diff options
Diffstat (limited to 'ml/ad_charts.cc')
-rw-r--r-- | ml/ad_charts.cc | 572 |
1 files changed, 0 insertions, 572 deletions
diff --git a/ml/ad_charts.cc b/ml/ad_charts.cc deleted file mode 100644 index 4b70cb43f..000000000 --- a/ml/ad_charts.cc +++ /dev/null @@ -1,572 +0,0 @@ -// SPDX-License-Identifier: GPL-3.0-or-later - -#include "ad_charts.h" - -void ml_update_dimensions_chart(ml_host_t *host, const ml_machine_learning_stats_t &mls) { - /* - * Machine learning status - */ - if (Cfg.enable_statistics_charts) { - if (!host->machine_learning_status_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "machine_learning_status_on_%s", localhost->machine_guid); - snprintfz(name_buf, 1024, "machine_learning_status_on_%s", rrdhost_hostname(localhost)); - - host->machine_learning_status_rs = rrdset_create( - host->rh, - "netdata", // type - id_buf, - name_buf, // name - NETDATA_ML_CHART_FAMILY, // family - "netdata.machine_learning_status", // ctx - "Machine learning status", // title - "dimensions", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_TRAINING, // module - NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE // chart_type - ); - rrdset_flag_set(host->machine_learning_status_rs , RRDSET_FLAG_ANOMALY_DETECTION); - - host->machine_learning_status_enabled_rd = - rrddim_add(host->machine_learning_status_rs, "enabled", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - host->machine_learning_status_disabled_sp_rd = - rrddim_add(host->machine_learning_status_rs, "disabled-sp", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - } - - rrddim_set_by_pointer(host->machine_learning_status_rs, - host->machine_learning_status_enabled_rd, mls.num_machine_learning_status_enabled); - rrddim_set_by_pointer(host->machine_learning_status_rs, - host->machine_learning_status_disabled_sp_rd, mls.num_machine_learning_status_disabled_sp); - - rrdset_done(host->machine_learning_status_rs); - } - - /* - * Metric type - */ - if (Cfg.enable_statistics_charts) { - if (!host->metric_type_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "metric_types_on_%s", localhost->machine_guid); - snprintfz(name_buf, 1024, "metric_types_on_%s", rrdhost_hostname(localhost)); - - host->metric_type_rs = rrdset_create( - host->rh, - "netdata", // type - id_buf, // id - name_buf, // name - NETDATA_ML_CHART_FAMILY, // family - "netdata.metric_types", // ctx - "Dimensions by metric type", // title - "dimensions", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_TRAINING, // module - NETDATA_ML_CHART_PRIO_METRIC_TYPES, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE // chart_type - ); - rrdset_flag_set(host->metric_type_rs, RRDSET_FLAG_ANOMALY_DETECTION); - - host->metric_type_constant_rd = - rrddim_add(host->metric_type_rs, "constant", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - host->metric_type_variable_rd = - rrddim_add(host->metric_type_rs, "variable", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - } - - rrddim_set_by_pointer(host->metric_type_rs, - host->metric_type_constant_rd, mls.num_metric_type_constant); - rrddim_set_by_pointer(host->metric_type_rs, - host->metric_type_variable_rd, mls.num_metric_type_variable); - - rrdset_done(host->metric_type_rs); - } - - /* - * Training status - */ - if (Cfg.enable_statistics_charts) { - if (!host->training_status_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "training_status_on_%s", localhost->machine_guid); - snprintfz(name_buf, 1024, "training_status_on_%s", rrdhost_hostname(localhost)); - - host->training_status_rs = rrdset_create( - host->rh, - "netdata", // type - id_buf, // id - name_buf, // name - NETDATA_ML_CHART_FAMILY, // family - "netdata.training_status", // ctx - "Training status of dimensions", // title - "dimensions", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_TRAINING, // module - NETDATA_ML_CHART_PRIO_TRAINING_STATUS, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE // chart_type - ); - - rrdset_flag_set(host->training_status_rs, RRDSET_FLAG_ANOMALY_DETECTION); - - host->training_status_untrained_rd = - rrddim_add(host->training_status_rs, "untrained", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - host->training_status_pending_without_model_rd = - rrddim_add(host->training_status_rs, "pending-without-model", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - host->training_status_trained_rd = - rrddim_add(host->training_status_rs, "trained", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - host->training_status_pending_with_model_rd = - rrddim_add(host->training_status_rs, "pending-with-model", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - host->training_status_silenced_rd = - rrddim_add(host->training_status_rs, "silenced", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - } - - rrddim_set_by_pointer(host->training_status_rs, - host->training_status_untrained_rd, mls.num_training_status_untrained); - rrddim_set_by_pointer(host->training_status_rs, - host->training_status_pending_without_model_rd, mls.num_training_status_pending_without_model); - rrddim_set_by_pointer(host->training_status_rs, - host->training_status_trained_rd, mls.num_training_status_trained); - rrddim_set_by_pointer(host->training_status_rs, - host->training_status_pending_with_model_rd, mls.num_training_status_pending_with_model); - rrddim_set_by_pointer(host->training_status_rs, - host->training_status_silenced_rd, mls.num_training_status_silenced); - - rrdset_done(host->training_status_rs); - } - - /* - * Prediction status - */ - { - if (!host->dimensions_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "dimensions_on_%s", localhost->machine_guid); - snprintfz(name_buf, 1024, "dimensions_on_%s", rrdhost_hostname(localhost)); - - host->dimensions_rs = rrdset_create( - host->rh, - "anomaly_detection", // type - id_buf, // id - name_buf, // name - "dimensions", // family - "anomaly_detection.dimensions", // ctx - "Anomaly detection dimensions", // title - "dimensions", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_TRAINING, // module - ML_CHART_PRIO_DIMENSIONS, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE // chart_type - ); - rrdset_flag_set(host->dimensions_rs, RRDSET_FLAG_ANOMALY_DETECTION); - - host->dimensions_anomalous_rd = - rrddim_add(host->dimensions_rs, "anomalous", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - host->dimensions_normal_rd = - rrddim_add(host->dimensions_rs, "normal", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - } - - rrddim_set_by_pointer(host->dimensions_rs, - host->dimensions_anomalous_rd, mls.num_anomalous_dimensions); - rrddim_set_by_pointer(host->dimensions_rs, - host->dimensions_normal_rd, mls.num_normal_dimensions); - - rrdset_done(host->dimensions_rs); - } - - // ML running - { - if (!host->ml_running_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "ml_running_on_%s", localhost->machine_guid); - snprintfz(name_buf, 1024, "ml_running_on_%s", rrdhost_hostname(localhost)); - - host->ml_running_rs = rrdset_create( - host->rh, - "anomaly_detection", // type - id_buf, // id - name_buf, // name - "anomaly_detection", // family - "anomaly_detection.ml_running", // ctx - "ML running", // title - "boolean", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_DETECTION, // module - NETDATA_ML_CHART_RUNNING, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE // chart_type - ); - rrdset_flag_set(host->ml_running_rs, RRDSET_FLAG_ANOMALY_DETECTION); - - host->ml_running_rd = - rrddim_add(host->ml_running_rs, "ml_running", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - } - - rrddim_set_by_pointer(host->ml_running_rs, - host->ml_running_rd, host->ml_running); - rrdset_done(host->ml_running_rs); - } -} - -void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number AnomalyRate) { - /* - * Host anomaly rate - */ - { - if (!host->anomaly_rate_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "anomaly_rate_on_%s", localhost->machine_guid); - snprintfz(name_buf, 