_NOESCAPE const void* secret, size_t secretSize, - XXH64_hash_t seed); -/*! @copydoc XXH3_64bits_withSecretandSeed() */ -XXH_PUBLIC_API XXH_PUREF XXH128_hash_t -XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, - XXH_NOESCAPE const void* secret, size_t secretSize, - XXH64_hash_t seed64); -#ifndef XXH_NO_STREAM -/*! @copydoc XXH3_64bits_withSecretandSeed() */ -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, - XXH_NOESCAPE const void* secret, size_t secretSize, - XXH64_hash_t seed64); -/*! @copydoc XXH3_64bits_withSecretandSeed() */ -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, - XXH_NOESCAPE const void* secret, size_t secretSize, - XXH64_hash_t seed64); -#endif /* !XXH_NO_STREAM */ - -#endif /* !XXH_NO_XXH3 */ -#endif /* XXH_NO_LONG_LONG */ -#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) -# define XXH_IMPLEMENTATION -#endif - -#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ - - -/* ======================================================================== */ -/* ======================================================================== */ -/* ======================================================================== */ - - -/*-********************************************************************** - * xxHash implementation - *-********************************************************************** - * xxHash's implementation used to be hosted inside xxhash.c. - * - * However, inlining requires implementation to be visible to the compiler, - * hence be included alongside the header. - * Previously, implementation was hosted inside xxhash.c, - * which was then #included when inlining was activated. - * This construction created issues with a few build and install systems, - * as it required xxhash.c to be stored in /include directory. - * - * xxHash implementation is now directly integrated within xxhash.h. - * As a consequence, xxhash.c is no longer needed in /include. - * - * xxhash.c is still available and is still useful. - * In a "normal" setup, when xxhash is not inlined, - * xxhash.h only exposes the prototypes and public symbols, - * while xxhash.c can be built into an object file xxhash.o - * which can then be linked into the final binary. - ************************************************************************/ - -#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ - || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) -# define XXH_IMPLEM_13a8737387 - -/* ************************************* -* Tuning parameters -***************************************/ - -/*! - * @defgroup tuning Tuning parameters - * @{ - * - * Various macros to control xxHash's behavior. - */ -#ifdef XXH_DOXYGEN -/*! - * @brief Define this to disable 64-bit code. - * - * Useful if only using the @ref XXH32_family and you have a strict C90 compiler. - */ -# define XXH_NO_LONG_LONG -# undef XXH_NO_LONG_LONG /* don't actually */ -/*! - * @brief Controls how unaligned memory is accessed. - * - * By default, access to unaligned memory is controlled by `memcpy()`, which is - * safe and portable. - * - * Unfortunately, on some target/compiler combinations, the generated assembly - * is sub-optimal. - * - * The below switch allow selection of a different access method - * in the search for improved performance. - * - * @par Possible options: - * - * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy` - * @par - * Use `memcpy()`. Safe and portable. Note that most modern compilers will - * eliminate the function call and treat it as an unaligned access. - * - * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))` - * @par - * Depends on compiler extensions and is therefore not portable. - * This method is safe _if_ your compiler supports it, - * and *generally* as fast or faster than `memcpy`. - * - * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast - * @par - * Casts directly and dereferences. This method doesn't depend on the - * compiler, but it violates the C standard as it directly dereferences an - * unaligned pointer. It can generate buggy code on targets which do not - * support unaligned memory accesses, but in some circumstances, it's the - * only known way to get the most performance. - * - * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift - * @par - * Also portable. This can generate the best code on old compilers which don't - * inline small `memcpy()` calls, and it might also be faster on big-endian - * systems which lack a native byteswap instruction. However, some compilers - * will emit literal byteshifts even if the target supports unaligned access. - * - * - * @warning - * Methods 1 and 2 rely on implementation-defined behavior. Use these with - * care, as what works on one compiler/platform/optimization level may cause - * another to read garbage data or even crash. - * - * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. - * - * Prefer these methods in priority order (0 > 3 > 1 > 2) - */ -# define XXH_FORCE_MEMORY_ACCESS 0 - -/*! - * @def XXH_SIZE_OPT - * @brief Controls how much xxHash optimizes for size. - * - * xxHash, when compiled, tends to result in a rather large binary size. This - * is mostly due to heavy usage to forced inlining and constant folding of the - * @ref XXH3_family to increase performance. - * - * However, some developers prefer size over speed. This option can - * significantly reduce the size of the generated code. When using the `-Os` - * or `-Oz` options on GCC or Clang, this is defined to 1 by default, - * otherwise it is defined to 0. - * - * Most of these size optimizations can be controlled manually. - * - * This is a number from 0-2. - * - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed - * comes first. - * - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more - * conservative and disables hacks that increase code size. It implies the - * options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0, - * and @ref XXH3_NEON_LANES == 8 if they are not already defined. - * - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible. - * Performance may cry. For example, the single shot functions just use the - * streaming API. - */ -# define XXH_SIZE_OPT 0 - -/*! - * @def XXH_FORCE_ALIGN_CHECK - * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32() - * and XXH64() only). - * - * This is an important performance trick for architectures without decent - * unaligned memory access performance. - * - * It checks for input alignment, and when conditions are met, uses a "fast - * path" employing direct 32-bit/64-bit reads, resulting in _dramatically - * faster_ read speed. - * - * The check costs one initial branch per hash, which is generally negligible, - * but not zero. - * - * Moreover, it's not useful to generate an additional code path if memory - * access uses the same instruction for both aligned and unaligned - * addresses (e.g. x86 and aarch64). - * - * In these cases, the alignment check can be removed by setting this macro to 0. - * Then the code will always use unaligned memory access. - * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips - * which are platforms known to offer good unaligned memory accesses performance. - * - * It is also disabled by default when @ref XXH_SIZE_OPT >= 1. - * - * This option does not affect XXH3 (only XXH32 and XXH64). - */ -# define XXH_FORCE_ALIGN_CHECK 0 - -/*! - * @def XXH_NO_INLINE_HINTS - * @brief When non-zero, sets all functions to `static`. - * - * By default, xxHash tries to force the compiler to inline almost all internal - * functions. - * - * This can usually improve performance due to reduced jumping and improved - * constant folding, but significantly increases the size of the binary which - * might not be favorable. - * - * Additionally, sometimes the forced inlining can be detrimental to performance, - * depending on the architecture. - * - * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the - * compiler full control on whether to inline or not. - * - * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if - * @ref XXH_SIZE_OPT >= 1, this will automatically be defined. - */ -# define XXH_NO_INLINE_HINTS 0 - -/*! - * @def XXH3_INLINE_SECRET - * @brief Determines whether to inline the XXH3 withSecret code. - * - * When the secret size is known, the compiler can improve the performance - * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret(). - * - * However, if the secret size is not known, it doesn't have any benefit. This - * happens when xxHash is compiled into a global symbol. Therefore, if - * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0. - * - * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers - * that are *sometimes* force inline on -Og, and it is impossible to automatically - * detect this optimization level. - */ -# define XXH3_INLINE_SECRET 0 - -/*! - * @def XXH32_ENDJMP - * @brief Whether to use a jump for `XXH32_finalize`. - * - * For performance, `XXH32_finalize` uses multiple branches in the finalizer. - * This is generally preferable for performance, - * but depending on exact architecture, a jmp may be preferable. - * - * This setting is only possibly making a difference for very small inputs. - */ -# define XXH32_ENDJMP 0 - -/*! - * @internal - * @brief Redefines old internal names. - * - * For compatibility with code that uses xxHash's internals before the names - * were changed to improve namespacing. There is no other reason to use this. - */ -# define XXH_OLD_NAMES -# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */ - -/*! - * @def XXH_NO_STREAM - * @brief Disables the streaming API. - * - * When xxHash is not inlined and the streaming functions are not used, disabling - * the streaming functions can improve code size significantly, especially with - * the @ref XXH3_family which tends to make constant folded copies of itself. - */ -# define XXH_NO_STREAM -# undef XXH_NO_STREAM /* don't actually */ -#endif /* XXH_DOXYGEN */ -/*! - * @} - */ - -#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ - /* prefer __packed__ structures (method 1) for GCC - * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy - * which for some reason does unaligned loads. */ -# if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED)) -# define XXH_FORCE_MEMORY_ACCESS 1 -# endif -#endif - -#ifndef XXH_SIZE_OPT - /* default to 1 for -Os or -Oz */ -# if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__) -# define XXH_SIZE_OPT 1 -# else -# define XXH_SIZE_OPT 0 -# endif -#endif - -#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ - /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */ -# if XXH_SIZE_OPT >= 1 || \ - defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \ - || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) /* visual */ -# define XXH_FORCE_ALIGN_CHECK 0 -# else -# define XXH_FORCE_ALIGN_CHECK 1 -# endif -#endif - -#ifndef XXH_NO_INLINE_HINTS -# if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */ -# define XXH_NO_INLINE_HINTS 1 -# else -# define XXH_NO_INLINE_HINTS 0 -# endif -#endif - -#ifndef XXH3_INLINE_SECRET -# if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \ - || !defined(XXH_INLINE_ALL) -# define XXH3_INLINE_SECRET 0 -# else -# define XXH3_INLINE_SECRET 1 -# endif -#endif - -#ifndef XXH32_ENDJMP -/* generally preferable for performance */ -# define XXH32_ENDJMP 0 -#endif - -/*! - * @defgroup impl Implementation - * @{ - */ - - -/* ************************************* -* Includes & Memory related functions -***************************************/ -#if defined(XXH_NO_STREAM) -/* nothing */ -#elif defined(XXH_NO_STDLIB) - -/* When requesting to disable any mention of stdlib, - * the library loses the ability to invoked malloc / free. - * In practice, it means that functions like `XXH*_createState()` - * will always fail, and return NULL. - * This flag is useful in situations where - * xxhash.h is integrated into some kernel, embedded or limited environment - * without access to dynamic allocation. - */ - -static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; } -static void XXH_free(void* p) { (void)p; } - -#else - -/* - * Modify the local functions below should you wish to use - * different memory routines for malloc() and free() - */ -#include <stdlib.h> - -/*! - * @internal - * @brief Modify this function to use a different routine than malloc(). - */ -static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); } - -/*! - * @internal - * @brief Modify this function to use a different routine than free(). - */ -static void XXH_free(void* p) { free(p); } - -#endif /* XXH_NO_STDLIB */ - -#include <string.h> - -/*! - * @internal - * @brief Modify this function to use a different routine than memcpy(). - */ -static void* XXH_memcpy(void* dest, const void* src, size_t size) -{ - return memcpy(dest,src,size); -} - -#include <limits.h> /* ULLONG_MAX */ - - -/* ************************************* -* Compiler Specific Options -***************************************/ -#ifdef _MSC_VER /* Visual Studio warning fix */ -# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ -#endif - -#if XXH_NO_INLINE_HINTS /* disable inlining hints */ -# if defined(__GNUC__) || defined(__clang__) -# define XXH_FORCE_INLINE static __attribute__((unused)) -# else -# define XXH_FORCE_INLINE static -# endif -# define XXH_NO_INLINE static -/* enable inlining hints */ -#elif defined(__GNUC__) || defined(__clang__) -# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) -# define XXH_NO_INLINE static __attribute__((noinline)) -#elif defined(_MSC_VER) /* Visual Studio */ -# define XXH_FORCE_INLINE static __forceinline -# define XXH_NO_INLINE static __declspec(noinline) -#elif defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ -# define XXH_FORCE_INLINE static inline -# define XXH_NO_INLINE static -#else -# define XXH_FORCE_INLINE static -# define XXH_NO_INLINE static -#endif - -#if XXH3_INLINE_SECRET -# define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE -#else -# define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE -#endif - - -/* ************************************* -* Debug -***************************************/ -/*! - * @ingroup tuning - * @def XXH_DEBUGLEVEL - * @brief Sets the debugging level. - * - * XXH_DEBUGLEVEL is expected to be defined externally, typically via the - * compiler's command line options. The value must be a number. - */ -#ifndef XXH_DEBUGLEVEL -# ifdef DEBUGLEVEL /* backwards compat */ -# define XXH_DEBUGLEVEL DEBUGLEVEL -# else -# define XXH_DEBUGLEVEL 0 -# endif -#endif - -#if (XXH_DEBUGLEVEL>=1) -# include <assert.h> /* note: can still be disabled with NDEBUG */ -# define XXH_ASSERT(c) assert(c) -#else -# if defined(__INTEL_COMPILER) -# define XXH_ASSERT(c) XXH_ASSUME((unsigned char) (c)) -# else -# define XXH_ASSERT(c) XXH_ASSUME(c) -# endif -#endif - -/* note: use after variable declarations */ -#ifndef XXH_STATIC_ASSERT -# if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ -# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0) -# elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */ -# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) -# else -# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0) -# endif -# define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c) -#endif - -/*! - * @internal - * @def XXH_COMPILER_GUARD(var) - * @brief Used to prevent unwanted optimizations for @p var. - * - * It uses an empty GCC inline assembly statement with a register constraint - * which forces @p var into a general purpose register (eg eax, ebx, ecx - * on x86) and marks it as modified. - * - * This is used in a few places to avoid unwanted autovectorization (e.g. - * XXH32_round()). All vectorization we want is explicit via intrinsics, - * and _usually_ isn't wanted elsewhere. - * - * We also use it to prevent unwanted constant folding for AArch64 in - * XXH3_initCustomSecret_scalar(). - */ -#if defined(__GNUC__) || defined(__clang__) -# define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var)) -#else -# define XXH_COMPILER_GUARD(var) ((void)0) -#endif - -/* Specifically for NEON vectors which use the "w" constraint, on - * Clang. */ -#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__) -# define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var)) -#else -# define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0) -#endif - -/* ************************************* -* Basic Types -***************************************/ -#if !defined (__VMS) \ - && (defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) -# include <stdint.h> - typedef uint8_t xxh_u8; -#else - typedef unsigned char xxh_u8; -#endif -typedef XXH32_hash_t xxh_u32; - -#ifdef XXH_OLD_NAMES -# warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly" -# define BYTE xxh_u8 -# define U8 xxh_u8 -# define U32 xxh_u32 -#endif - -/* *** Memory access *** */ - -/*! - * @internal - * @fn xxh_u32 XXH_read32(const void* ptr) - * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness. - * - * Affected by @ref XXH_FORCE_MEMORY_ACCESS. - * - * @param ptr The pointer to read from. - * @return The 32-bit native endian integer from the bytes at @p ptr. - */ - -/*! - * @internal - * @fn xxh_u32 XXH_readLE32(const void* ptr) - * @brief Reads an unaligned 32-bit little endian integer from @p ptr. - * - * Affected by @ref XXH_FORCE_MEMORY_ACCESS. - * - * @param ptr The pointer to read from. - * @return The 32-bit little endian integer from the bytes at @p ptr. - */ - -/*! - * @internal - * @fn xxh_u32 XXH_readBE32(const void* ptr) - * @brief Reads an unaligned 32-bit big endian integer from @p ptr. - * - * Affected by @ref XXH_FORCE_MEMORY_ACCESS. - * - * @param ptr The pointer to read from. - * @return The 32-bit big endian integer from the bytes at @p ptr. - */ - -/*! - * @internal - * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align) - * @brief Like @ref XXH_readLE32(), but has an option for aligned reads. - * - * Affected by @ref XXH_FORCE_MEMORY_ACCESS. - * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is - * always @ref XXH_alignment::XXH_unaligned. - * - * @param ptr The pointer to read from. - * @param align Whether @p ptr is aligned. - * @pre - * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte - * aligned. - * @return The 32-bit little endian integer from the bytes at @p ptr. - */ - -#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) -/* - * Manual byteshift. Best for old compilers which don't inline memcpy. - * We actually directly use XXH_readLE32 and XXH_readBE32. - */ -#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) - -/* - * Force direct memory access. Only works on CPU which support unaligned memory - * access in hardware. - */ -static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } - -#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) - -/* - * __attribute__((aligned(1))) is supported by gcc and clang. Originally the - * documentation claimed that it only increased the alignment, but actually it - * can decrease it on gcc, clang, and icc: - * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, - * https://gcc.godbolt.org/z/xYez1j67Y. - */ -#ifdef XXH_OLD_NAMES -typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; -#endif -static xxh_u32 XXH_read32(const void* ptr) -{ - typedef __attribute__((aligned(1))) xxh_u32 xxh_unalign32; - return *((const xxh_unalign32*)ptr); -} - -#else - -/* - * Portable and safe solution. Generally efficient. - * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html - */ -static xxh_u32 XXH_read32(const void* memPtr) -{ - xxh_u32 val; - XXH_memcpy(&val, memPtr, sizeof(val)); - return val; -} - -#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ - - -/* *** Endianness *** */ - -/*! - * @ingroup tuning - * @def XXH_CPU_LITTLE_ENDIAN - * @brief Whether the target is little endian. - * - * Defined to 1 if the target is little endian, or 0 if it is big endian. - * It can be defined externally, for example on the compiler command line. - * - * If it is not defined, - * a runtime check (which is usually constant folded) is used instead. - * - * @note - * This is not necessarily defined to an integer constant. - * - * @see XXH_isLittleEndian() for the runtime check. - */ -#ifndef XXH_CPU_LITTLE_ENDIAN -/* - * Try to detect endianness automatically, to avoid the nonstandard behavior - * in `XXH_isLittleEndian()` - */ -# if defined(_WIN32) /* Windows is always little endian */ \ - || defined(__LITTLE_ENDIAN__) \ - || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) -# define XXH_CPU_LITTLE_ENDIAN 1 -# elif defined(__BIG_ENDIAN__) \ - || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) -# define XXH_CPU_LITTLE_ENDIAN 0 -# else -/*! - * @internal - * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN. - * - * Most compilers will constant fold this. - */ -static int XXH_isLittleEndian(void) -{ - /* - * Portable and well-defined behavior. - * Don't use static: it is detrimental to performance. - */ - const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; - return one.c[0]; -} -# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() -# endif -#endif - - - - -/* **************************************** -* Compiler-specific Functions and Macros -******************************************/ -#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) - -#ifdef __has_builtin -# define XXH_HAS_BUILTIN(x) __has_builtin(x) -#else -# define XXH_HAS_BUILTIN(x) 0 -#endif - - - -/* - * C23 and future versions have standard "unreachable()". - * Once it has been implemented reliably we can add it as an - * additional case: - * - * ``` - * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) - * # include <stddef.h> - * # ifdef unreachable - * # define XXH_UNREACHABLE() unreachable() - * # endif - * #endif - * ``` - * - * Note C++23 also has std::unreachable() which can be detected - * as follows: - * ``` - * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L) - * # include <utility> - * # define XXH_UNREACHABLE() std::unreachable() - * #endif - * ``` - * NB: `__cpp_lib_unreachable` is defined in the `<version>` header. - * We don't use that as including `<utility>` in `extern "C"` blocks - * doesn't work on GCC12 - */ - -#if XXH_HAS_BUILTIN(__builtin_unreachable) -# define XXH_UNREACHABLE() __builtin_unreachable() - -#elif defined(_MSC_VER) -# define XXH_UNREACHABLE() __assume(0) - -#else -# define XXH_UNREACHABLE() -#endif - -#if XXH_HAS_BUILTIN(__builtin_assume) -# define XXH_ASSUME(c) __builtin_assume(c) -#else -# define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); } -#endif - -/*! - * @internal - * @def XXH_rotl32(x,r) - * @brief 32-bit rotate left. - * - * @param x The 32-bit integer to be rotated. - * @param r The number of bits to rotate. - * @pre - * @p r > 0 && @p r < 32 - * @note - * @p x and @p r may be evaluated multiple times. - * @return The rotated result. - */ -#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ - && XXH_HAS_BUILTIN(__builtin_rotateleft64) -# define XXH_rotl32 __builtin_rotateleft32 -# define XXH_rotl64 __builtin_rotateleft64 -/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ -#elif defined(_MSC_VER) -# define XXH_rotl32(x,r) _rotl(x,r) -# define XXH_rotl64(x,r) _rotl64(x,r) -#else -# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) -# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) -#endif - -/*! - * @internal - * @fn xxh_u32 XXH_swap32(xxh_u32 x) - * @brief A 32-bit byteswap. - * - * @param x The 32-bit integer to byteswap. - * @return @p x, byteswapped. - */ -#if defined(_MSC_VER) /* Visual Studio */ -# define XXH_swap32 _byteswap_ulong -#elif XXH_GCC_VERSION >= 403 -# define XXH_swap32 __builtin_bswap32 -#else -static xxh_u32 XXH_swap32 (xxh_u32 x) -{ - return ((x << 24) & 0xff000000 ) | - ((x << 8) & 0x00ff0000 ) | - ((x >> 8) & 0x0000ff00 ) | - ((x >> 24) & 0x000000ff ); -} -#endif - - -/* *************************** -* Memory reads -*****************************/ - -/*! - * @internal - * @brief Enum to indicate whether a pointer is aligned. - */ -typedef enum { - XXH_aligned, /*!< Aligned */ - XXH_unaligned /*!< Possibly unaligned */ -} XXH_alignment; - -/* - * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. - * - * This is ideal for older compilers which don't inline memcpy. - */ -#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) - -XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) -{ - const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; - return bytePtr[0] - | ((xxh_u32)bytePtr[1] << 8) - | ((xxh_u32)bytePtr[2] << 16) - | ((xxh_u32)bytePtr[3] << 24); -} - -XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) -{ - const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; - return bytePtr[3] - | ((xxh_u32)bytePtr[2] << 8) - | ((xxh_u32)bytePtr[1] << 16) - | ((xxh_u32)bytePtr[0] << 24); -} - -#else -XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) -{ - return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); -} - -static xxh_u32 XXH_readBE32(const void* ptr) -{ - return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); -} -#endif - -XXH_FORCE_INLINE xxh_u32 -XXH_readLE32_align(const void* ptr, XXH_alignment align) -{ - if (align==XXH_unaligned) { - return XXH_readLE32(ptr); - } else { - return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); - } -} - - -/* ************************************* -* Misc -***************************************/ -/*! @ingroup public */ -XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } - - -/* ******************************************************************* -* 32-bit hash functions -*********************************************************************/ -/*! - * @} - * @defgroup XXH32_impl XXH32 implementation - * @ingroup impl - * - * Details on the XXH32 implementation. - * @{ - */ - /* #define instead of static const, to be used as initializers */ -#define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */ -#define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */ -#define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */ -#define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */ -#define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */ - -#ifdef XXH_OLD_NAMES -# define PRIME32_1 XXH_PRIME32_1 -# define PRIME32_2 XXH_PRIME32_2 -# define PRIME32_3 XXH_PRIME32_3 -# define PRIME32_4 XXH_PRIME32_4 -# define PRIME32_5 XXH_PRIME32_5 -#endif - -/*! - * @internal - * @brief Normal stripe processing routine. - * - * This shuffles the bits so that any bit from @p input impacts several bits in - * @p acc. - * - * @param acc The accumulator lane. - * @param input The stripe of input to mix. - * @return The mixed accumulator lane. - */ -static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) -{ - acc += input * XXH_PRIME32_2; - acc = XXH_rotl32(acc, 13); - acc *= XXH_PRIME32_1; -#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) - /* - * UGLY HACK: - * A compiler fence is the only thing that prevents GCC and Clang from - * autovectorizing the XXH32 loop (pragmas and attributes don't work for some - * reason) without globally disabling SSE4.1. - * - * The reason we want to avoid vectorization is because despite working on - * 4 integers at a time, there are multiple factors slowing XXH32 down on - * SSE4: - * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on - * newer chips!) making it slightly slower to multiply four integers at - * once compared to four integers independently. Even when pmulld was - * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE - * just to multiply unless doing a long operation. - * - * - Four instructions are required to rotate, - * movqda tmp, v // not required with VEX encoding - * pslld tmp, 13 // tmp <<= 13 - * psrld v, 19 // x >>= 19 - * por v, tmp // x |= tmp - * compared to one for scalar: - * roll v, 13 // reliably fast across the board - * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason - * - * - Instruction level parallelism is actually more beneficial here because - * the SIMD actually serializes this operation: While v1 is rotating, v2 - * can load data, while v3 can multiply. SSE forces them to operate - * together. - * - * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing - * the loop. NEON is only faster on the A53, and with the newer cores, it is less - * than half the speed. - * - * Additionally, this is used on WASM SIMD128 because it JITs to the same - * SIMD instructions and has the same issue. - */ - XXH_COMPILER_GUARD(acc); -#endif - return acc; -} - -/*! - * @internal - * @brief Mixes all bits to finalize the hash. - * - * The final mix ensures that all input bits have a chance to impact any bit in - * the output digest, resulting in an unbiased distribution. - * - * @param hash The hash to avalanche. - * @return The avalanched hash. - */ -static xxh_u32 XXH32_avalanche(xxh_u32 hash) -{ - hash ^= hash >> 15; - hash *= XXH_PRIME32_2; - hash ^= hash >> 13; - hash *= XXH_PRIME32_3; - hash ^= hash >> 16; - return hash; -} - -#define XXH_get32bits(p) XXH_readLE32_align(p, align) - -/*! - * @internal - * @brief Processes the last 0-15 bytes of @p ptr. - * - * There may be up to 15 bytes remaining to consume from the input. - * This final stage will digest them to ensure that all input bytes are present - * in the final mix. - * - * @param hash The hash to finalize. - * @param ptr The pointer to the remaining input. - * @param len The remaining length, modulo 16. - * @param align Whether @p ptr is aligned. - * @return The finalized hash. - * @see XXH64_finalize(). - */ -static XXH_PUREF xxh_u32 -XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) -{ -#define XXH_PROCESS1 do { \ - hash += (*ptr++) * XXH_PRIME32_5; \ - hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1; \ -} while (0) - -#define XXH_PROCESS4 do { \ - hash += XXH_get32bits(ptr) * XXH_PRIME32_3; \ - ptr += 4; \ - hash = XXH_rotl32(hash, 17) * XXH_PRIME32_4; \ -} while (0) - - if (ptr==NULL) XXH_ASSERT(len == 0); - - /* Compact rerolled version; generally faster */ - if (!XXH32_ENDJMP) { - len &= 15; - while (len >= 4) { - XXH_PROCESS4; - len -= 4; - } - while (len > 0) { - XXH_PROCESS1; - --len; - } - return XXH32_avalanche(hash); - } else { - switch(len&15) /* or switch(bEnd - p) */ { - case 12: XXH_PROCESS4; - XXH_FALLTHROUGH; /* fallthrough */ - case 8: XXH_PROCESS4; - XXH_FALLTHROUGH; /* fallthrough */ - case 4: XXH_PROCESS4; - return XXH32_avalanche(hash); - - case 13: XXH_PROCESS4; - XXH_FALLTHROUGH; /* fallthrough */ - case 9: XXH_PROCESS4; - XXH_FALLTHROUGH; /* fallthrough */ - case 5: XXH_PROCESS4; - XXH_PROCESS1; - return XXH32_avalanche(hash); - - case 14: XXH_PROCESS4; - XXH_FALLTHROUGH; /* fallthrough */ - case 10: XXH_PROCESS4; - XXH_FALLTHROUGH; /* fallthrough */ - case 6: XXH_PROCESS4; - XXH_PROCESS1; - XXH_PROCESS1; - return XXH32_avalanche(hash); - - case 15: XXH_PROCESS4; - XXH_FALLTHROUGH; /* fallthrough */ - case 11: XXH_PROCESS4; - XXH_FALLTHROUGH; /* fallthrough */ - case 7: XXH_PROCESS4; - XXH_FALLTHROUGH; /* fallthrough */ - case 3: XXH_PROCESS1; - XXH_FALLTHROUGH; /* fallthrough */ - case 2: XXH_PROCESS1; - XXH_FALLTHROUGH; /* fallthrough */ - case 1: XXH_PROCESS1; - XXH_FALLTHROUGH; /* fallthrough */ - case 0: return XXH32_avalanche(hash); - } - XXH_ASSERT(0); - return hash; /* reaching this point is deemed impossible */ - } -} - -#ifdef XXH_OLD_NAMES -# define PROCESS1 XXH_PROCESS1 -# define PROCESS4 XXH_PROCESS4 -#else -# undef XXH_PROCESS1 -# undef XXH_PROCESS4 -#endif - -/*! - * @internal - * @brief The implementation for @ref XXH32(). - * - * @param input , len , seed Directly passed from @ref XXH32(). - * @param align Whether @p input is aligned. - * @return The calculated hash. - */ -XXH_FORCE_INLINE XXH_PUREF xxh_u32 -XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) -{ - xxh_u32 h32; - - if (input==NULL) XXH_ASSERT(len == 0); - - if (len>=16) { - const xxh_u8* const bEnd = input + len; - const xxh_u8* const limit = bEnd - 15; - xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; - xxh_u32 v2 = seed + XXH_PRIME32_2; - xxh_u32 v3 = seed + 0; - xxh_u32 v4 = seed - XXH_PRIME32_1; - - do { - v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; - v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; - v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; - v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; - } while (input < limit); - - h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) - + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); - } else { - h32 = seed + XXH_PRIME32_5; - } - - h32 += (xxh_u32)len; - - return XXH32_finalize(h32, input, len&15, align); -} - -/*! @ingroup XXH32_family */ -XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) -{ -#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 - /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ - XXH32_state_t state; - XXH32_reset(&state, seed); - XXH32_update(&state, (const xxh_u8*)input, len); - return XXH32_digest(&state); -#else - if (XXH_FORCE_ALIGN_CHECK) { - if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ - return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); - } } - - return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); -#endif -} - - - -/******* Hash streaming *******/ -#ifndef XXH_NO_STREAM -/*! @ingroup XXH32_family */ -XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) -{ - return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); -} -/*! @ingroup XXH32_family */ -XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) -{ - XXH_free(statePtr); - return XXH_OK; -} - -/*! @ingroup XXH32_family */ -XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) -{ - XXH_memcpy(dstState, srcState, sizeof(*dstState)); -} - -/*! @ingroup XXH32_family */ -XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) -{ - XXH_ASSERT(statePtr != NULL); - memset(statePtr, 0, sizeof(*statePtr)); - statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2; - statePtr->v[1] = seed + XXH_PRIME32_2; - statePtr->v[2] = seed + 0; - statePtr->v[3] = seed - XXH_PRIME32_1; - return XXH_OK; -} - - -/*! @ingroup XXH32_family */ -XXH_PUBLIC_API XXH_errorcode -XXH32_update(XXH32_state_t* state, const void* input, size_t len) -{ - if (input==NULL) { - XXH_ASSERT(len == 0); - return XXH_OK; - } - - { const xxh_u8* p = (const xxh_u8*)input; - const xxh_u8* const bEnd = p + len; - - state->total_len_32 += (XXH32_hash_t)len; - state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); - - if (state->memsize + len < 16) { /* fill in tmp buffer */ - XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); - state->memsize += (XXH32_hash_t)len; - return XXH_OK; - } - - if (state->memsize) { /* some data left from previous update */ - XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); - { const xxh_u32* p32 = state->mem32; - state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++; - state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++; - state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++; - state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32)); - } - p += 16-state->memsize; - state->memsize = 0; - } - - if (p <= bEnd-16) { - const xxh_u8* const limit = bEnd - 16; - - do { - state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4; - state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4; - state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4; - state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4; - } while (p<=limit); - - } - - if (p < bEnd) { - XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); - state->memsize = (unsigned)(bEnd-p); - } - } - - return XXH_OK; -} - - -/*! @ingroup XXH32_family */ -XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state) -{ - xxh_u32 h32; - - if (state->large_len) { - h32 = XXH_rotl32(state->v[0], 1) - + XXH_rotl32(state->v[1], 7) - + XXH_rotl32(state->v[2], 12) - + XXH_rotl32(state->v[3], 18); - } else { - h32 = state->v[2] /* == seed */ + XXH_PRIME32_5; - } - - h32 += state->total_len_32; - - return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); -} -#endif /* !XXH_NO_STREAM */ - -/******* Canonical representation *******/ - -/*! - * @ingroup XXH32_family - * The default return values from XXH functions are unsigned 32 and 64 bit - * integers. - * - * The canonical representation uses big endian convention, the same convention - * as human-readable numbers (large digits first). - * - * This way, hash values can be written into a file or buffer, remaining - * comparable across different systems. - * - * The following functions allow transformation of hash values to and from their - * canonical format. - */ -XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) -{ - XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); - if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); - XXH_memcpy(dst, &hash, sizeof(*dst)); -} -/*! @ingroup XXH32_family */ -XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) -{ - return XXH_readBE32(src); -} - - -#ifndef XXH_NO_LONG_LONG - -/* ******************************************************************* -* 64-bit hash functions -*********************************************************************/ -/*! - * @} - * @ingroup impl - * @{ - */ -/******* Memory access *******/ - -typedef XXH64_hash_t xxh_u64; - -#ifdef XXH_OLD_NAMES -# define U64 xxh_u64 -#endif - -#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) -/* - * Manual byteshift. Best for old compilers which don't inline memcpy. - * We actually directly use XXH_readLE64 and XXH_readBE64. - */ -#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) - -/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ -static xxh_u64 XXH_read64(const void* memPtr) -{ - return *(const xxh_u64*) memPtr; -} - -#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) - -/* - * __attribute__((aligned(1))) is supported by gcc and clang. Originally the - * documentation claimed that it only increased the alignment, but actually it - * can decrease it on gcc, clang, and icc: - * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, - * https://gcc.godbolt.org/z/xYez1j67Y. - */ -#ifdef XXH_OLD_NAMES -typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; -#endif -static xxh_u64 XXH_read64(const void* ptr) -{ - typedef __attribute__((aligned(1))) xxh_u64 xxh_unalign64; - return *((const xxh_unalign64*)ptr); -} - -#else - -/* - * Portable and safe solution. Generally efficient. - * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html - */ -static xxh_u64 XXH_read64(const void* memPtr) -{ - xxh_u64 val; - XXH_memcpy(&val, memPtr, sizeof(val)); - return val; -} - -#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ - -#if defined(_MSC_VER) /* Visual Studio */ -# define XXH_swap64 _byteswap_uint64 -#elif XXH_GCC_VERSION >= 403 -# define XXH_swap64 __builtin_bswap64 -#else -static xxh_u64 XXH_swap64(xxh_u64 x) -{ - return ((x << 56) & 0xff00000000000000ULL) | - ((x << 40) & 0x00ff000000000000ULL) | - ((x << 24) & 0x0000ff0000000000ULL) | - ((x << 8) & 0x000000ff00000000ULL) | - ((x >> 8) & 0x00000000ff000000ULL) | - ((x >> 24) & 0x0000000000ff0000ULL) | - ((x >> 40) & 0x000000000000ff00ULL) | - ((x >> 56) & 0x00000000000000ffULL); -} -#endif - - -/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ -#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) - -XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) -{ - const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; - return bytePtr[0] - | ((xxh_u64)bytePtr[1] << 8) - | ((xxh_u64)bytePtr[2] << 16) - | ((xxh_u64)bytePtr[3] << 24) - | ((xxh_u64)bytePtr[4] << 32) - | ((xxh_u64)bytePtr[5] << 40) - | ((xxh_u64)bytePtr[6] << 48) - | ((xxh_u64)bytePtr[7] << 56); -} - -XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) -{ - const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; - return bytePtr[7] - | ((xxh_u64)bytePtr[6] << 8) - | ((xxh_u64)bytePtr[5] << 16) - | ((xxh_u64)bytePtr[4] << 24) - | ((xxh_u64)bytePtr[3] << 32) - | ((xxh_u64)bytePtr[2] << 40) - | ((xxh_u64)bytePtr[1] << 48) - | ((xxh_u64)bytePtr[0] << 56); -} - -#else -XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) -{ - return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); -} - -static xxh_u64 XXH_readBE64(const void* ptr) -{ - return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); -} -#endif - -XXH_FORCE_INLINE xxh_u64 -XXH_readLE64_align(const void* ptr, XXH_alignment align) -{ - if (align==XXH_unaligned) - return XXH_readLE64(ptr); - else - return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); -} - - -/******* xxh64 *******/ -/*! - * @} - * @defgroup XXH64_impl XXH64 implementation - * @ingroup impl - * - * Details on the XXH64 implementation. - * @{ - */ -/* #define rather that static const, to be used as initializers */ -#define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */ -#define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */ -#define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */ -#define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */ -#define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */ - -#ifdef XXH_OLD_NAMES -# define PRIME64_1 XXH_PRIME64_1 -# define PRIME64_2 XXH_PRIME64_2 -# define PRIME64_3 XXH_PRIME64_3 -# define PRIME64_4 XXH_PRIME64_4 -# define PRIME64_5 XXH_PRIME64_5 -#endif - -/*! @copydoc XXH32_round */ -static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) -{ - acc += input * XXH_PRIME64_2; - acc = XXH_rotl64(acc, 31); - acc *= XXH_PRIME64_1; - return acc; -} - -static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) -{ - val = XXH64_round(0, val); - acc ^= val; - acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; - return acc; -} - -/*! @copydoc XXH32_avalanche */ -static xxh_u64 XXH64_avalanche(xxh_u64 hash) -{ - hash ^= hash >> 33; - hash *= XXH_PRIME64_2; - hash ^= hash >> 29; - hash *= XXH_PRIME64_3; - hash ^= hash >> 32; - return hash; -} - - -#define XXH_get64bits(p) XXH_readLE64_align(p, align) - -/*! - * @internal - * @brief Processes the last 0-31 bytes of @p ptr. - * - * There may be up to 31 bytes remaining to consume from the input. - * This final stage will digest them to ensure that all input bytes are present - * in the final mix. - * - * @param hash The hash to finalize. - * @param ptr The pointer to the remaining input. - * @param len The remaining length, modulo 32. - * @param align Whether @p ptr is aligned. - * @return The finalized hash - * @see XXH32_finalize(). - */ -static XXH_PUREF xxh_u64 -XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) -{ - if (ptr==NULL) XXH_ASSERT(len == 0); - len &= 31; - while (len >= 8) { - xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); - ptr += 8; - hash ^= k1; - hash = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4; - len -= 8; - } - if (len >= 4) { - hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; - ptr += 4; - hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; - len -= 4; - } - while (len > 0) { - hash ^= (*ptr++) * XXH_PRIME64_5; - hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1; - --len; - } - return XXH64_avalanche(hash); -} - -#ifdef XXH_OLD_NAMES -# define PROCESS1_64 XXH_PROCESS1_64 -# define PROCESS4_64 XXH_PROCESS4_64 -# define PROCESS8_64 XXH_PROCESS8_64 -#else -# undef XXH_PROCESS1_64 -# undef XXH_PROCESS4_64 -# undef XXH_PROCESS8_64 -#endif - -/*! - * @internal - * @brief The implementation for @ref XXH64(). - * - * @param input , len , seed Directly passed from @ref XXH64(). - * @param align Whether @p input is aligned. - * @return The calculated hash. - */ -XXH_FORCE_INLINE XXH_PUREF xxh_u64 -XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) -{ - xxh_u64 h64; - if (input==NULL) XXH_ASSERT(len == 0); - - if (len>=32) { - const xxh_u8* const bEnd = input + len; - const xxh_u8* const limit = bEnd - 31; - xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; - xxh_u64 v2 = seed + XXH_PRIME64_2; - xxh_u64 v3 = seed + 0; - xxh_u64 v4 = seed - XXH_PRIME64_1; - - do { - v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; - v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; - v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; - v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; - } while (input<limit); - - h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); - h64 = XXH64_mergeRound(h64, v1); - h64 = XXH64_mergeRound(h64, v2); - h64 = XXH64_mergeRound(h64, v3); - h64 = XXH64_mergeRound(h64, v4); - - } else { - h64 = seed + XXH_PRIME64_5; - } - - h64 += (xxh_u64) len; - - return XXH64_finalize(h64, input, len, align); -} - - -/*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) -{ -#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 - /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ - XXH64_state_t state; - XXH64_reset(&state, seed); - XXH64_update(&state, (const xxh_u8*)input, len); - return XXH64_digest(&state); -#else - if (XXH_FORCE_ALIGN_CHECK) { - if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ - return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); - } } - - return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); - -#endif -} - -/******* Hash Streaming *******/ -#ifndef XXH_NO_STREAM -/*! @ingroup XXH64_family*/ -XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) -{ - return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); -} -/*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) -{ - XXH_free(statePtr); - return XXH_OK; -} - -/*! @ingroup XXH64_family */ -XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState) -{ - XXH_memcpy(dstState, srcState, sizeof(*dstState)); -} - -/*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed) -{ - XXH_ASSERT(statePtr != NULL); - memset(statePtr, 0, sizeof(*statePtr)); - statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2; - statePtr->v[1] = seed + XXH_PRIME64_2; - statePtr->v[2] = seed + 0; - statePtr->v[3] = seed - XXH_PRIME64_1; - return XXH_OK; -} - -/*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH_errorcode -XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len) -{ - if (input==NULL) { - XXH_ASSERT(len == 0); - return XXH_OK; - } - - { const xxh_u8* p = (const xxh_u8*)input; - const xxh_u8* const bEnd = p + len; - - state->total_len += len; - - if (state->memsize + len < 32) { /* fill in tmp buffer */ - XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); - state->memsize += (xxh_u32)len; - return XXH_OK; - } - - if (state->memsize) { /* tmp buffer is full */ - XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); - state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0)); - state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1)); - state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2)); - state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3)); - p += 32 - state->memsize; - state->memsize = 0; - } - - if (p+32 <= bEnd) { - const xxh_u8* const limit = bEnd - 32; - - do { - state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8; - state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8; - state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8; - state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8; - } while (p<=limit); - - } - - if (p < bEnd) { - XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); - state->memsize = (unsigned)(bEnd-p); - } - } - - return XXH_OK; -} - - -/*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state) -{ - xxh_u64 h64; - - if (state->total_len >= 32) { - h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18); - h64 = XXH64_mergeRound(h64, state->v[0]); - h64 = XXH64_mergeRound(h64, state->v[1]); - h64 = XXH64_mergeRound(h64, state->v[2]); - h64 = XXH64_mergeRound(h64, state->v[3]); - } else { - h64 = state->v[2] /*seed*/ + XXH_PRIME64_5; - } - - h64 += (xxh_u64) state->total_len; - - return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); -} -#endif /* !XXH_NO_STREAM */ - -/******* Canonical representation *******/ - -/*! @ingroup XXH64_family */ -XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash) -{ - XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); - if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); - XXH_memcpy(dst, &hash, sizeof(*dst)); -} - -/*! @ingroup XXH64_family */ -XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src) -{ - return XXH_readBE64(src); -} - -#ifndef XXH_NO_XXH3 - -/* ********************************************************************* -* XXH3 -* New generation hash designed for speed on small keys and vectorization -************************************************************************ */ -/*! - * @} - * @defgroup XXH3_impl XXH3 implementation - * @ingroup impl - * @{ - */ - -/* === Compiler specifics === */ - -#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */ -# define XXH_RESTRICT /* disable */ -#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ -# define XXH_RESTRICT restrict -#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \ - || (defined (__clang__)) \ - || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \ - || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300)) -/* - * There are a LOT more compilers that recognize __restrict but this - * covers the major ones. - */ -# define XXH_RESTRICT __restrict -#else -# define XXH_RESTRICT /* disable */ -#endif - -#if (defined(__GNUC__) && (__GNUC__ >= 3)) \ - || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ - || defined(__clang__) -# define XXH_likely(x) __builtin_expect(x, 1) -# define XXH_unlikely(x) __builtin_expect(x, 0) -#else -# define XXH_likely(x) (x) -# define XXH_unlikely(x) (x) -#endif - -#ifndef XXH_HAS_INCLUDE -# ifdef __has_include -# define XXH_HAS_INCLUDE(x) __has_include(x) -# else -# define XXH_HAS_INCLUDE(x) 0 -# endif -#endif - -#if defined(__GNUC__) || defined(__clang__) -# if defined(__ARM_FEATURE_SVE) -# include <arm_sve.h> -# endif -# if defined(__ARM_NEON__) || defined(__ARM_NEON) \ - || (defined(_M_ARM) && _M_ARM >= 7) \ - || defined(_M_ARM64) || defined(_M_ARM64EC) \ - || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */ -# define inline __inline__ /* circumvent a clang bug */ -# include <arm_neon.h> -# undef inline -# elif defined(__AVX2__) -# include <immintrin.h> -# elif defined(__SSE2__) -# include <emmintrin.h> -# endif -#endif - -#if defined(_MSC_VER) -# include <intrin.h> -#endif - -/* - * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while - * remaining a true 64-bit/128-bit hash function. - * - * This is done by prioritizing a subset of 64-bit operations that can be - * emulated without too many steps on the average 32-bit machine. - * - * For example, these two lines seem similar, and run equally fast on 64-bit: - * - * xxh_u64 x; - * x ^= (x >> 47); // good - * x ^= (x >> 13); // bad - * - * However, to a 32-bit machine, there is a major difference. - * - * x ^= (x >> 47) looks like this: - * - * x.lo ^= (x.hi >> (47 - 32)); - * - * while x ^= (x >> 13) looks like this: - * - * // note: funnel shifts are not usually cheap. - * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); - * x.hi ^= (x.hi >> 13); - * - * The first one is significantly faster than the second, simply because the - * shift is larger than 32. This means: - * - All the bits we need are in the upper 32 bits, so we can ignore the lower - * 32 bits in the shift. - * - The shift result will always fit in the lower 32 bits, and therefore, - * we can ignore the upper 32 bits in the xor. - * - * Thanks to this optimization, XXH3 only requires these features to be efficient: - * - * - Usable unaligned access - * - A 32-bit or 64-bit ALU - * - If 32-bit, a decent ADC instruction - * - A 32 or 64-bit multiply with a 64-bit result - * - For the 128-bit variant, a decent byteswap helps short inputs. - * - * The first two are already required by XXH32, and almost all 32-bit and 64-bit - * platforms which can run XXH32 can run XXH3 efficiently. - * - * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one - * notable exception. - * - * First of all, Thumb-1 lacks support for the UMULL instruction which - * performs the important long multiply. This means numerous __aeabi_lmul - * calls. - * - * Second of all, the 8 functional registers are just not enough. - * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need - * Lo registers, and this shuffling results in thousands more MOVs than A32. - * - * A32 and T32 don't have this limitation. They can access all 14 registers, - * do a 32->64 multiply with UMULL, and the flexible operand allowing free - * shifts is helpful, too. - * - * Therefore, we do a quick sanity check. - * - * If compiling Thumb-1 for a target which supports ARM instructions, we will - * emit a warning, as it is not a "sane" platform to compile for. - * - * Usually, if this happens, it is because of an accident and you probably need - * to specify -march, as you likely meant to compile for a newer architecture. - * - * Credit: large sections of the vectorial and asm source code paths - * have been contributed by @easyaspi314 - */ -#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) -# warning "XXH3 is highly inefficient without ARM or Thumb-2." -#endif - -/* ========================================== - * Vectorization detection - * ========================================== */ - -#ifdef XXH_DOXYGEN -/*! - * @ingroup tuning - * @brief Overrides the vectorization implementation chosen for XXH3. - * - * Can be defined to 0 to disable SIMD or any of the values mentioned in - * @ref XXH_VECTOR_TYPE. - * - * If this is not defined, it uses predefined macros to determine the best - * implementation. - */ -# define XXH_VECTOR XXH_SCALAR -/*! - * @ingroup tuning - * @brief Possible values for @ref XXH_VECTOR. - * - * Note that these are actually implemented as macros. - * - * If this is not defined, it is detected automatically. - * internal macro XXH_X86DISPATCH overrides this. - */ -enum XXH_VECTOR_TYPE /* fake enum */ { - XXH_SCALAR = 0, /*!< Portable scalar version */ - XXH_SSE2 = 1, /*!< - * SSE2 for Pentium 4, Opteron, all x86_64. - * - * @note SSE2 is also guaranteed on Windows 10, macOS, and - * Android x86. - */ - XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */ - XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */ - XXH_NEON = 4, /*!< - * NEON for most ARMv7-A, all AArch64, and WASM SIMD128 - * via the SIMDeverywhere polyfill provided with the - * Emscripten SDK. - */ - XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */ - XXH_SVE = 6, /*!< SVE for some ARMv8-A and ARMv9-A */ -}; -/*! - * @ingroup tuning - * @brief Selects the minimum alignment for XXH3's accumulators. - * - * When using SIMD, this should match the alignment required for said vector - * type, so, for example, 32 for AVX2. - * - * Default: Auto detected. - */ -# define XXH_ACC_ALIGN 8 -#endif - -/* Actual definition */ -#ifndef XXH_DOXYGEN -# define XXH_SCALAR 0 -# define XXH_SSE2 1 -# define XXH_AVX2 2 -# define XXH_AVX512 3 -# define XXH_NEON 4 -# define XXH_VSX 5 -# define XXH_SVE 6 -#endif - -#ifndef XXH_VECTOR /* can be defined on command line */ -# if defined(__ARM_FEATURE_SVE) -# define XXH_VECTOR XXH_SVE -# elif ( \ - defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \ - || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \ - || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \ - ) && ( \ - defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \ - || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ - ) -# define XXH_VECTOR XXH_NEON -# elif defined(__AVX512F__) -# define XXH_VECTOR XXH_AVX512 -# elif defined(__AVX2__) -# define XXH_VECTOR XXH_AVX2 -# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) -# define XXH_VECTOR XXH_SSE2 -# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ - || (defined(__s390x__) && defined(__VEC__)) \ - && defined(__GNUC__) /* TODO: IBM XL */ -# define XXH_VECTOR XXH_VSX -# else -# define XXH_VECTOR XXH_SCALAR -# endif -#endif - -/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */ -#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE) -# ifdef _MSC_VER -# pragma warning(once : 4606) -# else -# warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead." -# endif -# undef XXH_VECTOR -# define XXH_VECTOR XXH_SCALAR -#endif - -/* - * Controls the alignment of the accumulator, - * for compatibility with aligned vector loads, which are usually faster. - */ -#ifndef XXH_ACC_ALIGN -# if defined(XXH_X86DISPATCH) -# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ -# elif XXH_VECTOR == XXH_SCALAR /* scalar */ -# define XXH_ACC_ALIGN 8 -# elif XXH_VECTOR == XXH_SSE2 /* sse2 */ -# define XXH_ACC_ALIGN 16 -# elif XXH_VECTOR == XXH_AVX2 /* avx2 */ -# define XXH_ACC_ALIGN 32 -# elif XXH_VECTOR == XXH_NEON /* neon */ -# define XXH_ACC_ALIGN 16 -# elif XXH_VECTOR == XXH_VSX /* vsx */ -# define XXH_ACC_ALIGN 16 -# elif XXH_VECTOR == XXH_AVX512 /* avx512 */ -# define XXH_ACC_ALIGN 64 -# elif XXH_VECTOR == XXH_SVE /* sve */ -# define XXH_ACC_ALIGN 64 -# endif -#endif - -#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ - || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 -# define XXH_SEC_ALIGN XXH_ACC_ALIGN -#elif XXH_VECTOR == XXH_SVE -# define XXH_SEC_ALIGN XXH_ACC_ALIGN -#else -# define XXH_SEC_ALIGN 8 -#endif - -#if defined(__GNUC__) || defined(__clang__) -# define XXH_ALIASING __attribute__((may_alias)) -#else -# define XXH_ALIASING /* nothing */ -#endif - -/* - * UGLY HACK: - * GCC usually generates the best code with -O3 for xxHash. - * - * However, when targeting AVX2, it is overzealous in its unrolling resulting - * in code roughly 3/4 the speed of Clang. - * - * There are other issues, such as GCC splitting _mm256_loadu_si256 into - * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which - * only applies to Sandy and Ivy Bridge... which don't even support AVX2. - * - * That is why when compiling the AVX2 version, it is recommended to use either - * -O2 -mavx2 -march=haswell - * or - * -O2 -mavx2 -mno-avx256-split-unaligned-load - * for decent performance, or to use Clang instead. - * - * Fortunately, we can control the first one with a pragma that forces GCC into - * -O2, but the other one we can't control without "failed to inline always - * inline function due to target mismatch" warnings. - */ -#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ - && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ - && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ -# pragma GCC push_options -# pragma GCC optimize("-O2") -#endif - -#if XXH_VECTOR == XXH_NEON - -/* - * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3 - * optimizes out the entire hashLong loop because of the aliasing violation. - * - * However, GCC is also inefficient at load-store optimization with vld1q/vst1q, - * so the only option is to mark it as aliasing. - */ -typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING; - -/*! - * @internal - * @brief `vld1q_u64` but faster and alignment-safe. - * - * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only - * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86). - * - * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it - * prohibits load-store optimizations. Therefore, a direct dereference is used. - * - * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe - * unaligned load. - */ -#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) -XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */ -{ - return *(xxh_aliasing_uint64x2_t const *)ptr; -} -#else -XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) -{ - return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr)); -} -#endif - -/*! - * @internal - * @brief `vmlal_u32` on low and high halves of a vector. - * - * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with - * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32` - * with `vmlal_u32`. - */ -#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11 -XXH_FORCE_INLINE uint64x2_t -XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) -{ - /* Inline assembly is the only way */ - __asm__("umlal %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs)); - return acc; -} -XXH_FORCE_INLINE uint64x2_t -XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) -{ - /* This intrinsic works as expected */ - return vmlal_high_u32(acc, lhs, rhs); -} -#else -/* Portable intrinsic versions */ -XXH_FORCE_INLINE uint64x2_t -XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) -{ - return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs)); -} -/*! @copydoc XXH_vmlal_low_u32 - * Assume the compiler converts this to vmlal_high_u32 on aarch64 */ -XXH_FORCE_INLINE uint64x2_t -XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) -{ - return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs)); -} -#endif - -/*! - * @ingroup tuning - * @brief Controls the NEON to scalar ratio for XXH3 - * - * This can be set to 2, 4, 6, or 8. - * - * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used. - * - * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those - * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU - * bandwidth. - * - * This is even more noticeable on the more advanced cores like the Cortex-A76 which - * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once. - * - * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes - * and 2 scalar lanes, which is chosen by default. - * - * This does not apply to Apple processors or 32-bit processors, which run better with - * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes. - * - * This change benefits CPUs with large micro-op buffers without negatively affecting - * most other CPUs: - * - * | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. | - * |:----------------------|:--------------------|----------:|-----------:|------:| - * | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% | - * | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% | - * | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% | - * | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% | - * - * It also seems to fix some bad codegen on GCC, making it almost as fast as clang. - * - * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning - * it effectively becomes worse 4. - * - * @see XXH3_accumulate_512_neon() - */ -# ifndef XXH3_NEON_LANES -# if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \ - && !defined(__APPLE__) && XXH_SIZE_OPT <= 0 -# define XXH3_NEON_LANES 6 -# else -# define XXH3_NEON_LANES XXH_ACC_NB -# endif -# endif -#endif /* XXH_VECTOR == XXH_NEON */ - -/* - * VSX and Z Vector helpers. - * - * This is very messy, and any pull requests to clean this up are welcome. - * - * There are a lot of problems with supporting VSX and s390x, due to - * inconsistent intrinsics, spotty coverage, and multiple endiannesses. - */ -#if XXH_VECTOR == XXH_VSX -/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`, - * and `pixel`. This is a problem for obvious reasons. - * - * These keywords are unnecessary; the spec literally says they are - * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd - * after including the header. - * - * We use pragma push_macro/pop_macro to keep the namespace clean. */ -# pragma push_macro("bool") -# pragma push_macro("vector") -# pragma push_macro("pixel") -/* silence potential macro redefined warnings */ -# undef bool -# undef vector -# undef pixel - -# if defined(__s390x__) -# include <s390intrin.h> -# else -# include <altivec.h> -# endif - -/* Restore the original macro values, if applicable. */ -# pragma pop_macro("pixel") -# pragma pop_macro("vector") -# pragma pop_macro("bool") - -typedef __vector unsigned long long xxh_u64x2; -typedef __vector unsigned char xxh_u8x16; -typedef __vector unsigned xxh_u32x4; - -/* - * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue. - */ -typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING; - -# ifndef XXH_VSX_BE -# if defined(__BIG_ENDIAN__) \ - || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) -# define XXH_VSX_BE 1 -# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ -# warning "-maltivec=be is not recommended. Please use native endianness." -# define XXH_VSX_BE 1 -# else -# define XXH_VSX_BE 0 -# endif -# endif /* !defined(XXH_VSX_BE) */ - -# if XXH_VSX_BE -# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) -# define XXH_vec_revb vec_revb -# else -/*! - * A polyfill for POWER9's vec_revb(). - */ -XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) -{ - xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, - 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; - return vec_perm(val, val, vByteSwap); -} -# endif -# endif /* XXH_VSX_BE */ - -/*! - * Performs an unaligned vector load and byte swaps it on big endian. - */ -XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) -{ - xxh_u64x2 ret; - XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2)); -# if XXH_VSX_BE - ret = XXH_vec_revb(ret); -# endif - return ret; -} - -/* - * vec_mulo and vec_mule are very problematic intrinsics on PowerPC - * - * These intrinsics weren't added until GCC 8, despite existing for a while, - * and they are endian dependent. Also, their meaning swap depending on version. - * */ -# if defined(__s390x__) - /* s390x is always big endian, no issue on this platform */ -# define XXH_vec_mulo vec_mulo -# define XXH_vec_mule vec_mule -# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__) -/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ - /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */ -# define XXH_vec_mulo __builtin_altivec_vmulouw -# define XXH_vec_mule __builtin_altivec_vmuleuw -# else -/* gcc needs inline assembly */ -/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ -XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) -{ - xxh_u64x2 result; - __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); - return result; -} -XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) -{ - xxh_u64x2 result; - __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); - return result; -} -# endif /* XXH_vec_mulo, XXH_vec_mule */ -#endif /* XXH_VECTOR == XXH_VSX */ - -#if XXH_VECTOR == XXH_SVE -#define ACCRND(acc, offset) \ -do { \ - svuint64_t input_vec = svld1_u64(mask, xinput + offset); \ - svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \ - svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \ - svuint64_t swapped = svtbl_u64(input_vec, kSwap); \ - svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \ - svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \ - svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \ - acc = svadd_u64_x(mask, acc, mul); \ -} while (0) -#endif /* XXH_VECTOR == XXH_SVE */ - -/* prefetch - * can be disabled, by declaring XXH_NO_PREFETCH build macro */ -#if defined(XXH_NO_PREFETCH) -# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ -#else -# if XXH_SIZE_OPT >= 1 -# define XXH_PREFETCH(ptr) (void)(ptr) -# elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ -# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ -# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) -# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) -# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) -# else -# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ -# endif -#endif /* XXH_NO_PREFETCH */ - - -/* ========================================== - * XXH3 default settings - * ========================================== */ - -#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ - -#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) -# error "default keyset is not large enough" -#endif - -/*! Pseudorandom secret taken directly from FARSH. */ -XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { - 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, - 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, - 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, - 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, - 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, - 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, - 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, - 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, - 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, - 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, - 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, - 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, -}; - -static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL; /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */ -static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL; /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */ - -#ifdef XXH_OLD_NAMES -# define kSecret XXH3_kSecret -#endif - -#ifdef XXH_DOXYGEN -/*! - * @brief Calculates a 32-bit to 64-bit long multiply. - * - * Implemented as a macro. - * - * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't - * need to (but it shouldn't need to anyways, it is about 7 instructions to do - * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we - * use that instead of the normal method. - * - * If you are compiling for platforms like Thumb-1 and don't have a better option, - * you may also want to write your own long multiply routine here. - * - * @param x, y Numbers to be multiplied - * @return 64-bit product of the low 32 bits of @p x and @p y. - */ -XXH_FORCE_INLINE xxh_u64 -XXH_mult32to64(xxh_u64 x, xxh_u64 y) -{ - return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); -} -#elif defined(_MSC_VER) && defined(_M_IX86) -# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) -#else -/* - * Downcast + upcast is usually better than masking on older compilers like - * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. - * - * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands - * and perform a full 64x64 multiply -- entirely redundant on 32-bit. - */ -# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) -#endif - -/*! - * @brief Calculates a 64->128-bit long multiply. - * - * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar - * version. - * - * @param lhs , rhs The 64-bit integers to be multiplied - * @return The 128-bit result represented in an @ref XXH128_hash_t. - */ -static XXH128_hash_t -XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) -{ - /* - * GCC/Clang __uint128_t method. - * - * On most 64-bit targets, GCC and Clang define a __uint128_t type. - * This is usually the best way as it usually uses a native long 64-bit - * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. - * - * Usually. - * - * Despite being a 32-bit platform, Clang (and emscripten) define this type - * despite not having the arithmetic for it. This results in a laggy - * compiler builtin call which calculates a full 128-bit multiply. - * In that case it is best to use the portable one. - * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 - */ -#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \ - && defined(__SIZEOF_INT128__) \ - || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) - - __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; - XXH128_hash_t r128; - r128.low64 = (xxh_u64)(product); - r128.high64 = (xxh_u64)(product >> 64); - return r128; - - /* - * MSVC for x64's _umul128 method. - * - * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); - * - * This compiles to single operand MUL on x64. - */ -#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC) - -#ifndef _MSC_VER -# pragma intrinsic(_umul128) -#endif - xxh_u64 product_high; - xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); - XXH128_hash_t r128; - r128.low64 = product_low; - r128.high64 = product_high; - return r128; - - /* - * MSVC for ARM64's __umulh method. - * - * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method. - */ -#elif defined(_M_ARM64) || defined(_M_ARM64EC) - -#ifndef _MSC_VER -# pragma intrinsic(__umulh) -#endif - XXH128_hash_t r128; - r128.low64 = lhs * rhs; - r128.high64 = __umulh(lhs, rhs); - return r128; - -#else - /* - * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. - * - * This is a fast and simple grade school multiply, which is shown below - * with base 10 arithmetic instead of base 0x100000000. - * - * 9 3 // D2 lhs = 93 - * x 7 5 // D2 rhs = 75 - * ---------- - * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 - * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 - * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 - * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 - * --------- - * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 - * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 - * --------- - * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 - * - * The reasons for adding the products like this are: - * 1. It avoids manual carry tracking. Just like how - * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. - * This avoids a lot of complexity. - * - * 2. It hints for, and on Clang, compiles to, the powerful UMAAL - * instruction available in ARM's Digital Signal Processing extension - * in 32-bit ARMv6 and later, which is shown below: - * - * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) - * { - * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; - * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); - * *RdHi = (xxh_u32)(product >> 32); - * } - * - * This instruction was designed for efficient long multiplication, and - * allows this to be calculated in only 4 instructions at speeds - * comparable to some 64-bit ALUs. - * - * 3. It isn't terrible on other platforms. Usually this will be a couple - * of 32-bit ADD/ADCs. - */ - - /* First calculate all of the cross products. */ - xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); - xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); - xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); - xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); - - /* Now add the products together. These will never overflow. */ - xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; - xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; - xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); - - XXH128_hash_t r128; - r128.low64 = lower; - r128.high64 = upper; - return r128; -#endif -} - -/*! - * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it. - * - * The reason for the separate function is to prevent passing too many structs - * around by value. This will hopefully inline the multiply, but we don't force it. - * - * @param lhs , rhs The 64-bit integers to multiply - * @return The low 64 bits of the product XOR'd by the high 64 bits. - * @see XXH_mult64to128() - */ -static xxh_u64 -XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) -{ - XXH128_hash_t product = XXH_mult64to128(lhs, rhs); - return product.low64 ^ product.high64; -} - -/*! Seems to produce slightly better code on GCC for some reason. */ -XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) -{ - XXH_ASSERT(0 <= shift && shift < 64); - return v64 ^ (v64 >> shift); -} - -/* - * This is a fast avalanche stage, - * suitable when input bits are already partially mixed - */ -static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) -{ - h64 = XXH_xorshift64(h64, 37); - h64 *= PRIME_MX1; - h64 = XXH_xorshift64(h64, 32); - return h64; -} - -/* - * This is a stronger avalanche, - * inspired by Pelle Evensen's rrmxmx - * preferable when input has not been previously mixed - */ -static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) -{ - /* this mix is inspired by Pelle Evensen's rrmxmx */ - h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); - h64 *= PRIME_MX2; - h64 ^= (h64 >> 35) + len ; - h64 *= PRIME_MX2; - return XXH_xorshift64(h64, 28); -} - - -/* ========================================== - * Short keys - * ========================================== - * One of the shortcomings of XXH32 and XXH64 was that their performance was - * sub-optimal on short lengths. It used an iterative algorithm which strongly - * favored lengths that were a multiple of 4 or 8. - * - * Instead of iterating over individual inputs, we use a set of single shot - * functions which piece together a range of lengths and operate in constant time. - * - * Additionally, the number of multiplies has been significantly reduced. This - * reduces latency, especially when emulating 64-bit multiplies on 32-bit. - * - * Depending on the platform, this may or may not be faster than XXH32, but it - * is almost guaranteed to be faster than XXH64. - */ - -/* - * At very short lengths, there isn't enough input to fully hide secrets, or use - * the entire secret. - * - * There is also only a limited amount of mixing we can do before significantly - * impacting performance. - * - * Therefore, we use different sections of the secret and always mix two secret - * samples with an XOR. This should have no effect on performance on the - * seedless or withSeed variants because everything _should_ be constant folded - * by modern compilers. - * - * The XOR mixing hides individual parts of the secret and increases entropy. - * - * This adds an extra layer of strength for custom secrets. - */ -XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t -XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(1 <= len && len <= 3); - XXH_ASSERT(secret != NULL); - /* - * len = 1: combined = { input[0], 0x01, input[0], input[0] } - * len = 2: combined = { input[1], 0x02, input[0], input[1] } - * len = 3: combined = { input[2], 0x03, input[0], input[1] } - */ - { xxh_u8 const c1 = input[0]; - xxh_u8 const c2 = input[len >> 1]; - xxh_u8 const c3 = input[len - 1]; - xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) - | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); - xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; - xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; - return XXH64_avalanche(keyed); - } -} - -XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t -XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(secret != NULL); - XXH_ASSERT(4 <= len && len <= 8); - seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; - { xxh_u32 const input1 = XXH_readLE32(input); - xxh_u32 const input2 = XXH_readLE32(input + len - 4); - xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; - xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); - xxh_u64 const keyed = input64 ^ bitflip; - return XXH3_rrmxmx(keyed, len); - } -} - -XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t -XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(secret != NULL); - XXH_ASSERT(9 <= len && len <= 16); - { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; - xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; - xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; - xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; - xxh_u64 const acc = len - + XXH_swap64(input_lo) + input_hi - + XXH3_mul128_fold64(input_lo, input_hi); - return XXH3_avalanche(acc); - } -} - -XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t -XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(len <= 16); - { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); - if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); - if (len) return XXH3_len_1to3_64b(input, len, secret, seed); - return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); - } -} - -/* - * DISCLAIMER: There are known *seed-dependent* multicollisions here due to - * multiplication by zero, affecting hashes of lengths 17 to 240. - * - * However, they are very unlikely. - * - * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all - * unseeded non-cryptographic hashes, it does not attempt to defend itself - * against specially crafted inputs, only random inputs. - * - * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes - * cancelling out the secret is taken an arbitrary number of times (addressed - * in XXH3_accumulate_512), this collision is very unlikely with random inputs - * and/or proper seeding: - * - * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a - * function that is only called up to 16 times per hash with up to 240 bytes of - * input. - * - * This is not too bad for a non-cryptographic hash function, especially with - * only 64 bit outputs. - * - * The 128-bit variant (which trades some speed for strength) is NOT affected - * by this, although it is always a good idea to use a proper seed if you care - * about strength. - */ -XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, - const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) -{ -#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ - && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ - && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ - /* - * UGLY HACK: - * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in - * slower code. - * - * By forcing seed64 into a register, we disrupt the cost model and - * cause it to scalarize. See `XXH32_round()` - * - * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, - * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on - * GCC 9.2, despite both emitting scalar code. - * - * GCC generates much better scalar code than Clang for the rest of XXH3, - * which is why finding a more optimal codepath is an interest. - */ - XXH_COMPILER_GUARD(seed64); -#endif - { xxh_u64 const input_lo = XXH_readLE64(input); - xxh_u64 const input_hi = XXH_readLE64(input+8); - return XXH3_mul128_fold64( - input_lo ^ (XXH_readLE64(secret) + seed64), - input_hi ^ (XXH_readLE64(secret+8) - seed64) - ); - } -} - -/* For mid range keys, XXH3 uses a Mum-hash variant. */ -XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t -XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH64_hash_t seed) -{ - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; - XXH_ASSERT(16 < len && len <= 128); - - { xxh_u64 acc = len * XXH_PRIME64_1; -#if XXH_SIZE_OPT >= 1 - /* Smaller and cleaner, but slightly slower. */ - unsigned int i = (unsigned int)(len - 1) / 32; - do { - acc += XXH3_mix16B(input+16 * i, secret+32*i, seed); - acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed); - } while (i-- != 0); -#else - if (len > 32) { - if (len > 64) { - if (len > 96) { - acc += XXH3_mix16B(input+48, secret+96, seed); - acc += XXH3_mix16B(input+len-64, secret+112, seed); - } - acc += XXH3_mix16B(input+32, secret+64, seed); - acc += XXH3_mix16B(input+len-48, secret+80, seed); - } - acc += XXH3_mix16B(input+16, secret+32, seed); - acc += XXH3_mix16B(input+len-32, secret+48, seed); - } - acc += XXH3_mix16B(input+0, secret+0, seed); - acc += XXH3_mix16B(input+len-16, secret+16, seed); -#endif - return XXH3_avalanche(acc); - } -} - -#define XXH3_MIDSIZE_MAX 240 - -XXH_NO_INLINE XXH_PUREF XXH64_hash_t -XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH64_hash_t seed) -{ - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; - XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); - - #define XXH3_MIDSIZE_STARTOFFSET 3 - #define XXH3_MIDSIZE_LASTOFFSET 17 - - { xxh_u64 acc = len * XXH_PRIME64_1; - xxh_u64 acc_end; - unsigned int const nbRounds = (unsigned int)len / 16; - unsigned int i; - XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); - for (i=0; i<8; i++) { - acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); - } - /* last bytes */ - acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); - XXH_ASSERT(nbRounds >= 8); - acc = XXH3_avalanche(acc); -#if defined(__clang__) /* Clang */ \ - && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ - && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ - /* - * UGLY HACK: - * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. - * In everywhere else, it uses scalar code. - * - * For 64->128-bit multiplies, even if the NEON was 100% optimal, it - * would still be slower than UMAAL (see XXH_mult64to128). - * - * Unfortunately, Clang doesn't handle the long multiplies properly and - * converts them to the nonexistent "vmulq_u64" intrinsic, which is then - * scalarized into an ugly mess of VMOV.32 instructions. - * - * This mess is difficult to avoid without turning autovectorization - * off completely, but they are usually relatively minor and/or not - * worth it to fix. - * - * This loop is the easiest to fix, as unlike XXH32, this pragma - * _actually works_ because it is a loop vectorization instead of an - * SLP vectorization. - */ - #pragma clang loop vectorize(disable) -#endif - for (i=8 ; i < nbRounds; i++) { - /* - * Prevents clang for unrolling the acc loop and interleaving with this one. - */ - XXH_COMPILER_GUARD(acc); - acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); - } - return XXH3_avalanche(acc + acc_end); - } -} - - -/* ======= Long Keys ======= */ - -#define XXH_STRIPE_LEN 64 -#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ -#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) - -#ifdef XXH_OLD_NAMES -# define STRIPE_LEN XXH_STRIPE_LEN -# define ACC_NB XXH_ACC_NB -#endif - -#ifndef XXH_PREFETCH_DIST -# ifdef __clang__ -# define XXH_PREFETCH_DIST 320 -# else -# if (XXH_VECTOR == XXH_AVX512) -# define XXH_PREFETCH_DIST 512 -# else -# define XXH_PREFETCH_DIST 384 -# endif -# endif /* __clang__ */ -#endif /* XXH_PREFETCH_DIST */ - -/* - * These macros are to generate an XXH3_accumulate() function. - * The two arguments select the name suffix and target attribute. - * - * The name of this symbol is XXH3_accumulate_<name>() and it calls - * XXH3_accumulate_512_<name>(). - * - * It may be useful to hand implement this function if the compiler fails to - * optimize the inline function. - */ -#define XXH3_ACCUMULATE_TEMPLATE(name) \ -void \ -XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \ - const xxh_u8* XXH_RESTRICT input, \ - const xxh_u8* XXH_RESTRICT secret, \ - size_t nbStripes) \ -{ \ - size_t n; \ - for (n = 0; n < nbStripes; n++ ) { \ - const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \ - XXH_PREFETCH(in + XXH_PREFETCH_DIST); \ - XXH3_accumulate_512_##name( \ - acc, \ - in, \ - secret + n*XXH_SECRET_CONSUME_RATE); \ - } \ -} - - -XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) -{ - if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); - XXH_memcpy(dst, &v64, sizeof(v64)); -} - -/* Several intrinsic functions below are supposed to accept __int64 as argument, - * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . - * However, several environments do not define __int64 type, - * requiring a workaround. - */ -#if !defined (__VMS) \ - && (defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) - typedef int64_t xxh_i64; -#else - /* the following type must have a width of 64-bit */ - typedef long long xxh_i64; -#endif - - -/* - * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. - * - * It is a hardened version of UMAC, based off of FARSH's implementation. - * - * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD - * implementations, and it is ridiculously fast. - * - * We harden it by mixing the original input to the accumulators as well as the product. - * - * This means that in the (relatively likely) case of a multiply by zero, the - * original input is preserved. - * - * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve - * cross-pollination, as otherwise the upper and lower halves would be - * essentially independent. - * - * This doesn't matter on 64-bit hashes since they all get merged together in - * the end, so we skip the extra step. - * - * Both XXH3_64bits and XXH3_128bits use this subroutine. - */ - -#if (XXH_VECTOR == XXH_AVX512) \ - || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0) - -#ifndef XXH_TARGET_AVX512 -# define XXH_TARGET_AVX512 /* disable attribute target */ -#endif - -XXH_FORCE_INLINE XXH_TARGET_AVX512 void -XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - __m512i* const xacc = (__m512i *) acc; - XXH_ASSERT((((size_t)acc) & 63) == 0); - XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); - - { - /* data_vec = input[0]; */ - __m512i const data_vec = _mm512_loadu_si512 (input); - /* key_vec = secret[0]; */ - __m512i const key_vec = _mm512_loadu_si512 (secret); - /* data_key = data_vec ^ key_vec; */ - __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); - /* data_key_lo = data_key >> 32; */ - __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32); - /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ - __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); - /* xacc[0] += swap(data_vec); */ - __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); - __m512i const sum = _mm512_add_epi64(*xacc, data_swap); - /* xacc[0] += product; */ - *xacc = _mm512_add_epi64(product, sum); - } -} -XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512) - -/* - * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. - * - * Multiplication isn't perfect, as explained by Google in HighwayHash: - * - * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to - * // varying degrees. In descending order of goodness, bytes - * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. - * // As expected, the upper and lower bytes are much worse. - * - * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 - * - * Since our algorithm uses a pseudorandom secret to add some variance into the - * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. - * - * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid - * extraction. - * - * Both XXH3_64bits and XXH3_128bits use this subroutine. - */ - -XXH_FORCE_INLINE XXH_TARGET_AVX512 void -XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 63) == 0); - XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); - { __m512i* const xacc = (__m512i*) acc; - const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); - - /* xacc[0] ^= (xacc[0] >> 47) */ - __m512i const acc_vec = *xacc; - __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); - /* xacc[0] ^= secret; */ - __m512i const key_vec = _mm512_loadu_si512 (secret); - __m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */); - - /* xacc[0] *= XXH_PRIME32_1; */ - __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32); - __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); - __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); - *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); - } -} - -XXH_FORCE_INLINE XXH_TARGET_AVX512 void -XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) -{ - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); - XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); - XXH_ASSERT(((size_t)customSecret & 63) == 0); - (void)(&XXH_writeLE64); - { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); - __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64); - __m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos); - - const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret); - __m512i* const dest = ( __m512i*) customSecret; - int i; - XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */ - XXH_ASSERT(((size_t)dest & 63) == 0); - for (i=0; i < nbRounds; ++i) { - dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed); - } } -} - -#endif - -#if (XXH_VECTOR == XXH_AVX2) \ - || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0) - -#ifndef XXH_TARGET_AVX2 -# define XXH_TARGET_AVX2 /* disable attribute target */ -#endif - -XXH_FORCE_INLINE XXH_TARGET_AVX2 void -XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 31) == 0); - { __m256i* const xacc = (__m256i *) acc; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ - const __m256i* const xinput = (const __m256i *) input; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ - const __m256i* const xsecret = (const __m256i *) secret; - - size_t i; - for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { - /* data_vec = xinput[i]; */ - __m256i const data_vec = _mm256_loadu_si256 (xinput+i); - /* key_vec = xsecret[i]; */ - __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); - /* data_key = data_vec ^ key_vec; */ - __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); - /* data_key_lo = data_key >> 32; */ - __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32); - /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ - __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); - /* xacc[i] += swap(data_vec); */ - __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); - __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); - /* xacc[i] += product; */ - xacc[i] = _mm256_add_epi64(product, sum); - } } -} -XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2) - -XXH_FORCE_INLINE XXH_TARGET_AVX2 void -XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 31) == 0); - { __m256i* const xacc = (__m256i*) acc; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ - const __m256i* const xsecret = (const __m256i *) secret; - const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); - - size_t i; - for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { - /* xacc[i] ^= (xacc[i] >> 47) */ - __m256i const acc_vec = xacc[i]; - __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); - __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); - /* xacc[i] ^= xsecret; */ - __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); - __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); - - /* xacc[i] *= XXH_PRIME32_1; */ - __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32); - __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); - __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); - xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); - } - } -} - -XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) -{ - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); - XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); - (void)(&XXH_writeLE64); - XXH_PREFETCH(customSecret); - { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64); - - const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret); - __m256i* dest = ( __m256i*) customSecret; - -# if defined(__GNUC__) || defined(__clang__) - /* - * On GCC & Clang, marking 'dest' as modified will cause the compiler: - * - do not extract the secret from sse registers in the internal loop - * - use less common registers, and avoid pushing these reg into stack - */ - XXH_COMPILER_GUARD(dest); -# endif - XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */ - XXH_ASSERT(((size_t)dest & 31) == 0); - - /* GCC -O2 need unroll loop manually */ - dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed); - dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed); - dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed); - dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed); - dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed); - dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed); - } -} - -#endif - -/* x86dispatch always generates SSE2 */ -#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) - -#ifndef XXH_TARGET_SSE2 -# define XXH_TARGET_SSE2 /* disable attribute target */ -#endif - -XXH_FORCE_INLINE XXH_TARGET_SSE2 void -XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - /* SSE2 is just a half-scale version of the AVX2 version. */ - XXH_ASSERT((((size_t)acc) & 15) == 0); - { __m128i* const xacc = (__m128i *) acc; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ - const __m128i* const xinput = (const __m128i *) input; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ - const __m128i* const xsecret = (const __m128i *) secret; - - size_t i; - for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { - /* data_vec = xinput[i]; */ - __m128i const data_vec = _mm_loadu_si128 (xinput+i); - /* key_vec = xsecret[i]; */ - __m128i const key_vec = _mm_loadu_si128 (xsecret+i); - /* data_key = data_vec ^ key_vec; */ - __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); - /* data_key_lo = data_key >> 32; */ - __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); - /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ - __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); - /* xacc[i] += swap(data_vec); */ - __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); - __m128i const sum = _mm_add_epi64(xacc[i], data_swap); - /* xacc[i] += product; */ - xacc[i] = _mm_add_epi64(product, sum); - } } -} -XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2) - -XXH_FORCE_INLINE XXH_TARGET_SSE2 void -XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 15) == 0); - { __m128i* const xacc = (__m128i*) acc; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ - const __m128i* const xsecret = (const __m128i *) secret; - const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); - - size_t i; - for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { - /* xacc[i] ^= (xacc[i] >> 47) */ - __m128i const acc_vec = xacc[i]; - __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); - __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); - /* xacc[i] ^= xsecret[i]; */ - __m128i const key_vec = _mm_loadu_si128 (xsecret+i); - __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); - - /* xacc[i] *= XXH_PRIME32_1; */ - __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); - __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); - __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); - xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); - } - } -} - -XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) -{ - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); - (void)(&XXH_writeLE64); - { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); - -# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 - /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */ - XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) }; - __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); -# else - __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64); -# endif - int i; - - const void* const src16 = XXH3_kSecret; - __m128i* dst16 = (__m128i*) customSecret; -# if defined(__GNUC__) || defined(__clang__) - /* - * On GCC & Clang, marking 'dest' as modified will cause the compiler: - * - do not extract the secret from sse registers in the internal loop - * - use less common registers, and avoid pushing these reg into stack - */ - XXH_COMPILER_GUARD(dst16); -# endif - XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */ - XXH_ASSERT(((size_t)dst16 & 15) == 0); - - for (i=0; i < nbRounds; ++i) { - dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed); - } } -} - -#endif - -#if (XXH_VECTOR == XXH_NEON) - -/* forward declarations for the scalar routines */ -XXH_FORCE_INLINE void -XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input, - void