summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/svm/krls.h
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/dlib/svm/krls.h')
-rw-r--r--ml/dlib/dlib/svm/krls.h358
1 files changed, 358 insertions, 0 deletions
diff --git a/ml/dlib/dlib/svm/krls.h b/ml/dlib/dlib/svm/krls.h
new file mode 100644
index 000000000..6c72e45e8
--- /dev/null
+++ b/ml/dlib/dlib/svm/krls.h
@@ -0,0 +1,358 @@
+// Copyright (C) 2008 Davis E. King (davis@dlib.net)
+// License: Boost Software License See LICENSE.txt for the full license.
+#ifndef DLIB_KRLs_
+#define DLIB_KRLs_
+
+#include <vector>
+
+#include "krls_abstract.h"
+#include "../matrix.h"
+#include "function.h"
+#include "../std_allocator.h"
+
+namespace dlib
+{
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename kernel_type>
+ class krls
+ {
+ /*!
+ This is an implementation of the kernel recursive least squares algorithm described in the paper:
+ The Kernel Recursive Least Squares Algorithm by Yaakov Engel.
+ !*/
+
+ public:
+ typedef typename kernel_type::scalar_type scalar_type;
+ typedef typename kernel_type::sample_type sample_type;
+ typedef typename kernel_type::mem_manager_type mem_manager_type;
+
+
+ explicit krls (
+ const kernel_type& kernel_,
+ scalar_type tolerance_ = 0.001,
+ unsigned long max_dictionary_size_ = 1000000
+ ) :
+ kernel(kernel_),
+ my_tolerance(tolerance_),
+ my_max_dictionary_size(max_dictionary_size_)
+ {
+ // make sure requires clause is not broken
+ DLIB_ASSERT(tolerance_ >= 0,
+ "\tkrls::krls()"
+ << "\n\t You have to give a positive tolerance"
+ << "\n\t this: " << this
+ << "\n\t tolerance: " << tolerance_
+ );
+
+ clear_dictionary();
+ }
+
+ scalar_type tolerance() const
+ {
+ return my_tolerance;
+ }
+
+ unsigned long max_dictionary_size() const
+ {
+ return my_max_dictionary_size;
+ }
+
+ const kernel_type& get_kernel (
+ ) const
+ {
+ return kernel;
+ }
+
+ void clear_dictionary ()
+ {
+ dictionary.clear();
+ alpha.clear();
+
+ K_inv.set_size(0,0);
+ K.set_size(0,0);
+ P.set_size(0,0);
+ }
+
+ scalar_type operator() (
+ const sample_type& x
+ ) const
+ {
+ scalar_type temp = 0;
+ for (unsigned long i = 0; i < alpha.size(); ++i)
+ temp += alpha[i]*kern(dictionary[i], x);
+
+ return temp;
+ }
+
+ void train (
+ const sample_type& x,
+ scalar_type y
+ )
+ {
+ const scalar_type kx = kern(x,x);
+ if (alpha.size() == 0)
+ {
+ // just ignore this sample if it is the zero vector (or really close to being zero)
+ if (std::abs(kx) > std::numeric_limits<scalar_type>::epsilon())
+ {
+ // set initial state since this is the first training example we have seen
+
+ K_inv.set_size(1,1);
+ K_inv(0,0) = 1/kx;
+ K.set_size(1,1);
+ K(0,0) = kx;
+
+ alpha.push_back(y/kx);
+ dictionary.push_back(x);
+ P.set_size(1,1);
+ P(0,0) = 1;
+ }
+ }
+ else
+ {
+ // fill in k
+ k.set_size(alpha.size());
+ for (long r = 0; r < k.nr(); ++r)
+ k(r) = kern(x,dictionary[r]);
+
+ // compute the error we would have if we approximated the new x sample
+ // with the dictionary. That is, do the ALD test from the KRLS paper.
+ a = K_inv*k;
+ scalar_type delta = kx - trans(k)*a;
+
+ // if this new vector isn't approximately linearly dependent on the vectors
+ // in our dictionary.