1024, "anomaly_rate_on_%s", rrdhost_hostname(localhost)); - - host->anomaly_rate_rs = rrdset_create( - host->rh, - "anomaly_detection", // type - id_buf, // id - name_buf, // name - "anomaly_rate", // family - "anomaly_detection.anomaly_rate", // ctx - "Percentage of anomalous dimensions", // title - "percentage", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_DETECTION, // module - ML_CHART_PRIO_ANOMALY_RATE, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE // chart_type - ); - rrdset_flag_set(host->anomaly_rate_rs, RRDSET_FLAG_ANOMALY_DETECTION); - - host->anomaly_rate_rd = - rrddim_add(host->anomaly_rate_rs, "anomaly_rate", NULL, 1, 100, RRD_ALGORITHM_ABSOLUTE); - } - - rrddim_set_by_pointer(host->anomaly_rate_rs, host->anomaly_rate_rd, AnomalyRate); - - rrdset_done(host->anomaly_rate_rs); - } - - /* - * Type anomaly rate - */ - { - if (!host->type_anomaly_rate_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "type_anomaly_rate_on_%s", localhost->machine_guid); - snprintfz(name_buf, 1024, "type_anomaly_rate_on_%s", rrdhost_hostname(localhost)); - - host->type_anomaly_rate_rs = rrdset_create( - host->rh, - "anomaly_detection", // type - id_buf, // id - name_buf, // name - "anomaly_rate", // family - "anomaly_detection.type_anomaly_rate", // ctx - "Percentage of anomalous dimensions by type", // title - "percentage", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_DETECTION, // module - ML_CHART_PRIO_TYPE_ANOMALY_RATE, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_STACKED // chart_type - ); - - rrdset_flag_set(host->type_anomaly_rate_rs, RRDSET_FLAG_ANOMALY_DETECTION); - } - - for (auto &entry : host->type_anomaly_rate) { - ml_type_anomaly_rate_t &type_anomaly_rate = entry.second; - - if (!type_anomaly_rate.rd) - type_anomaly_rate.rd = rrddim_add(host->type_anomaly_rate_rs, string2str(entry.first), NULL, 1, 100, RRD_ALGORITHM_ABSOLUTE); - - double ar = 0.0; - size_t n = type_anomaly_rate.anomalous_dimensions + type_anomaly_rate.normal_dimensions; - if (n) - ar = static_cast<double>(type_anomaly_rate.anomalous_dimensions) / n; - - rrddim_set_by_pointer(host->type_anomaly_rate_rs, type_anomaly_rate.rd, ar * 10000.0); - - type_anomaly_rate.anomalous_dimensions = 0; - type_anomaly_rate.normal_dimensions = 0; - } - - rrdset_done(host->type_anomaly_rate_rs); - } - - /* - * Detector Events - */ - { - if (!host->detector_events_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "anomaly_detection_on_%s", localhost->machine_guid); - snprintfz(name_buf, 1024, "anomaly_detection_on_%s", rrdhost_hostname(localhost)); - - host->detector_events_rs = rrdset_create( - host->rh, - "anomaly_detection", // type - id_buf, // id - name_buf, // name - "anomaly_detection", // family - "anomaly_detection.detector_events", // ctx - "Anomaly detection events", // title - "status", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_DETECTION, // module - ML_CHART_PRIO_DETECTOR_EVENTS, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE // chart_type - ); - rrdset_flag_set(host->detector_events_rs, RRDSET_FLAG_ANOMALY_DETECTION); - - host->detector_events_above_threshold_rd = - rrddim_add(host->detector_events_rs, "above_threshold", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - host->detector_events_new_anomaly_event_rd = - rrddim_add(host->detector_events_rs, "new_anomaly_event", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - } - - /* - * Compute the values of the dimensions based on the host rate chart - */ - if (host->ml_running) { - ONEWAYALLOC *OWA = onewayalloc_create(0); - time_t Now = now_realtime_sec(); - time_t Before = Now - host->rh->rrd_update_every; - time_t After = Before - Cfg.anomaly_detection_query_duration; - RRDR_OPTIONS Options = static_cast<RRDR_OPTIONS>(0x00000000); - - RRDR *R = rrd2rrdr_legacy( - OWA, - host->anomaly_rate_rs, - 1 /* points wanted */, - After, - Before, - Cfg.anomaly_detection_grouping_method, - 