diff options
Diffstat (limited to '')
-rw-r--r-- | ml/Host.cc | 458 |
1 files changed, 458 insertions, 0 deletions
diff --git a/ml/Host.cc b/ml/Host.cc new file mode 100644 index 000000000..d26ff2ae4 --- /dev/null +++ b/ml/Host.cc @@ -0,0 +1,458 @@ +// SPDX-License-Identifier: GPL-3.0-or-later + +#include <dlib/statistics.h> + +#include "Config.h" +#include "Host.h" + +#include "json/single_include/nlohmann/json.hpp" + +using namespace ml; + +static void updateDimensionsChart(RRDHOST *RH, + collected_number NumTrainedDimensions, + collected_number NumNormalDimensions, + collected_number NumAnomalousDimensions) { + static thread_local RRDSET *RS = nullptr; + static thread_local RRDDIM *NumTotalDimensionsRD = nullptr; + static thread_local RRDDIM *NumTrainedDimensionsRD = nullptr; + static thread_local RRDDIM *NumNormalDimensionsRD = nullptr; + static thread_local RRDDIM *NumAnomalousDimensionsRD = nullptr; + + if (!RS) { + RS = rrdset_create( + RH, // host + "anomaly_detection", // type + "dimensions", // id + NULL, // name + "dimensions", // family + NULL, // ctx + "Anomaly detection dimensions", // title + "dimensions", // units + "netdata", // plugin + "ml", // module + 39183, // priority + RH->rrd_update_every, // update_every + RRDSET_TYPE_LINE // chart_type + ); + + NumTotalDimensionsRD = rrddim_add(RS, "total", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + NumTrainedDimensionsRD = rrddim_add(RS, "trained", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + NumNormalDimensionsRD = rrddim_add(RS, "normal", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + NumAnomalousDimensionsRD = rrddim_add(RS, "anomalous", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + } else + rrdset_next(RS); + + rrddim_set_by_pointer(RS, NumTotalDimensionsRD, NumNormalDimensions + NumAnomalousDimensions); + rrddim_set_by_pointer(RS, NumTrainedDimensionsRD, NumTrainedDimensions); + rrddim_set_by_pointer(RS, NumNormalDimensionsRD, NumNormalDimensions); + rrddim_set_by_pointer(RS, NumAnomalousDimensionsRD, NumAnomalousDimensions); + + rrdset_done(RS); +} + +static void updateRateChart(RRDHOST *RH, collected_number AnomalyRate) { + static thread_local RRDSET *RS = nullptr; + static thread_local RRDDIM *AnomalyRateRD = nullptr; + + if (!RS) { + RS = rrdset_create( + RH, // host + "anomaly_detection", // type + "anomaly_rate", // id + NULL, // name + "anomaly_rate", // family + NULL, // ctx + "Percentage of anomalous dimensions", // title + "percentage", // units + "netdata", // plugin + "ml", // module + 39184, // priority + RH->rrd_update_every, // update_every + RRDSET_TYPE_LINE // chart_type + ); + + AnomalyRateRD = rrddim_add(RS, "anomaly_rate", NULL, + 1, 100, RRD_ALGORITHM_ABSOLUTE); + } else + rrdset_next(RS); + + rrddim_set_by_pointer(RS, AnomalyRateRD, AnomalyRate); + + rrdset_done(RS); +} + +static void updateWindowLengthChart(RRDHOST *RH, collected_number WindowLength) { + static thread_local RRDSET *RS = nullptr; + static thread_local RRDDIM *WindowLengthRD = nullptr; + + if (!RS) { + RS = rrdset_create( + RH, // host + "anomaly_detection", // type + "detector_window", // id + NULL, // name + "detector_window", // family + NULL, // ctx + "Anomaly detector window length", // title + "seconds", // units + "netdata", // plugin + "ml", // module + 39185, // priority + RH->rrd_update_every, // update_every + RRDSET_TYPE_LINE // chart_type + ); + + WindowLengthRD = rrddim_add(RS, "duration", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + } else + rrdset_next(RS); + + rrddim_set_by_pointer(RS, WindowLengthRD, WindowLength * RH->rrd_update_every); + rrdset_done(RS); +} + +static void updateEventsChart(RRDHOST *RH, + std::pair<BitRateWindow::Edge, size_t> P, + bool ResetBitCounter, + bool NewAnomalyEvent) { + static thread_local RRDSET *RS = nullptr; + static thread_local RRDDIM *AboveThresholdRD = nullptr; + static thread_local RRDDIM *ResetBitCounterRD = nullptr; + static thread_local RRDDIM *NewAnomalyEventRD = nullptr; + + if (!RS) { + RS = rrdset_create( + RH, // host + "anomaly_detection", // type + "detector_events", // id + NULL, // name + "detector_events", // family + NULL, // ctx + "Anomaly events triggered", // title + "boolean", // units + "netdata", // plugin + "ml", // module + 39186, // priority + RH->rrd_update_every, // update_every + RRDSET_TYPE_LINE // chart_type + ); + + AboveThresholdRD = rrddim_add(RS, "above_threshold", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + ResetBitCounterRD = rrddim_add(RS, "reset_bit_counter", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + NewAnomalyEventRD = rrddim_add(RS, "new_anomaly_event", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + } else + rrdset_next(RS); + + BitRateWindow::Edge E = P.first; + bool AboveThreshold = E.second == BitRateWindow::State::AboveThreshold; + + rrddim_set_by_pointer(RS, AboveThresholdRD, AboveThreshold); + rrddim_set_by_pointer(RS, ResetBitCounterRD, ResetBitCounter); + rrddim_set_by_pointer(RS, NewAnomalyEventRD, NewAnomalyEvent); + + rrdset_done(RS); +} + +static void updateDetectionChart(RRDHOST *RH, collected_number PredictionDuration) { + static thread_local RRDSET *RS = nullptr; + static thread_local RRDDIM *PredictiobDurationRD = nullptr; + + if (!RS) { + RS = rrdset_create( + RH, // host + "anomaly_detection", // type + "prediction_stats", // id + NULL, // name + "prediction_stats", // family + NULL, // ctx + "Time it took to run prediction", // title + "milliseconds", // units + "netdata", // plugin + "ml", // module + 39187, // priority + RH->rrd_update_every, // update_every + RRDSET_TYPE_LINE // chart_type + ); + + PredictiobDurationRD = rrddim_add(RS, "duration", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + } else + rrdset_next(RS); + + rrddim_set_by_pointer(RS, PredictiobDurationRD, PredictionDuration); + + rrdset_done(RS); +} + +static void updateTrainingChart(RRDHOST *RH, + collected_number TotalTrainingDuration, + collected_number MaxTrainingDuration) +{ + static thread_local RRDSET *RS = nullptr; + static thread_local RRDDIM *TotalTrainingDurationRD = nullptr; + static thread_local RRDDIM *MaxTrainingDurationRD = nullptr; + + if (!RS) { + RS = rrdset_create( + RH, // host + "anomaly_detection", // type + "training_stats", // id + NULL, // name + "training_stats", // family + NULL, // ctx + "Training step statistics", // title + "milliseconds", // units + "netdata", // plugin + "ml", // module + 39188, // priority + RH->rrd_update_every, // update_every + RRDSET_TYPE_LINE // chart_type + ); + + TotalTrainingDurationRD = rrddim_add(RS, "total_training_duration", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + MaxTrainingDurationRD = rrddim_add(RS, "max_training_duration", NULL, + 1, 1, RRD_ALGORITHM_ABSOLUTE); + } else + rrdset_next(RS); + + rrddim_set_by_pointer(RS, TotalTrainingDurationRD, TotalTrainingDuration); + rrddim_set_by_pointer(RS, MaxTrainingDurationRD, MaxTrainingDuration); + + rrdset_done(RS); +} + +void