+ if (delta > my_tolerance)
+ {
+ if (dictionary.size() >= my_max_dictionary_size)
+ {
+ // We need to remove one of the old members of the dictionary before
+ // we proceed with adding a new one. So remove the oldest one.
+ remove_dictionary_vector(0);
+
+ // recompute these guys since they were computed with the old
+ // kernel matrix
+ k = remove_row(k,0);
+ a = K_inv*k;
+ delta = kx - trans(k)*a;
+ }
+
+ // add x to the dictionary
+ dictionary.push_back(x);
+
+ // update K_inv by computing the new one in the temp matrix (equation 3.14)
+ matrix<scalar_type,0,0,mem_manager_type> temp(K_inv.nr()+1, K_inv.nc()+1);
+ // update the middle part of the matrix
+ set_subm(temp, get_rect(K_inv)) = K_inv + a*trans(a)/delta;
+ // update the right column of the matrix
+ set_subm(temp, 0, K_inv.nr(),K_inv.nr(),1) = -a/delta;
+ // update the bottom row of the matrix
+ set_subm(temp, K_inv.nr(), 0, 1, K_inv.nr()) = trans(-a/delta);
+ // update the bottom right corner of the matrix
+ temp(K_inv.nr(), K_inv.nc()) = 1/delta;
+ // put temp into K_inv
+ temp.swap(K_inv);
+
+
+
+
+ // update K (the kernel matrix)
+ temp.set_size(K.nr()+1, K.nc()+1);
+ set_subm(temp, get_rect(K)) = K;
+ // update the right column of the matrix
+ set_subm(temp, 0, K.nr(),K.nr(),1) = k;
+ // update the bottom row of the matrix
+ set_subm(temp, K.nr(), 0, 1, K.nr()) = trans(k);
+ temp(K.nr(), K.nc()) = kx;
+ // put temp into K
+ temp.swap(K);
+
+
+
+
+ // Now update the P matrix (equation 3.15)
+ temp.set_size(P.nr()+1, P.nc()+1);
+ set_subm(temp, get_rect(P)) = P;
+ // initialize the new sides of P
+ set_rowm(temp,P.nr()) = 0;
+ set_colm(temp,P.nr()) = 0;
+ temp(P.nr(), P.nc()) = 1;
+ temp.swap(P);
+
+ // now update the alpha vector (equation 3.16)
+ const scalar_type k_a = (y-trans(k)*mat(alpha))/delta;
+ for (unsigned long i = 0; i < alpha.size(); ++i)
+ {
+ alpha[i] -= a(i)*k_a;
+ }
+ alpha.push_back(k_a);
+ }
+ else
+ {
+ q = P*a/(1+trans(a)*P*a);
+
+ // update P (equation 3.12)
+ temp_matrix = trans(a)*P;
+ P -= q*temp_matrix;
+
+ // update the alpha vector (equation 3.13)
+ const scalar_type k_a = y-trans(k)*mat(alpha);
+ for (unsigned long i = 0; i < alpha.size(); ++i)
+ {
+ alpha[i] += (K_inv*q*k_a)(i);
+ }
+ }
+ }
+ }
+
+ void swap (
+ krls& item
+ )
+ {
+ exchange(kernel, item.kernel);
+ dictionary.swap(item.dictionary);
+ alpha.swap(item.alpha);
+ K_inv.swap(item.K_inv);
+ K.swap(item.K);
+ P.swap(item.P);
+ exchange(my_tolerance, item.my_tolerance);
+ q.swap(item.q);
+ a.swap(item.a);
+ k.swap(item.k);
+ temp_matrix.swap(item.temp_matrix);
+ exchange(my_max_dictionary_size, item.my_max_dictionary_size);
+ }
+
+ unsigned long dictionary_size (
+ ) const { return dictionary.size(); }
+
+ decision_function<kernel_type> get_decision_function (
+ ) const
+ {
+ return decision_function<kernel_type>(
+ mat(alpha),
+ -sum(mat(alpha))*tau,
+ kernel,
+ mat(dictionary)
+ );
+ }
+
+ friend void serialize(const krls& item, std::ostream& out)
+ {
+ serialize(item.kernel, out);
+ serialize(item.dictionary, out);
+ serialize(item.alpha, out);
+ serialize(item.K_inv, out);
+ serialize(item.K, out);
+ serialize(item.P, out);
+ serialize(item.my_tolerance, out);
+ serialize(item.my_max_dictionary_size, out);
+ }
+
+ friend void deserialize(krls& item, std::istream& in)
+ {
+ deserialize(item.kernel, in);
+ deserialize(item.dictionary, in);
+ deserialize(item.alpha, in);
+ deserialize(item.K_inv, in);
+ deserialize(item.K, in);
+ deserialize(item.P, in);
+ deserialize(item.my_tolerance, in);
+ deserialize(item.my_max_dictionary_size, in);
+ }
+
+ private:
+
+ inline scalar_type kern (const sample_type& m1, const sample_type& m2) const
+ {
+ return kernel(m1,m2) + tau;
+ }
+
+ void remove_dictionary_vector (
+ long i
+ )
+ /*!