const* XXH_RESTRICT secret, size_t lane); - -XXH_FORCE_INLINE void -XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, - void const* XXH_RESTRICT secret, size_t lane); - -/*! - * @internal - * @brief The bulk processing loop for NEON and WASM SIMD128. - * - * The NEON code path is actually partially scalar when running on AArch64. This - * is to optimize the pipelining and can have up to 15% speedup depending on the - * CPU, and it also mitigates some GCC codegen issues. - * - * @see XXH3_NEON_LANES for configuring this and details about this optimization. - * - * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit - * integers instead of the other platforms which mask full 64-bit vectors, - * so the setup is more complicated than just shifting right. - * - * Additionally, there is an optimization for 4 lanes at once noted below. - * - * Since, as stated, the most optimal amount of lanes for Cortexes is 6, - * there needs to be *three* versions of the accumulate operation used - * for the remaining 2 lanes. - * - * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap - * nearly perfectly. - */ - -XXH_FORCE_INLINE void -XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 15) == 0); - XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0); - { /* GCC for darwin arm64 does not like aliasing here */ - xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc; - /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ - uint8_t const* xinput = (const uint8_t *) input; - uint8_t const* xsecret = (const uint8_t *) secret; - - size_t i; -#ifdef __wasm_simd128__ - /* - * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret - * is constant propagated, which results in it converting it to this - * inside the loop: - * - * a = v128.load(XXH3_kSecret + 0 + $secret_offset, offset = 0) - * b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0) - * ... - * - * This requires a full 32-bit address immediate (and therefore a 6 byte - * instruction) as well as an add for each offset. - * - * Putting an asm guard prevents it from folding (at the cost of losing - * the alignment hint), and uses the free offset in `v128.load` instead - * of adding secret_offset each time which overall reduces code size by - * about a kilobyte and improves performance. - */ - XXH_COMPILER_GUARD(xsecret); -#endif - /* Scalar lanes use the normal scalarRound routine */ - for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { - XXH3_scalarRound(acc, input, secret, i); - } - i = 0; - /* 4 NEON lanes at a time. */ - for (; i+1 < XXH3_NEON_LANES / 2; i+=2) { - /* data_vec = xinput[i]; */ - uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput + (i * 16)); - uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput + ((i+1) * 16)); - /* key_vec = xsecret[i]; */ - uint64x2_t key_vec_1 = XXH_vld1q_u64(xsecret + (i * 16)); - uint64x2_t key_vec_2 = XXH_vld1q_u64(xsecret + ((i+1) * 16)); - /* data_swap = swap(data_vec) */ - uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1); - uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1); - /* data_key = data_vec ^ key_vec; */ - uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1); - uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2); - - /* - * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a - * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to - * get one vector with the low 32 bits of each lane, and one vector - * with the high 32 bits of each lane. - * - * The intrinsic returns a double vector because the original ARMv7-a - * instruction modified both arguments in place. AArch64 and SIMD128 emit - * two instructions from this intrinsic. - * - * [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ] - * [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ] - */ - uint32x4x2_t unzipped = vuzpq_u32( - vreinterpretq_u32_u64(data_key_1), - vreinterpretq_u32_u64(data_key_2) - ); - /* data_key_lo = data_key & 0xFFFFFFFF */ - uint32x4_t data_key_lo = unzipped.val[0]; - /* data_key_hi = data_key >> 32 */ - uint32x4_t data_key_hi = unzipped.val[1]; - /* - * Then, we can split the vectors horizontally and multiply which, as for most - * widening intrinsics, have a variant that works on both high half vectors - * for free on AArch64. A similar instruction is available on SIMD128. - * - * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi - */ - uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi); - uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi); - /* - * Clang reorders - * a += b * c; // umlal swap.2d, dkl.2s, dkh.2s - * c += a; // add acc.2d, acc.2d, swap.2d - * to - * c += a; // add acc.2d, acc.2d, swap.2d - * c += b * c; // umlal acc.2d, dkl.2s, dkh.2s - * - * While it would make sense in theory since the addition is faster, - * for reasons likely related to umlal being limited to certain NEON - * pipelines, this is worse. A compiler guard fixes this. - */ - XXH_COMPILER_GUARD_CLANG_NEON(sum_1); - XXH_COMPILER_GUARD_CLANG_NEON(sum_2); - /* xacc[i] = acc_vec + sum; */ - xacc[i] = vaddq_u64(xacc[i], sum_1); - xacc[i+1] = vaddq_u64(xacc[i+1], sum_2); - } - /* Operate on the remaining NEON lanes 2 at a time. */ - for (; i < XXH3_NEON_LANES / 2; i++) { - /* data_vec = xinput[i]; */ - uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16)); - /* key_vec = xsecret[i]; */ - uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); - /* acc_vec_2 = swap(data_vec) */ - uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1); - /* data_key = data_vec ^ key_vec; */ - uint64x2_t data_key = veorq_u64(data_vec, key_vec); - /* For two lanes, just use VMOVN and VSHRN. */ - /* data_key_lo = data_key & 0xFFFFFFFF; */ - uint32x2_t data_key_lo = vmovn_u64(data_key); - /* data_key_hi = data_key >> 32; */ - uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32); - /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */ - uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi); - /* Same Clang workaround as before */ - XXH_COMPILER_GUARD_CLANG_NEON(sum); - /* xacc[i] = acc_vec + sum; */ - xacc[i] = vaddq_u64 (xacc[i], sum); - } - } -} -XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon) - -XXH_FORCE_INLINE void -XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 15) == 0); - - { xxh_aliasing_uint64x2_t* xacc = (xxh_aliasing_uint64x2_t*) acc; - uint8_t const* xsecret = (uint8_t const*) secret; - - size_t i; - /* WASM uses operator overloads and doesn't need these. */ -#ifndef __wasm_simd128__ - /* { prime32_1, prime32_1 } */ - uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1); - /* { 0, prime32_1, 0, prime32_1 } */ - uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32)); -#endif - - /* AArch64 uses both scalar and neon at the same time */ - for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { - XXH3_scalarScrambleRound(acc, secret, i); - } - for (i=0; i < XXH3_NEON_LANES / 2; i++) { - /* xacc[i] ^= (xacc[i] >> 47); */ - uint64x2_t acc_vec = xacc[i]; - uint64x2_t shifted = vshrq_n_u64(acc_vec, 47); - uint64x2_t data_vec = veorq_u64(acc_vec, shifted); - - /* xacc[i] ^= xsecret[i]; */ - uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); - uint64x2_t data_key = veorq_u64(data_vec, key_vec); - /* xacc[i] *= XXH_PRIME32_1 */ -#ifdef __wasm_simd128__ - /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */ - xacc[i] = data_key * XXH_PRIME32_1; -#else - /* - * Expanded version with portable NEON intrinsics - * - * lo(x) * lo(y) + (hi(x) * lo(y) << 32) - * - * prod_hi = hi(data_key) * lo(prime) << 32 - * - * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector - * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits - * and avoid the shift. - */ - uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi); - /* Extract low bits for vmlal_u32 */ - uint32x2_t data_key_lo = vmovn_u64(data_key); - /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */ - xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo); -#endif - } - } -} -#endif - -#if (XXH_VECTOR == XXH_VSX) - -XXH_FORCE_INLINE void -XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - /* presumed aligned */ - xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; - xxh_u8 const* const xinput = (xxh_u8 const*) input; /* no alignment restriction */ - xxh_u8 const* const xsecret = (xxh_u8 const*) secret; /* no alignment restriction */ - xxh_u64x2 const v32 = { 32, 32 }; - size_t i; - for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { - /* data_vec = xinput[i]; */ - xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i); - /* key_vec = xsecret[i]; */ - xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); - xxh_u64x2 const data_key = data_vec ^ key_vec; - /* shuffled = (data_key << 32) | (data_key >> 32); */ - xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); - /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ - xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); - /* acc_vec = xacc[i]; */ - xxh_u64x2 acc_vec = xacc[i]; - acc_vec += product; - - /* swap high and low halves */ -#ifdef __s390x__ - acc_vec += vec_permi(data_vec, data_vec, 2); -#else - acc_vec += vec_xxpermdi(data_vec, data_vec, 2); -#endif - xacc[i] = acc_vec; - } -} -XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx) - -XXH_FORCE_INLINE void -XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 15) == 0); - - { xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; - const xxh_u8* const xsecret = (const xxh_u8*) secret; - /* constants */ - xxh_u64x2 const v32 = { 32, 32 }; - xxh_u64x2 const v47 = { 47, 47 }; - xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; - size_t i; - for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { - /* xacc[i] ^= (xacc[i] >> 47); */ - xxh_u64x2 const acc_vec = xacc[i]; - xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); - - /* xacc[i] ^= xsecret[i]; */ - xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); - xxh_u64x2 const data_key = data_vec ^ key_vec; - - /* xacc[i] *= XXH_PRIME32_1 */ - /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ - xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); - /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ - xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); - xacc[i] = prod_odd + (prod_even << v32); - } } -} - -#endif - -#if (XXH_VECTOR == XXH_SVE) - -XXH_FORCE_INLINE void -XXH3_accumulate_512_sve( void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - uint64_t *xacc = (uint64_t *)acc; - const uint64_t *xinput = (const uint64_t *)(const void *)input; - const uint64_t *xsecret = (const uint64_t *)(const void *)secret; - svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); - uint64_t element_count = svcntd(); - if (element_count >= 8) { - svbool_t mask = svptrue_pat_b64(SV_VL8); - svuint64_t vacc = svld1_u64(mask, xacc); - ACCRND(vacc, 0); - svst1_u64(mask, xacc, vacc); - } else if (element_count == 2) { /* sve128 */ - svbool_t mask = svptrue_pat_b64(SV_VL2); - svuint64_t acc0 = svld1_u64(mask, xacc + 0); - svuint64_t acc1 = svld1_u64(mask, xacc + 2); - svuint64_t acc2 = svld1_u64(mask, xacc + 4); - svuint64_t acc3 = svld1_u64(mask, xacc + 6); - ACCRND(acc0, 0); - ACCRND(acc1, 2); - ACCRND(acc2, 4); - ACCRND(acc3, 6); - svst1_u64(mask, xacc + 0, acc0); - svst1_u64(mask, xacc + 2, acc1); - svst1_u64(mask, xacc + 4, acc2); - svst1_u64(mask, xacc + 6, acc3); - } else { - svbool_t mask = svptrue_pat_b64(SV_VL4); - svuint64_t acc0 = svld1_u64(mask, xacc + 0); - svuint64_t acc1 = svld1_u64(mask, xacc + 4); - ACCRND(acc0, 0); - ACCRND(acc1, 4); - svst1_u64(mask, xacc + 0, acc0); - svst1_u64(mask, xacc + 4, acc1); - } -} - -XXH_FORCE_INLINE void -XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc, - const xxh_u8* XXH_RESTRICT input, - const xxh_u8* XXH_RESTRICT secret, - size_t nbStripes) -{ - if (nbStripes != 0) { - uint64_t *xacc = (uint64_t *)acc; - const uint64_t *xinput = (const uint64_t *)(const void *)input; - const uint64_t *xsecret = (const uint64_t *)(const void *)secret; - svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); - uint64_t element_count = svcntd(); - if (element_count >= 8) { - svbool_t mask = svptrue_pat_b64(SV_VL8); - svuint64_t vacc = svld1_u64(mask, xacc + 0); - do { - /* svprfd(svbool_t, void *, enum svfprop); */ - svprfd(mask, xinput + 128, SV_PLDL1STRM); - ACCRND(vacc, 0); - xinput += 8; - xsecret += 1; - nbStripes--; - } while (nbStripes != 0); - - svst1_u64(mask, xacc + 0, vacc); - } else if (element_count == 2) { /* sve128 */ - svbool_t mask = svptrue_pat_b64(SV_VL2); - svuint64_t acc0 = svld1_u64(mask, xacc + 0); - svuint64_t acc1 = svld1_u64(mask, xacc + 2); - svuint64_t acc2 = svld1_u64(mask, xacc + 4); - svuint64_t acc3 = svld1_u64(mask, xacc + 6); - do { - svprfd(mask, xinput + 128, SV_PLDL1STRM); - ACCRND(acc0, 0); - ACCRND(acc1, 2); - ACCRND(acc2, 4); - ACCRND(acc3, 6); - xinput += 8; - xsecret += 1; - nbStripes--; - } while (nbStripes != 0); - - svst1_u64(mask, xacc + 0, acc0); - svst1_u64(mask, xacc + 2, acc1); - svst1_u64(mask, xacc + 4, acc2); - svst1_u64(mask, xacc + 6, acc3); - } else { - svbool_t mask = svptrue_pat_b64(SV_VL4); - svuint64_t acc0 = svld1_u64(mask, xacc + 0); - svuint64_t acc1 = svld1_u64(mask, xacc + 4); - do { - svprfd(mask, xinput + 128, SV_PLDL1STRM); - ACCRND(acc0, 0); - ACCRND(acc1, 4); - xinput += 8; - xsecret += 1; - nbStripes--; - } while (nbStripes != 0); - - svst1_u64(mask, xacc + 0, acc0); - svst1_u64(mask, xacc + 4, acc1); - } - } -} - -#endif - -/* scalar variants - universal */ - -#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__)) -/* - * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they - * emit an excess mask and a full 64-bit multiply-add (MADD X-form). - * - * While this might not seem like much, as AArch64 is a 64-bit architecture, only - * big Cortex designs have a full 64-bit multiplier. - * - * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit - * multiplies expand to 2-3 multiplies in microcode. This has a major penalty - * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline. - * - * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does - * not have this penalty and does the mask automatically. - */ -XXH_FORCE_INLINE xxh_u64 -XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) -{ - xxh_u64 ret; - /* note: %x = 64-bit register, %w = 32-bit register */ - __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc)); - return ret; -} -#else -XXH_FORCE_INLINE xxh_u64 -XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) -{ - return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc; -} -#endif - -/*! - * @internal - * @brief Scalar round for @ref XXH3_accumulate_512_scalar(). - * - * This is extracted to its own function because the NEON path uses a combination - * of NEON and scalar. - */ -XXH_FORCE_INLINE void -XXH3_scalarRound(void* XXH_RESTRICT acc, - void const* XXH_RESTRICT input, - void const* XXH_RESTRICT secret, - size_t lane) -{ - xxh_u64* xacc = (xxh_u64*) acc; - xxh_u8 const* xinput = (xxh_u8 const*) input; - xxh_u8 const* xsecret = (xxh_u8 const*) secret; - XXH_ASSERT(lane < XXH_ACC_NB); - XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); - { - xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8); - xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8); - xacc[lane ^ 1] += data_val; /* swap adjacent lanes */ - xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]); - } -} - -/*! - * @internal - * @brief Processes a 64 byte block of data using the scalar path. - */ -XXH_FORCE_INLINE void -XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - size_t i; - /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */ -#if defined(__GNUC__) && !defined(__clang__) \ - && (defined(__arm__) || defined(__thumb2__)) \ - && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \ - && XXH_SIZE_OPT <= 0 -# pragma GCC unroll 8 -#endif - for (i=0; i < XXH_ACC_NB; i++) { - XXH3_scalarRound(acc, input, secret, i); - } -} -XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar) - -/*! - * @internal - * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar(). - * - * This is extracted to its own function because the NEON path uses a combination - * of NEON and scalar. - */ -XXH_FORCE_INLINE void -XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, - void const* XXH_RESTRICT secret, - size_t lane) -{ - xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ - const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ - XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); - XXH_ASSERT(lane < XXH_ACC_NB); - { - xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8); - xxh_u64 acc64 = xacc[lane]; - acc64 = XXH_xorshift64(acc64, 47); - acc64 ^= key64; - acc64 *= XXH_PRIME32_1; - xacc[lane] = acc64; - } -} - -/*! - * @internal - * @brief Scrambles the accumulators after a large chunk has been read - */ -XXH_FORCE_INLINE void -XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - size_t i; - for (i=0; i < XXH_ACC_NB; i++) { - XXH3_scalarScrambleRound(acc, secret, i); - } -} - -XXH_FORCE_INLINE void -XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) -{ - /* - * We need a separate pointer for the hack below, - * which requires a non-const pointer. - * Any decent compiler will optimize this out otherwise. - */ - const xxh_u8* kSecretPtr = XXH3_kSecret; - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); - -#if defined(__GNUC__) && defined(__aarch64__) - /* - * UGLY HACK: - * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are - * placed sequentially, in order, at the top of the unrolled loop. - * - * While MOVK is great for generating constants (2 cycles for a 64-bit - * constant compared to 4 cycles for LDR), it fights for bandwidth with - * the arithmetic instructions. - * - * I L S - * MOVK - * MOVK - * MOVK - * MOVK - * ADD - * SUB STR - * STR - * By forcing loads from memory (as the asm line causes the compiler to assume - * that XXH3_kSecretPtr has been changed), the pipelines are used more - * efficiently: - * I L S - * LDR - * ADD LDR - * SUB STR - * STR - * - * See XXH3_NEON_LANES for details on the pipsline. - * - * XXH3_64bits_withSeed, len == 256, Snapdragon 835 - * without hack: 2654.4 MB/s - * with hack: 3202.9 MB/s - */ - XXH_COMPILER_GUARD(kSecretPtr); -#endif - { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; - int i; - for (i=0; i < nbRounds; i++) { - /* - * The asm hack causes the compiler to assume that kSecretPtr aliases with - * customSecret, and on aarch64, this prevented LDP from merging two - * loads together for free. Putting the loads together before the stores - * properly generates LDP. - */ - xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; - xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; - XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); - XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); - } } -} - - -typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t); -typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); -typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); - - -#if (XXH_VECTOR == XXH_AVX512) - -#define XXH3_accumulate_512 XXH3_accumulate_512_avx512 -#define XXH3_accumulate XXH3_accumulate_avx512 -#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 -#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 - -#elif (XXH_VECTOR == XXH_AVX2) - -#define XXH3_accumulate_512 XXH3_accumulate_512_avx2 -#define XXH3_accumulate XXH3_accumulate_avx2 -#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 -#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 - -#elif (XXH_VECTOR == XXH_SSE2) - -#define XXH3_accumulate_512 XXH3_accumulate_512_sse2 -#define XXH3_accumulate XXH3_accumulate_sse2 -#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 -#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 - -#elif (XXH_VECTOR == XXH_NEON) - -#define XXH3_accumulate_512 XXH3_accumulate_512_neon -#define XXH3_accumulate XXH3_accumulate_neon -#define XXH3_scrambleAcc XXH3_scrambleAcc_neon -#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar - -#elif (XXH_VECTOR == XXH_VSX) - -#define XXH3_accumulate_512 XXH3_accumulate_512_vsx -#define XXH3_accumulate XXH3_accumulate_vsx -#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx -#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar - -#elif (XXH_VECTOR == XXH_SVE) -#define XXH3_accumulate_512 XXH3_accumulate_512_sve -#define XXH3_accumulate XXH3_accumulate_sve -#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar -#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar - -#else /* scalar */ - -#define XXH3_accumulate_512 XXH3_accumulate_512_scalar -#define XXH3_accumulate XXH3_accumulate_scalar -#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar -#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar - -#endif - -#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */ -# undef XXH3_initCustomSecret -# define XXH3_initCustomSecret XXH3_initCustomSecret_scalar -#endif - -XXH_FORCE_INLINE void -XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, - const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH3_f_accumulate f_acc, - XXH3_f_scrambleAcc f_scramble) -{ - size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; - size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; - size_t const nb_blocks = (len - 1) / block_len; - - size_t n; - - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); - - for (n = 0; n < nb_blocks; n++) { - f_acc(acc, input + n*block_len, secret, nbStripesPerBlock); - f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); - } - - /* last partial block */ - XXH_ASSERT(len > XXH_STRIPE_LEN); - { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; - XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); - f_acc(acc, input + nb_blocks*block_len, secret, nbStripes); - - /* last stripe */ - { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; -#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ - XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); - } } -} - -XXH_FORCE_INLINE xxh_u64 -XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) -{ - return XXH3_mul128_fold64( - acc[0] ^ XXH_readLE64(secret), - acc[1] ^ XXH_readLE64(secret+8) ); -} - -static XXH64_hash_t -XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) -{ - xxh_u64 result64 = start; - size_t i = 0; - - for (i = 0; i < 4; i++) { - result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); -#if defined(__clang__) /* Clang */ \ - && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ - && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ - && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ - /* - * UGLY HACK: - * Prevent autovectorization on Clang ARMv7-a. Exact same problem as - * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. - * XXH3_64bits, len == 256, Snapdragon 835: - * without hack: 2063.7 MB/s - * with hack: 2560.7 MB/s - */ - XXH_COMPILER_GUARD(result64); -#endif - } - - return XXH3_avalanche(result64); -} - -#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ - XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } - -XXH_FORCE_INLINE XXH64_hash_t -XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, - const void* XXH_RESTRICT secret, size_t secretSize, - XXH3_f_accumulate f_acc, - XXH3_f_scrambleAcc f_scramble) -{ - XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; - - XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble); - - /* converge into final hash */ - XXH_STATIC_ASSERT(sizeof(acc) == 64); - /* do not align on 8, so that the secret is different from the accumulator */ -#define XXH_SECRET_MERGEACCS_START 11 - XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); - return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); -} - -/* - * It's important for performance to transmit secret's size (when it's static) - * so that the compiler can properly optimize the vectorized loop. - * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set. - * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE - * breaks -Og, this is XXH_NO_INLINE. - */ -XXH3_WITH_SECRET_INLINE XXH64_hash_t -XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) -{ - (void)seed64; - return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc); -} - -/* - * It's preferable for performance that XXH3_hashLong is not inlined, - * as it results in a smaller function for small data, easier to the instruction cache. - * Note that inside this no_inline function, we do inline the internal loop, - * and provide a statically defined secret size to allow optimization of vector loop. - */ -XXH_NO_INLINE XXH_PUREF XXH64_hash_t -XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) -{ - (void)seed64; (void)secret; (void)secretLen; - return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc); -} - -/* - * XXH3_hashLong_64b_withSeed(): - * Generate a custom key based on alteration of default XXH3_kSecret with the seed, - * and then use this key for long mode hashing. - * - * This operation is decently fast but nonetheless costs a little bit of time. - * Try to avoid it whenever possible (typically when seed==0). - * - * It's important for performance that XXH3_hashLong is not inlined. Not sure - * why (uop cache maybe?), but the difference is large and easily measurable. - */ -XXH_FORCE_INLINE XXH64_hash_t -XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, - XXH64_hash_t seed, - XXH3_f_accumulate f_acc, - XXH3_f_scrambleAcc f_scramble, - XXH3_f_initCustomSecret f_initSec) -{ -#if XXH_SIZE_OPT <= 0 - if (seed == 0) - return XXH3_hashLong_64b_internal(input, len, - XXH3_kSecret, sizeof(XXH3_kSecret), - f_acc, f_scramble); -#endif - { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; - f_initSec(secret, seed); - return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), - f_acc, f_scramble); - } -} - -/* - * It's important for performance that XXH3_hashLong is not inlined. - */ -XXH_NO_INLINE XXH64_hash_t -XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) -{ - (void)secret; (void)secretLen; - return XXH3_hashLong_64b_withSeed_internal(input, len, seed, - XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); -} - - -typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, - XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); - -XXH_FORCE_INLINE XXH64_hash_t -XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, - XXH3_hashLong64_f f_hashLong) -{ - XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); - /* - * If an action is to be taken if `secretLen` condition is not respected, - * it should be done here. - * For now, it's a contract pre-condition. - * Adding a check and a branch here would cost performance at every hash. - * Also, note that function signature doesn't offer room to return an error. - */ - if (len <= 16) - return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); - if (len <= 128) - return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); - if (len <= XXH3_MIDSIZE_MAX) - return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); - return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); -} - - -/* === Public entry point === */ - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length) -{ - return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH64_hash_t -XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize) -{ - return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH64_hash_t -XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed) -{ - return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); -} - -XXH_PUBLIC_API XXH64_hash_t -XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) -{ - if (length <= XXH3_MIDSIZE_MAX) - return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); - return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize); -} - - -/* === XXH3 streaming === */ -#ifndef XXH_NO_STREAM -/* - * Malloc's a pointer that is always aligned to align. - * - * This must be freed with `XXH_alignedFree()`. - * - * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte - * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 - * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. - * - * This underalignment previously caused a rather obvious crash which went - * completely unnoticed due to XXH3_createState() not actually being tested. - * Credit to RedSpah for noticing this bug. - * - * The alignment is done manually: Functions like posix_memalign or _mm_malloc - * are avoided: To maintain portability, we would have to write a fallback - * like this anyways, and besides, testing for the existence of library - * functions without relying on external build tools is impossible. - * - * The method is simple: Overallocate, manually align, and store the offset - * to the original behind the returned pointer. - * - * Align must be a power of 2 and 8 <= align <= 128. - */ -static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align) -{ - XXH_ASSERT(align <= 128 && align >= 8); /* range check */ - XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ - XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ - { /* Overallocate to make room for manual realignment and an offset byte */ - xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); - if (base != NULL) { - /* - * Get the offset needed to align this pointer. - * - * Even if the returned pointer is aligned, there will always be - * at least one byte to store the offset to the original pointer. - */ - size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ - /* Add the offset for the now-aligned pointer */ - xxh_u8* ptr = base + offset; - - XXH_ASSERT((size_t)ptr % align == 0); - - /* Store the offset immediately before the returned pointer. */ - ptr[-1] = (xxh_u8)offset; - return ptr; - } - return NULL; - } -} -/* - * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass - * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. - */ -static void XXH_alignedFree(void* p) -{ - if (p != NULL) { - xxh_u8* ptr = (xxh_u8*)p; - /* Get the offset byte we added in XXH_malloc. */ - xxh_u8 offset = ptr[-1]; - /* Free the original malloc'd pointer */ - xxh_u8* base = ptr - offset; - XXH_free(base); - } -} -/*! @ingroup XXH3_family */ -/*! - * @brief Allocate an @ref XXH3_state_t. - * - * Must be freed with XXH3_freeState(). - * @return An allocated XXH3_state_t on success, `NULL` on failure. - */ -XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) -{ - XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); - if (state==NULL) return NULL; - XXH3_INITSTATE(state); - return state; -} - -/*! @ingroup XXH3_family */ -/*! - * @brief Frees an @ref XXH3_state_t. - * - * Must be allocated with XXH3_createState(). - * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). - * @return XXH_OK. - */ -XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) -{ - XXH_alignedFree(statePtr); - return XXH_OK; -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API void -XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state) -{ - XXH_memcpy(dst_state, src_state, sizeof(*dst_state)); -} - -static void -XXH3_reset_internal(XXH3_state_t* statePtr, - XXH64_hash_t seed, - const void* secret, size_t secretSize) -{ - size_t const initStart = offsetof(XXH3_state_t, bufferedSize); - size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; - XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); - XXH_ASSERT(statePtr != NULL); - /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ - memset((char*)statePtr + initStart, 0, initLength); - statePtr->acc[0] = XXH_PRIME32_3; - statePtr->acc[1] = XXH_PRIME64_1; - statePtr->acc[2] = XXH_PRIME64_2; - statePtr->acc[3] = XXH_PRIME64_3; - statePtr->acc[4] = XXH_PRIME64_4; - statePtr->acc[5] = XXH_PRIME32_2; - statePtr->acc[6] = XXH_PRIME64_5; - statePtr->acc[7] = XXH_PRIME32_1; - statePtr->seed = seed; - statePtr->useSeed = (seed != 0); - statePtr->extSecret = (const unsigned char*)secret; - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); - statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; - statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) -{ - if (statePtr == NULL) return XXH_ERROR; - XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); - return XXH_OK; -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) -{ - if (statePtr == NULL) return XXH_ERROR; - XXH3_reset_internal(statePtr, 0, secret, secretSize); - if (secret == NULL) return XXH_ERROR; - if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; - return XXH_OK; -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) -{ - if (statePtr == NULL) return XXH_ERROR; - if (seed==0) return XXH3_64bits_reset(statePtr); - if ((seed != statePtr->seed) || (statePtr->extSecret != NULL)) - XXH3_initCustomSecret(statePtr->customSecret, seed); - XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); - return XXH_OK; -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64) -{ - if (statePtr == NULL) return XXH_ERROR; - if (secret == NULL) return XXH_ERROR; - if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; - XXH3_reset_internal(statePtr, seed64, secret, secretSize); - statePtr->useSeed = 1; /* always, even if seed64==0 */ - return XXH_OK; -} - -/*! - * @internal - * @brief Processes a large input for XXH3_update() and XXH3_digest_long(). - * - * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block. - * - * @param acc Pointer to the 8 accumulator lanes - * @param nbStripesSoFarPtr In/out pointer to the number of leftover stripes in the block* - * @param nbStripesPerBlock Number of stripes in a block - * @param input Input pointer - * @param nbStripes Number of stripes to process - * @param secret Secret pointer - * @param secretLimit Offset of the last block in @p secret - * @param f_acc Pointer to an XXH3_accumulate implementation - * @param f_scramble Pointer to an XXH3_scrambleAcc implementation - * @return Pointer past the end of @p input after processing - */ -XXH_FORCE_INLINE const xxh_u8 * -XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, - size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, - const xxh_u8* XXH_RESTRICT input, size_t nbStripes, - const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, - XXH3_f_accumulate f_acc, - XXH3_f_scrambleAcc f_scramble) -{ - const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE; - /* Process full blocks */ - if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) { - /* Process the initial partial block... */ - size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr; - - do { - /* Accumulate and scramble */ - f_acc(acc, input, initialSecret, nbStripesThisIter); - f_scramble(acc, secret + secretLimit); - input += nbStripesThisIter * XXH_STRIPE_LEN; - nbStripes -= nbStripesThisIter; - /* Then continue the loop with the full block size */ - nbStripesThisIter = nbStripesPerBlock; - initialSecret = secret; - } while (nbStripes >= nbStripesPerBlock); - *nbStripesSoFarPtr = 0; - } - /* Process a partial block */ - if (nbStripes > 0) { - f_acc(acc, input, initialSecret, nbStripes); - input += nbStripes * XXH_STRIPE_LEN; - *nbStripesSoFarPtr += nbStripes; - } - /* Return end pointer */ - return input; -} - -#ifndef XXH3_STREAM_USE_STACK -# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */ -# define XXH3_STREAM_USE_STACK 1 -# endif -#endif -/* - * Both XXH3_64bits_update and XXH3_128bits_update use this routine. - */ -XXH_FORCE_INLINE XXH_errorcode -XXH3_update(XXH3_state_t* XXH_RESTRICT const state, - const xxh_u8* XXH_RESTRICT input, size_t len, - XXH3_f_accumulate f_acc, - XXH3_f_scrambleAcc f_scramble) -{ - if (input==NULL) { - XXH_ASSERT(len == 0); - return XXH_OK; - } - - XXH_ASSERT(state != NULL); - { const xxh_u8* const bEnd = input + len; - const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; -#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 - /* For some reason, gcc and MSVC seem to suffer greatly - * when operating accumulators directly into state. - * Operating into stack space seems to enable proper optimization. - * clang, on the other hand, doesn't seem to need this trick */ - XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; - XXH_memcpy(acc, state->acc, sizeof(acc)); -#else - xxh_u64* XXH_RESTRICT const acc = state->acc; -#endif - state->totalLen += len; - XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE); - - /* small input : just fill in tmp buffer */ - if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) { - XXH_memcpy(state->buffer + state->bufferedSize, input, len); - state->bufferedSize += (XXH32_hash_t)len; - return XXH_OK; - } - - /* total input is now > XXH3_INTERNALBUFFER_SIZE */ - #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) - XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ - - /* - * Internal buffer is partially filled (always, except at beginning) - * Complete it, then consume it. - */ - if (state->bufferedSize) { - size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; - XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); - input += loadSize; - XXH3_consumeStripes(acc, - &state->nbStripesSoFar, state->nbStripesPerBlock, - state->buffer, XXH3_INTERNALBUFFER_STRIPES, - secret, state->secretLimit, - f_acc, f_scramble); - state->bufferedSize = 0; - } - XXH_ASSERT(input < bEnd); - if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { - size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN; - input = XXH3_consumeStripes(acc, - &state->nbStripesSoFar, state->nbStripesPerBlock, - input, nbStripes, - secret, state->secretLimit, - f_acc, f_scramble); - XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); - - } - /* Some remaining input (always) : buffer it */ - XXH_ASSERT(input < bEnd); - XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE); - XXH_ASSERT(state->bufferedSize == 0); - XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); - state->bufferedSize = (XXH32_hash_t)(bEnd-input); -#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 - /* save stack accumulators into state */ - XXH_memcpy(state->acc, acc, sizeof(acc)); -#endif - } - - return XXH_OK; -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) -{ - return XXH3_update(state, (const xxh_u8*)input, len, - XXH3_accumulate, XXH3_scrambleAcc); -} - - -XXH_FORCE_INLINE void -XXH3_digest_long (XXH64_hash_t* acc, - const XXH3_state_t* state, - const unsigned char* secret) -{ - xxh_u8 lastStripe[XXH_STRIPE_LEN]; - const xxh_u8* lastStripePtr; - - /* - * Digest on a local copy. This way, the state remains unaltered, and it can - * continue ingesting more input afterwards. - */ - XXH_memcpy(acc, state->acc, sizeof(state->acc)); - if (state->bufferedSize >= XXH_STRIPE_LEN) { - /* Consume remaining stripes then point to remaining data in buffer */ - size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; - size_t nbStripesSoFar = state->nbStripesSoFar; - XXH3_consumeStripes(acc, - &nbStripesSoFar, state->nbStripesPerBlock, - state->buffer, nbStripes, - secret, state->secretLimit, - XXH3_accumulate, XXH3_scrambleAcc); - lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN; - } else { /* bufferedSize < XXH_STRIPE_LEN */ - /* Copy to temp buffer */ - size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; - XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ - XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); - XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); - lastStripePtr = lastStripe; - } - /* Last stripe */ - XXH3_accumulate_512(acc, - lastStripePtr, - secret + state->secretLimit - XXH_SECRET_LASTACC_START); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state) -{ - const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; - if (state->totalLen > XXH3_MIDSIZE_MAX) { - XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; - XXH3_digest_long(acc, state, secret); - return XXH3_mergeAccs(acc, - secret + XXH_SECRET_MERGEACCS_START, - (xxh_u64)state->totalLen * XXH_PRIME64_1); - } - /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ - if (state->useSeed) - return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); - return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), - secret, state->secretLimit + XXH_STRIPE_LEN); -} -#endif /* !XXH_NO_STREAM */ - - -/* ========================================== - * XXH3 128 bits (a.k.a XXH128) - * ========================================== - * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, - * even without counting the significantly larger output size. - * - * For example, extra steps are taken to avoid the seed-dependent collisions - * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). - * - * This strength naturally comes at the cost of some speed, especially on short - * lengths. Note that longer hashes are about as fast as the 64-bit version - * due to it using only a slight modification of the 64-bit loop. - * - * XXH128 is also more oriented towards 64-bit machines. It is still extremely - * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). - */ - -XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t -XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - /* A doubled version of 1to3_64b with different constants. */ - XXH_ASSERT(input != NULL); - XXH_ASSERT(1 <= len && len <= 3); - XXH_ASSERT(secret != NULL); - /* - * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } - * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } - * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } - */ - { xxh_u8 const c1 = input[0]; - xxh_u8 const c2 = input[len >> 1]; - xxh_u8 const c3 = input[len - 1]; - xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) - | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); - xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); - xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; - xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; - xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; - xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; - XXH128_hash_t h128; - h128.low64 = XXH64_avalanche(keyed_lo); - h128.high64 = XXH64_avalanche(keyed_hi); - return h128; - } -} - -XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t -XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(secret != NULL); - XXH_ASSERT(4 <= len && len <= 8); - seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; - { xxh_u32 const input_lo = XXH_readLE32(input); - xxh_u32 const input_hi = XXH_readLE32(input + len - 4); - xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); - xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; - xxh_u64 const keyed = input_64 ^ bitflip; - - /* Shift len to the left to ensure it is even, this avoids even multiplies. */ - XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); - - m128.high64 += (m128.low64 << 1); - m128.low64 ^= (m128.high64 >> 3); - - m128.low64 = XXH_xorshift64(m128.low64, 35); - m128.low64 *= PRIME_MX2; - m128.low64 = XXH_xorshift64(m128.low64, 28); - m128.high64 = XXH3_avalanche(m128.high64); - return m128; - } -} - -XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t -XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(secret != NULL); - XXH_ASSERT(9 <= len && len <= 16); - { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; - xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; - xxh_u64 const input_lo = XXH_readLE64(input); - xxh_u64 input_hi = XXH_readLE64(input + len - 8); - XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); - /* - * Put len in the middle of m128 to ensure that the length gets mixed to - * both the low and high bits in the 128x64 multiply below. - */ - m128.low64 += (xxh_u64)(len - 1) << 54; - input_hi ^= bitfliph; - /* - * Add the high 32 bits of input_hi to the high 32 bits of m128, then - * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to - * the high 64 bits of m128. - * - * The best approach to this operation is different on 32-bit and 64-bit. - */ - if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ - /* - * 32-bit optimized version, which is more readable. - * - * On 32-bit, it removes an ADC and delays a dependency between the two - * halves of m128.high64, but it generates an extra mask on 64-bit. - */ - m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); - } else { - /* - * 64-bit optimized (albeit more confusing) version. - * - * Uses some properties of addition and multiplication to remove the mask: - * - * Let: - * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) - * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) - * c = XXH_PRIME32_2 - * - * a + (b * c) - * Inverse Property: x + y - x == y - * a + (b * (1 + c - 1)) - * Distributive Property: x * (y + z) == (x * y) + (x * z) - * a + (b * 1) + (b * (c - 1)) - * Identity Property: x * 1 == x - * a + b + (b * (c - 1)) - * - * Substitute a, b, and c: - * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) - * - * Since input_hi.hi + input_hi.lo == input_hi, we get this: - * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) - */ - m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); - } - /* m128 ^= XXH_swap64(m128 >> 64); */ - m128.low64 ^= XXH_swap64(m128.high64); - - { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ - XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); - h128.high64 += m128.high64 * XXH_PRIME64_2; - - h128.low64 = XXH3_avalanche(h128.low64); - h128.high64 = XXH3_avalanche(h128.high64); - return h128; - } } -} - -/* - * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN - */ -XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t -XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(len <= 16); - { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); - if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); - if (len) return XXH3_len_1to3_128b(input, len, secret, seed); - { XXH128_hash_t h128; - xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); - xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); - h128.low64 = XXH64_avalanche(seed ^ bitflipl); - h128.high64 = XXH64_avalanche( seed ^ bitfliph); - return h128; - } } -} - -/* - * A bit slower than XXH3_mix16B, but handles multiply by zero better. - */ -XXH_FORCE_INLINE XXH128_hash_t -XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, - const xxh_u8* secret, XXH64_hash_t seed) -{ - acc.low64 += XXH3_mix16B (input_1, secret+0, seed); - acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); - acc.high64 += XXH3_mix16B (input_2, secret+16, seed); - acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); - return acc; -} - - -XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t -XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH64_hash_t seed) -{ - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; - XXH_ASSERT(16 < len && len <= 128); - - { XXH128_hash_t acc; - acc.low64 = len * XXH_PRIME64_1; - acc.high64 = 0; - -#if XXH_SIZE_OPT >= 1 - { - /* Smaller, but slightly slower. */ - unsigned int i = (unsigned int)(len - 1) / 32; - do { - acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed); - } while (i-- != 0); - } -#else - if (len > 32) { - if (len > 64) { - if (len > 96) { - acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); - } - acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); - } - acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); - } - acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); -#endif - { XXH128_hash_t h128; - h128.low64 = acc.low64 + acc.high64; - h128.high64 = (acc.low64 * XXH_PRIME64_1) - + (acc.high64 * XXH_PRIME64_4) - + ((len - seed) * XXH_PRIME64_2); - h128.low64 = XXH3_avalanche(h128.low64); - h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); - return h128; - } - } -} - -XXH_NO_INLINE XXH_PUREF XXH128_hash_t -XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH64_hash_t seed) -{ - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; - XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); - - { XXH128_hash_t acc; - unsigned i; - acc.low64 = len * XXH_PRIME64_1; - acc.high64 = 0; - /* - * We set as `i` as offset + 32. We do this so that unchanged - * `len` can be used as upper bound. This reaches a sweet spot - * where both x86 and aarch64 get simple agen and good codegen - * for the loop. - */ - for (i = 32; i < 160; i += 32) { - acc = XXH128_mix32B(acc, - input + i - 32, - input + i - 16, - secret + i - 32, - seed); - } - acc.low64 = XXH3_avalanche(acc.low64); - acc.high64 = XXH3_avalanche(acc.high64); - /* - * NB: `i <= len` will duplicate the last 32-bytes if - * len % 32 was zero. This is an unfortunate necessity to keep - * the hash result stable. - */ - for (i=160; i <= len; i += 32) { - acc = XXH128_mix32B(acc, - input + i - 32, - input + i - 16, - secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, - seed); - } - /* last bytes */ - acc = XXH128_mix32B(acc, - input + len - 16, - input + len - 32, - secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, - (XXH64_hash_t)0 - seed); - - { XXH128_hash_t h128; - h128.low64 = acc.low64 + acc.high64; - h128.high64 = (acc.low64 * XXH_PRIME64_1) - + (acc.high64 * XXH_PRIME64_4) - + ((len - seed) * XXH_PRIME64_2); - h128.low64 = XXH3_avalanche(h128.low64); - h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); - return h128; - } - } -} - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH3_f_accumulate f_acc, - XXH3_f_scrambleAcc f_scramble) -{ - XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; - - XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble); - - /* converge into final hash */ - XXH_STATIC_ASSERT(sizeof(acc) == 64); - XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); - { XXH128_hash_t h128; - h128.low64 = XXH3_mergeAccs(acc, - secret + XXH_SECRET_MERGEACCS_START, - (xxh_u64)len * XXH_PRIME64_1); - h128.high64 = XXH3_mergeAccs(acc, - secret + secretSize - - sizeof(acc) - XXH_SECRET_MERGEACCS_START, - ~((xxh_u64)len * XXH_PRIME64_2)); - return h128; - } -} - -/* - * It's important for performance that XXH3_hashLong() is not inlined. - */ -XXH_NO_INLINE XXH_PUREF XXH128_hash_t -XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, - const void* XXH_RESTRICT secret, size_t secretLen) -{ - (void)seed64; (void)secret; (void)secretLen; - return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), - XXH3_accumulate, XXH3_scrambleAcc); -} - -/* - * It's important for performance to pass @p secretLen (when it's static) - * to the compiler, so that it can properly optimize the vectorized loop. - * - * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE - * breaks -Og, this is XXH_NO_INLINE. - */ -XXH3_WITH_SECRET_INLINE XXH128_hash_t -XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, - const void* XXH_RESTRICT secret, size_t secretLen) -{ - (void)seed64; - return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, - XXH3_accumulate, XXH3_scrambleAcc); -} - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, - XXH3_f_accumulate f_acc, - XXH3_f_scrambleAcc f_scramble, - XXH3_f_initCustomSecret f_initSec) -{ - if (seed64 == 0) - return XXH3_hashLong_128b_internal(input, len, - XXH3_kSecret, sizeof(XXH3_kSecret), - f_acc, f_scramble); - { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; - f_initSec(secret, seed64); - return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), - f_acc, f_scramble); - } -} - -/* - * It's important for performance that XXH3_hashLong is not inlined. - */ -XXH_NO_INLINE XXH128_hash_t -XXH3_hashLong_128b_withSeed(const void* input, size_t len, - XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) -{ - (void)secret; (void)secretLen; - return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, - XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); -} - -typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, - XXH64_hash_t, const void* XXH_RESTRICT, size_t); - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_128bits_internal(const void* input, size_t len, - XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, - XXH3_hashLong128_f f_hl128) -{ - XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); - /* - * If an action is to be taken if `secret` conditions are not respected, - * it should be done here. - * For now, it's a contract pre-condition. - * Adding a check and a branch here would cost performance at every hash. - */ - if (len <= 16) - return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); - if (len <= 128) - return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); - if (len <= XXH3_MIDSIZE_MAX) - return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); - return f_hl128(input, len, seed64, secret, secretLen); -} - - -/* === Public XXH128 API === */ - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len) -{ - return XXH3_128bits_internal(input, len, 0, - XXH3_kSecret, sizeof(XXH3_kSecret), - XXH3_hashLong_128b_default); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH128_hash_t -XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize) -{ - return XXH3_128bits_internal(input, len, 0, - (const xxh_u8*)secret, secretSize, - XXH3_hashLong_128b_withSecret); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH128_hash_t -XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) -{ - return XXH3_128bits_internal(input, len, seed, - XXH3_kSecret, sizeof(XXH3_kSecret), - XXH3_hashLong_128b_withSeed); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH128_hash_t -XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) -{ - if (len <= XXH3_MIDSIZE_MAX) - return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); - return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH128_hash_t -XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) -{ - return XXH3_128bits_withSeed(input, len, seed); -} - - -/* === XXH3 128-bit streaming === */ -#ifndef XXH_NO_STREAM -/* - * All initialization and update functions are identical to 64-bit streaming variant. - * The only difference is the finalization routine. - */ - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) -{ - return XXH3_64bits_reset(statePtr); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) -{ - return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) -{ - return XXH3_64bits_reset_withSeed(statePtr, seed); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) -{ - return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) -{ - return XXH3_64bits_update(state, input, len); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state) -{ - const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; - if (state->totalLen > XXH3_MIDSIZE_MAX) { - XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; - XXH3_digest_long(acc, state, secret); - XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); - { XXH128_hash_t h128; - h128.low64 = XXH3_mergeAccs(acc, - secret + XXH_SECRET_MERGEACCS_START, - (xxh_u64)state->totalLen * XXH_PRIME64_1); - h128.high64 = XXH3_mergeAccs(acc, - secret + state->secretLimit + XXH_STRIPE_LEN - - sizeof(acc) - XXH_SECRET_MERGEACCS_START, - ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); - return h128; - } - } - /* len <= XXH3_MIDSIZE_MAX : short code */ - if (state->seed) - return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); - return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), - secret, state->secretLimit + XXH_STRIPE_LEN); -} -#endif /* !XXH_NO_STREAM */ -/* 128-bit utility functions */ - -#include <string.h> /* memcmp, memcpy */ - -/* return : 1 is equal, 0 if different */ -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) -{ - /* note : XXH128_hash_t is compact, it has no padding byte */ - return !(memcmp(&h1, &h2, sizeof(h1))); -} - -/* This prototype is compatible with stdlib's qsort(). - * @return : >0 if *h128_1 > *h128_2 - * <0 if *h128_1 < *h128_2 - * =0 if *h128_1 == *h128_2 */ -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2) -{ - XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; - XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; - int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); - /* note : bets that, in most cases, hash values are different */ - if (hcmp) return hcmp; - return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); -} - - -/*====== Canonical representation ======*/ -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API void -XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash) -{ - XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); - if (XXH_CPU_LITTLE_ENDIAN) { - hash.high64 = XXH_swap64(hash.high64); - hash.low64 = XXH_swap64(hash.low64); - } - XXH_memcpy(dst, &hash.high64, sizeof(hash.high64)); - XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH128_hash_t -XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src) -{ - XXH128_hash_t h; - h.high64 = XXH_readBE64(src); - h.low64 = XXH_readBE64(src->digest + 8); - return h; -} - - - -/* ========================================== - * Secret generators - * ========================================== - */ -#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) - -XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128) -{ - XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 ); - XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 ); -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API XXH_errorcode -XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize) -{ -#if (XXH_DEBUGLEVEL >= 1) - XXH_ASSERT(secretBuffer != NULL); - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); -#else - /* production mode, assert() are disabled */ - if (secretBuffer == NULL) return XXH_ERROR; - if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; -#endif - - if (customSeedSize == 0) { - customSeed = XXH3_kSecret; - customSeedSize = XXH_SECRET_DEFAULT_SIZE; - } -#if (XXH_DEBUGLEVEL >= 1) - XXH_ASSERT(customSeed != NULL); -#else - if (customSeed == NULL) return XXH_ERROR; -#endif - - /* Fill secretBuffer with a copy of customSeed - repeat as needed */ - { size_t pos = 0; - while (pos < secretSize) { - size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize); - memcpy((char*)secretBuffer + pos, customSeed, toCopy); - pos += toCopy; - } } - - { size_t const nbSeg16 = secretSize / 16; - size_t n; - XXH128_canonical_t scrambler; - XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); - for (n=0; n<nbSeg16; n++) { - XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n); - XXH3_combine16((char*)secretBuffer + n*16, h128); - } - /* last segment */ - XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler)); - } - return XXH_OK; -} - -/*! @ingroup XXH3_family */ -XXH_PUBLIC_API void -XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed) -{ - XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; - XXH3_initCustomSecret(secret, seed); - XXH_ASSERT(secretBuffer != NULL); - memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE); -} - - - -/* Pop our optimization override from above */ -#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ - && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ - && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ -# pragma GCC pop_options -#endif - -#endif /* XXH_NO_LONG_LONG */ - -#endif /* XXH_NO_XXH3 */ - -/*! - * @} - */ -#endif /* XXH_IMPLEMENTATION */ - - -#if defined (__cplusplus) -} /* extern "C" */ -#endif |