RrdHost::addDimension(Dimension *D) { + std::lock_guard<std::mutex> Lock(Mutex); + + DimensionsMap[D->getRD()] = D; + + // Default construct mutex for dimension + LocksMap[D]; +} + +void RrdHost::removeDimension(Dimension *D) { + // Remove the dimension from the hosts map. + { + std::lock_guard<std::mutex> Lock(Mutex); + DimensionsMap.erase(D->getRD()); + } + + // Delete the dimension by locking the mutex that protects it. + { + std::lock_guard<std::mutex> Lock(LocksMap[D]); + delete D; + } + + // Remove the lock entry for the deleted dimension. + { + std::lock_guard<std::mutex> Lock(Mutex); + LocksMap.erase(D); + } +} + +void RrdHost::getConfigAsJson(nlohmann::json &Json) const { + Json["version"] = 1; + + Json["enabled"] = Cfg.EnableAnomalyDetection; + + Json["min-train-samples"] = Cfg.MinTrainSamples; + Json["max-train-samples"] = Cfg.MaxTrainSamples; + Json["train-every"] = Cfg.TrainEvery; + + Json["diff-n"] = Cfg.DiffN; + Json["smooth-n"] = Cfg.SmoothN; + Json["lag-n"] = Cfg.LagN; + + Json["max-kmeans-iters"] = Cfg.MaxKMeansIters; + + Json["dimension-anomaly-score-threshold"] = Cfg.DimensionAnomalyScoreThreshold; + Json["host-anomaly-rate-threshold"] = Cfg.HostAnomalyRateThreshold; + + Json["min-window-size"] = Cfg.ADMinWindowSize; + Json["max-window-size"] = Cfg.ADMaxWindowSize; + Json["idle-window-size"] = Cfg.ADIdleWindowSize; + Json["window-rate-threshold"] = Cfg.ADWindowRateThreshold; + Json["dimension-rate-threshold"] = Cfg.ADDimensionRateThreshold; +} + +std::pair<Dimension *, Duration<double>> +TrainableHost::findDimensionToTrain(const TimePoint &NowTP) { + std::lock_guard<std::mutex> Lock(Mutex); + + Duration<double> AllottedDuration = Duration<double>{Cfg.TrainEvery * updateEvery()} / (DimensionsMap.size() + 1); + + for (auto &DP : DimensionsMap) { + Dimension *D = DP.second; + + if (D->shouldTrain(NowTP)) { + LocksMap[D].lock(); + return { D, AllottedDuration }; + } + } + + return { nullptr, AllottedDuration }; +} + +void TrainableHost::trainDimension(Dimension *D, const TimePoint &NowTP) { + if (D == nullptr) + return; + + D->LastTrainedAt = NowTP + Seconds{D->updateEvery()}; + + TimePoint StartTP = SteadyClock::now(); + D->trainModel(); + Duration<double> Duration = SteadyClock::now() - StartTP; + D->updateTrainingDuration(Duration.count()); + + { + std::lock_guard<std::mutex> Lock(Mutex); + LocksMap[D].unlock(); + } +} + +void TrainableHost::train() { + Duration<double> MaxSleepFor = Seconds{updateEvery()}; + + while (!netdata_exit) { + TimePoint NowTP = SteadyClock::now(); + + auto P = findDimensionToTrain(NowTP); + trainDimension(P.first, NowTP); + + Duration<double> AllottedDuration = P.second; + Duration<double> RealDuration = SteadyClock::now() - NowTP; + + Duration<double> SleepFor; + if (RealDuration >= AllottedDuration) + continue; + + SleepFor = std::min(AllottedDuration - RealDuration, MaxSleepFor); + std::this_thread::sleep_for(SleepFor); + } +} + +void DetectableHost::detectOnce() { + auto P = BRW.insert(AnomalyRate >= Cfg.HostAnomalyRateThreshold); + BitRateWindow::Edge Edge = P.first; + size_t WindowLength = P.second; + + bool ResetBitCounter = (Edge.first != BitRateWindow::State::AboveThreshold); + bool NewAnomalyEvent = (Edge.first == BitRateWindow::State::AboveThreshold) && + (Edge.second == BitRateWindow::State::Idle); + + std::vector<std::pair<double, std::string>> DimsOverThreshold; + + size_t NumAnomalousDimensions = 0; + size_t NumNormalDimensions = 0; + size_t