+ requires
+ - 0 <= i < dictionary.size()
+ ensures
+ - #dictionary.size() == dictionary.size() - 1
+ - #alpha.size() == alpha.size() - 1
+ - updates the K_inv matrix so that it is still a proper inverse of the
+ kernel matrix
+ - also removes the necessary row and column from the K matrix
+ - uses the this->a variable so after this function runs that variable
+ will contain a different value.
+ !*/
+ {
+ // remove the dictionary vector
+ dictionary.erase(dictionary.begin()+i);
+
+ // remove the i'th vector from the inverse kernel matrix. This formula is basically
+ // just the reverse of the way K_inv is updated by equation 3.14 during normal training.
+ K_inv = removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i);
+
+ // now compute the updated alpha values to take account that we just removed one of
+ // our dictionary vectors
+ a = (K_inv*remove_row(K,i)*mat(alpha));
+
+ // now copy over the new alpha values
+ alpha.resize(alpha.size()-1);
+ for (unsigned long k = 0; k < alpha.size(); ++k)
+ {
+ alpha[k] = a(k);
+ }
+
+ // update the P matrix as well
+ P = removerc(P,i,i);
+
+ // update the K matrix as well
+ K = removerc(K,i,i);
+ }
+
+
+ kernel_type kernel;
+
+ typedef std_allocator<sample_type, mem_manager_type> alloc_sample_type;
+ typedef std_allocator<scalar_type, mem_manager_type> alloc_scalar_type;
+ typedef std::vector<sample_type,alloc_sample_type> dictionary_vector_type;
+ typedef std::vector<scalar_type,alloc_scalar_type> alpha_vector_type;
+
+ dictionary_vector_type dictionary;
+ alpha_vector_type alpha;
+
+ matrix<scalar_type,0,0,mem_manager_type> K_inv;
+ matrix<scalar_type,0,0,mem_manager_type> K;
+ matrix<scalar_type,0,0,mem_manager_type> P;
+
+ scalar_type my_tolerance;
+ unsigned long my_max_dictionary_size;
+
+
+ // temp variables here just so we don't have to reconstruct them over and over. Thus,
+ // they aren't really part of the state of this object.
+ matrix<scalar_type,0,1,mem_manager_type> q;
+ matrix<scalar_type,0,1,mem_manager_type> a;
+ matrix<scalar_type,0,1,mem_manager_type> k;
+ matrix<scalar_type,1,0,mem_manager_type> temp_matrix;
+
+ const static scalar_type tau;
+
+ };
+
+ template <typename kernel_type>
+ const typename kernel_type::scalar_type krls<kernel_type>::tau = static_cast<typename kernel_type::scalar_type>(0.01);
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename kernel_type>
+ void swap(krls<kernel_type>& a, krls<kernel_type>& b)
+ { a.swap(b); }
+
+// ----------------------------------------------------------------------------------------
+
+}
+
+#endif // DLIB_KRLs_
+