diff options
Diffstat (limited to 'ml/Dimension.h')
-rw-r--r-- | ml/Dimension.h | 178 |
1 files changed, 141 insertions, 37 deletions
diff --git a/ml/Dimension.h b/ml/Dimension.h index 3ec56e098..2b1adfff9 100644 --- a/ml/Dimension.h +++ b/ml/Dimension.h @@ -3,6 +3,8 @@ #ifndef ML_DIMENSION_H #define ML_DIMENSION_H +#include "Mutex.h" +#include "Stats.h" #include "Query.h" #include "Config.h" @@ -10,12 +12,6 @@ namespace ml { -enum class MLResult { - Success = 0, - MissingData, - NaN, -}; - static inline std::string getMLDimensionID(RRDDIM *RD) { RRDSET *RS = RD->rrdset; @@ -24,16 +20,118 @@ static inline std::string getMLDimensionID(RRDDIM *RD) { return SS.str(); } +enum class MachineLearningStatus { + // Enable training/prediction + Enabled, + + // Disable due to update every being different from the host's + DisabledDueToUniqueUpdateEvery, + + // Disable because configuration pattern matches the chart's id + DisabledDueToExcludedChart, +}; + +enum class TrainingStatus { + // We don't have a model for this dimension + Untrained, + + // Request for training sent, but we don't have any models yet + PendingWithoutModel, + + // Request to update existing models sent + PendingWithModel, + + // Have a valid, up-to-date model + Trained, +}; + +enum class MetricType { + // The dimension has constant values, no need to train + Constant, + + // The dimension's values fluctuate, we need to generate a model + Variable, +}; + +struct TrainingRequest { + // Chart/dimension we want to train + STRING *ChartId; + STRING *DimensionId; + + // Creation time of request + time_t RequestTime; + + // First/last entry of this dimension in DB + // at the point the request was made + time_t FirstEntryOnRequest; + time_t LastEntryOnRequest; +}; + +void dumpTrainingRequest(const TrainingRequest &TrainingReq, const char *Prefix); + +enum TrainingResult { + // We managed to create a KMeans model + Ok, + // Could not query DB with a correct time range + InvalidQueryTimeRange, + // Did not gather enough data from DB to run KMeans + NotEnoughCollectedValues, + // Acquired a null dimension + NullAcquiredDimension, + // Chart is under replication + ChartUnderReplication, +}; + +struct TrainingResponse { + // Time when the request for this response was made + time_t RequestTime; + + // First/last entry of the dimension in DB when generating the request + time_t FirstEntryOnRequest; + time_t LastEntryOnRequest; + + // First/last entry of the dimension in DB when generating the response + time_t FirstEntryOnResponse; + time_t LastEntryOnResponse; + + // After/Before timestamps of our DB query + time_t QueryAfterT; + time_t QueryBeforeT; + + // Actual after/before returned by the DB query ops + time_t DbAfterT; + time_t DbBeforeT; + + // Number of doubles returned by the DB query + size_t CollectedValues; + + // Number of values we return to the caller + size_t TotalValues; + + // Result of training response + TrainingResult Result; +}; + +void dumpTrainingResponse(const TrainingResponse &TrainingResp, const char *Prefix); + class Dimension { public: Dimension(RRDDIM *RD) : RD(RD), - LastTrainedAt(Seconds(0)), - Trained(false), - ConstantModel(false), - AnomalyScore(0.0), - AnomalyBit(0) - { } + MT(MetricType::Constant), + TS(TrainingStatus::Untrained), + TR(), + LastTrainingTime(0) + { + if (simple_pattern_matches(Cfg.SP_ChartsToSkip, rrdset_name(RD->rrdset))) + MLS = MachineLearningStatus::DisabledDueToExcludedChart; + else if (RD->update_every != RD->rrdset->rrdhost->rrd_update_every) + MLS = MachineLearningStatus::DisabledDueToUniqueUpdateEvery; + else + MLS = MachineLearningStatus::Enabled; + + Models.reserve(Cfg.NumModelsToUse); + } RRDDIM *getRD() const { return RD; @@ -43,50 +141,56 @@ public: return RD->update_every; } - time_t latestTime() const { - return Query(RD).latestTime(); - } - - time_t oldestTime() const { - return Query(RD).oldestTime(); + MetricType getMT() const { + return MT; } - bool isTrained() const { - return Trained; + TrainingStatus getTS() const { + return TS; } - bool isAnomalous() const { - return AnomalyBit; + MachineLearningStatus getMLS() const { + return MLS; } - bool shouldTrain(const TimePoint &TP) const; + TrainingResult trainModel(const TrainingRequest &TR); - bool isActive() const; + void scheduleForTraining(time_t CurrT); - MLResult trainModel(); + bool predict(time_t CurrT, CalculatedNumber Value, bool Exists); - bool predict(CalculatedNumber Value, bool Exists); + std::vector<KMeans> getModels(); + + void dump() const; - std::pair<bool, double> detect(size_t WindowLength, bool Reset); - - std::array<KMeans, 1> getModels(); +private: + TrainingRequest getTrainingRequest(time_t CurrT) const { + return TrainingRequest { + string_dup(RD->rrdset->id), + string_dup(RD->id), + CurrT, + rrddim_first_entry_s(RD), + rrddim_last_entry_s(RD) + }; + } private: - std::pair<CalculatedNumber *, size_t> getCalculatedNumbers(); + std::pair<CalculatedNumber *, TrainingResponse> getCalculatedNumbers(const TrainingRequest &TrainingReq); public: RRDDIM *RD; + MetricType MT; + TrainingStatus TS; + TrainingResponse TR; - TimePoint LastTrainedAt; - std::atomic<bool> Trained; - std::atomic<bool> ConstantModel; + time_t LastTrainingTime; - CalculatedNumber AnomalyScore; - std::atomic<bool> AnomalyBit; + MachineLearningStatus MLS; std::vector<CalculatedNumber> CNs; - std::array<KMeans, 1> Models; - std::mutex Mutex; + DSample Feature; + std::vector<KMeans> Models; + Mutex M; }; } // namespace ml |