NumTrainedDimensions = 0; + + double TotalTrainingDuration = 0.0; + double MaxTrainingDuration = 0.0; + + { + std::lock_guard<std::mutex> Lock(Mutex); + + DimsOverThreshold.reserve(DimensionsMap.size()); + + for (auto &DP : DimensionsMap) { + Dimension *D = DP.second; + + auto P = D->detect(WindowLength, ResetBitCounter); + bool IsAnomalous = P.first; + double AnomalyRate = P.second; + + NumTrainedDimensions += D->isTrained(); + + double DimTrainingDuration = D->updateTrainingDuration(0.0); + MaxTrainingDuration = std::max(MaxTrainingDuration, DimTrainingDuration); + TotalTrainingDuration += DimTrainingDuration; + + if (IsAnomalous) + NumAnomalousDimensions += 1; + + if (NewAnomalyEvent && (AnomalyRate >= Cfg.ADDimensionRateThreshold)) + DimsOverThreshold.push_back({ AnomalyRate, D->getID() }); + } + + if (NumAnomalousDimensions) + AnomalyRate = static_cast<double>(NumAnomalousDimensions) / DimensionsMap.size(); + else + AnomalyRate = 0.0; + + NumNormalDimensions = DimensionsMap.size() - NumAnomalousDimensions; + } + + this->NumAnomalousDimensions = NumAnomalousDimensions; + this->NumNormalDimensions = NumNormalDimensions; + this->NumTrainedDimensions = NumTrainedDimensions; + + updateDimensionsChart(getRH(), NumTrainedDimensions, NumNormalDimensions, NumAnomalousDimensions); + updateRateChart(getRH(), AnomalyRate * 10000.0); + updateWindowLengthChart(getRH(), WindowLength); + updateEventsChart(getRH(), P, ResetBitCounter, NewAnomalyEvent); + updateTrainingChart(getRH(), TotalTrainingDuration * 1000.0, MaxTrainingDuration * 1000.0); + + if (!NewAnomalyEvent || (DimsOverThreshold.size() == 0)) + return; + + std::sort(DimsOverThreshold.begin(), DimsOverThreshold.end()); + std::reverse(DimsOverThreshold.begin(), DimsOverThreshold.end()); + + // Make sure the JSON response won't grow beyond a specific number + // of dimensions. Log an error message if this happens, because it + // most likely means that the user specified a very-low anomaly rate + // threshold. + size_t NumMaxDimsOverThreshold = 2000; + if (DimsOverThreshold.size() > NumMaxDimsOverThreshold) { + error("Found %zu dimensions over threshold. Reducing JSON result to %zu dimensions.", + DimsOverThreshold.size(), NumMaxDimsOverThreshold); + DimsOverThreshold.resize(NumMaxDimsOverThreshold); + } + + nlohmann::json JsonResult = DimsOverThreshold; + + time_t Before = now_realtime_sec(); + time_t After = Before - (WindowLength * updateEvery()); + DB.insertAnomaly("AD1", 1, getUUID(), After, Before, JsonResult.dump(4)); +} + +void DetectableHost::detect() { + std::this_thread::sleep_for(Seconds{10}); + + while (!netdata_exit) { + TimePoint StartTP = SteadyClock::now(); + detectOnce(); + TimePoint EndTP = SteadyClock::now(); + + Duration<double> Dur = EndTP - StartTP; + updateDetectionChart(getRH(), Dur.count() * 1000); + + std::this_thread::sleep_for(Seconds{updateEvery()}); + } +} + +void DetectableHost::getDetectionInfoAsJson(nlohmann::json &Json) const { + Json["anomalous-dimensions"] = NumAnomalousDimensions; + Json["normal-dimensions"] = NumNormalDimensions; + Json["total-dimensions"] = NumAnomalousDimensions + NumNormalDimensions; + Json["trained-dimensions"] = NumTrainedDimensions; +} + +void DetectableHost::startAnomalyDetectionThreads() { + TrainingThread = std::thread(&TrainableHost::train, this); + DetectionThread = std::thread(&DetectableHost::detect, this); +} + +void DetectableHost::stopAnomalyDetectionThreads() { + TrainingThread.join(); + DetectionThread.join(); +} |