0 /* resampling time */, - Options, "anomaly_rate", - NULL /* group options */, - 0, /* timeout */ - 0, /* tier */ - QUERY_SOURCE_ML, - STORAGE_PRIORITY_SYNCHRONOUS - ); - - if (R) { - if (R->d == 1 && R->n == 1 && R->rows == 1) { - static thread_local bool prev_above_threshold = false; - bool above_threshold = R->v[0] >= Cfg.host_anomaly_rate_threshold; - bool new_anomaly_event = above_threshold && !prev_above_threshold; - prev_above_threshold = above_threshold; - - rrddim_set_by_pointer(host->detector_events_rs, - host->detector_events_above_threshold_rd, above_threshold); - rrddim_set_by_pointer(host->detector_events_rs, - host->detector_events_new_anomaly_event_rd, new_anomaly_event); - - rrdset_done(host->detector_events_rs); - } - - rrdr_free(OWA, R); - } - - onewayalloc_destroy(OWA); - } else { - rrddim_set_by_pointer(host->detector_events_rs, - host->detector_events_above_threshold_rd, 0); - rrddim_set_by_pointer(host->detector_events_rs, - host->detector_events_new_anomaly_event_rd, 0); - rrdset_done(host->detector_events_rs); - } - } -} - -void ml_update_training_statistics_chart(ml_training_thread_t *training_thread, const ml_training_stats_t &ts) { - /* - * queue stats - */ - { - if (!training_thread->queue_stats_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "training_queue_%zu_stats", training_thread->id); - snprintfz(name_buf, 1024, "training_queue_%zu_stats", training_thread->id); - - training_thread->queue_stats_rs = rrdset_create( - localhost, - "netdata", // type - id_buf, // id - name_buf, // name - NETDATA_ML_CHART_FAMILY, // family - "netdata.queue_stats", // ctx - "Training queue stats", // title - "items", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_TRAINING, // module - NETDATA_ML_CHART_PRIO_QUEUE_STATS, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE// chart_type - ); - rrdset_flag_set(training_thread->queue_stats_rs, RRDSET_FLAG_ANOMALY_DETECTION); - - training_thread->queue_stats_queue_size_rd = - rrddim_add(training_thread->queue_stats_rs, "queue_size", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - training_thread->queue_stats_popped_items_rd = - rrddim_add(training_thread->queue_stats_rs, "popped_items", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - } - - rrddim_set_by_pointer(training_thread->queue_stats_rs, - training_thread->queue_stats_queue_size_rd, ts.queue_size); - rrddim_set_by_pointer(training_thread->queue_stats_rs, - training_thread->queue_stats_popped_items_rd, ts.num_popped_items); - - rrdset_done(training_thread->queue_stats_rs); - } - - /* - * training stats - */ - { - if (!training_thread->training_time_stats_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "training_queue_%zu_time_stats", training_thread->id); - snprintfz(name_buf, 1024, "training_queue_%zu_time_stats", training_thread->id); - - training_thread->training_time_stats_rs = rrdset_create( - localhost, - "netdata", // type - id_buf, // id - name_buf, // name - NETDATA_ML_CHART_FAMILY, // family - "netdata.training_time_stats", // ctx - "Training time stats", // title - "milliseconds", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_TRAINING, // module - NETDATA_ML_CHART_PRIO_TRAINING_TIME_STATS, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE// chart_type - ); - rrdset_flag_set(training_thread->training_time_stats_rs, RRDSET_FLAG_ANOMALY_DETECTION); - - training_thread->training_time_stats_allotted_rd = - rrddim_add(training_thread->training_time_stats_rs, "allotted", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE); - training_thread->training_time_stats_consumed_rd = - rrddim_add(training_thread->training_time_stats_rs, "consumed", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE); - training_thread->training_time_stats_remaining_rd = - rrddim_add(training_thread->training_time_stats_rs, "remaining", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE); - } - - rrddim_set_by_pointer(training_thread->training_time_stats_rs, - training_thread->training_time_stats_allotted_rd, ts.allotted_ut); - rrddim_set_by_pointer(training_thread->training_time_stats_rs, - training_thread->training_time_stats_consumed_rd, ts.consumed_ut); - rrddim_set_by_pointer(training_thread->training_time_stats_rs, - training_thread->training_time_stats_remaining_rd, ts.remaining_ut); - - rrdset_done(training_thread->training_time_stats_rs); - } - - /* - * training result stats - */ - { - if (!training_thread->training_results_rs) { - char id_buf[1024]; - char name_buf[1024]; - - snprintfz(id_buf, 1024, "training_queue_%zu_results", training_thread->id); - snprintfz(name_buf, 1024, "training_queue_%zu_results", training_thread->id); - - training_thread->training_results_rs = rrdset_create( - localhost, - "netdata", // type - id_buf, // id - name_buf, // name - NETDATA_ML_CHART_FAMILY, // family - "netdata.training_results", // ctx - "Training results", // title - "events", // units - NETDATA_ML_PLUGIN, // plugin - NETDATA_ML_MODULE_TRAINING, // module - NETDATA_ML_CHART_PRIO_TRAINING_RESULTS, // priority - localhost->rrd_update_every, // update_every - RRDSET_TYPE_LINE// chart_type - ); - rrdset_flag_set(training_thread->training_results_rs, RRDSET_FLAG_ANOMALY_DETECTION); - - training_thread->training_results_ok_rd = - rrddim_add(training_thread->training_results_rs, "ok", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - training_thread->training_results_invalid_query_time_range_rd = - rrddim_add(training_thread->training_results_rs, "invalid-queries", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - training_thread->training_results_not_enough_collected_values_rd = - rrddim_add(training_thread->training_results_rs, "not-enough-values", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - training_thread->training_results_null_acquired_dimension_rd = - rrddim_add(training_thread->training_results_rs, "null-acquired-dimensions", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - training_thread->training_results_chart_under_replication_rd = - rrddim_add(training_thread->training_results_rs, "chart-under-replication", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); - } - - rrddim_set_by_pointer(training_thread->training_results_rs, - training_thread->training_results_ok_rd, ts.training_result_ok); - rrddim_set_by_pointer(training_thread->training_results_rs, - training_thread->training_results_invalid_query_time_range_rd, ts.training_result_invalid_query_time_range); - rrddim_set_by_pointer(training_thread->training_results_rs, - training_thread->training_results_not_enough_collected_values_rd, ts.training_result_not_enough_collected_values); - rrddim_set_by_pointer(training_thread->training_results_rs, - training_thread->training_results_null_acquired_dimension_rd, ts.training_result_null_acquired_dimension); - rrddim_set_by_pointer(training_thread->training_results_rs, - training_thread->training_results_chart_under_replication_rd, ts.training_result_chart_under_replication); - - rrdset_done(training_thread->training_results_rs); - } -} - -void ml_update_global_statistics_charts(uint64_t models_consulted) { - if (Cfg.enable_statistics_charts) { - static RRDSET *st = NULL; - static RRDDIM *rd = NULL; - - if (unlikely(!st)) { - st = rrdset_create_localhost( - "netdata" // type - , "ml_models_consulted" // id - , NULL // name - , NETDATA_ML_CHART_FAMILY // family - , NULL // context - , "KMeans models used for prediction" // title - , "models" // units - , NETDATA_ML_PLUGIN // plugin - , NETDATA_ML_MODULE_DETECTION // module - , NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS // priority - , localhost->rrd_update_every // update_every - , RRDSET_TYPE_AREA // chart_type - ); - - rd = rrddim_add(st, "num_models_consulted", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL); - } - - rrddim_set_by_pointer(st, rd, (collected_number) models_consulted); - - rrdset_done(st); - } -} |